
J. Appl. Probab. 61, 1196–1198 (2024)
doi:10.1017/jpr.2024.17
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Abstract

Qu, Dassios, and Zhao (2021) suggested an exact simulation method for tempered stable
Ornstein–Uhlenbeck processes, but their algorithms contain some errors. This short note
aims to correct their algorithms and conduct some numerical experiments.
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1. Introduction

A stochastic process Z = {Zt}t≥0 is said to be a tempered stable (TS) subordinator if it is a
driftless subordinator with the Lévy measure ν(dy) = θy−α−1e−βy dy, y > 0, where α ∈ (0, 1)
and β, θ ∈R

+. In this case, we call the distribution of Z1 a tempered stable distribution with
parameters α, β, θ , and denote it by TS (α, β, θ ). In addition, a process X = {Xt}t≥0 is said to be
a TS-based Ornstein–Uhlenbeck (OU-TS) process if it is a solution to the following stochastic
differential equation:

dXt = −δXt dt + ρ dZt, X0 > 0, (1)

where δ > 0 and ρ > 0. For any t ≥ 0 and τ > 0, we have

Xt+τ = e−δτ Xt + ρ

∫ t+τ

t
e−δ(t+τ−s) dZs.

Qu et al. [2] suggested an exact simulation algorithm for Xt+τ given Xt. In addition, they
separately gave another algorithm available only for the case of α = 1

2 . Here we correct the
two algorithms and introduce the results of some numerical experiments.

2. Mathematical background and algorithms

The infinitesimal operator A of X is given by

Af (x, t) = ∂f

∂t
− δx

∂f

∂x
+

∫ ∞

0
{f (x + ρy, t) − f (x, t)} ν(dy),
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where f : R+ ×R
+ →R is differentiable on x and t. We can derive this by applying [1, (6.36)]

to the stochastic differential equation (1). [2, (3.2)] gave a representation of A incorrectly as
follows:

Af (x, t) = ∂f

∂t
− δx

∂f

∂x
+ ρ

∫ ∞

0
{f (x + y, t) − f (x, t)} ν(dy).

Thus, all the subsequent arguments in [2] must be corrected, but this error does not affect the
case of ρ = 1. Now, we fix t ≥ 0 and τ > 0, and define a process Y = {Ys}t≤s≤t+τ as

Ys := exp

{
−Xsκeδs +

∫ s

0
�(ρκeδu) du

}
,

where κ ∈R, and � is the Laplace exponent of Z, i.e. �(u) := ∫ ∞
0 (1 − e−uy) ν(dy). When

Af (x, t) = 0, the process f (Xt, t) is a martingale. From this point of view, we can see that Y is
a martingale. For any η ∈R

+, taking κ = ηe−δ(t+τ ), we obtain

E
[
e−ηXt+τ | Xt

] = exp

{
−ηXte

−δτ −
∫ ρη

ρηe−δτ

�(z)

δz
dz

}
. (2)

From the view of [2, (3.7)–(3.9)], (2) implies

E[e−ηXt+τ | Xt] = exp

{
−ηwXt − ραθ (1 − wα)

αδ

∫ ∞

0
(1 − e−ηs)s−α−1e−(β/wρ)s ds

}

× exp

{
−θβα
(1 − α)Dw

αδ

∫ ∞

0
(1 − e−ηs)

×
∫ 1/w

1

((β/ρ)u)1−α


(1 − α)
s(1−α)−1e−(β/ρ)usfV (u) du ds

}
, (3)

where w := e−δτ , 
( · ) is the Gamma function, and

Dw :=
∫ 1/w

1
(uα−1 − u−1) du = w−α − 1

α
+ ln w, fV (u) := uα−1 − u−1

Dw
, u ∈ [1, 1/w].

Equation (3) can be obtained by replacing θ and β in [2, Theorem 3.1] with ρα−1θ and β/ρ,
respectively. Thus, [2, Algorithm 3.2] can be corrected by replacing all θs and βs appearing
there in the same way. As for the correction of [2, Algorithm 3.4], we have only to change the
distribution of ĨG into

IG

(
2ρ

cδ
(
√

w − w),
4ρ

δ2
(1 − √

w)2
)

,

where IG (μ, λ) denotes the IG distribution with the mean parameter μ and the rate parame-
ter λ. Furthermore, [2, Proposition 6.1] can be corrected with the same replacements of θ and
β as above, but additionally, the function h( · ) needs to be replaced by h( · /ρ).

Remark 1. Denoting the solution to (1) by Xρ,X0 with emphasis on ρ > 0 and the initial value
X0 > 0, we have Xρ,X0 = ρX1,X0/ρ for any ρ > 0 and X0 > 0. Thus, the algorithm with ρ = 1
can be generalized to any case of ρ > 0.
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TABLE 1. OU-TS process with α = 0.25.

Corrected algorithm [2, Algorithm 3.2]

ρ E[X5
2] Estim Diff Error % Estim Diff Error %

0.5 20.6047 20.5968 0.0079 0.0383 21.0192 −0.4145 −2.0117
1 29.8371 29.8275 0.0096 0.0322 29.8636 −0.0265 −0.0888
2 54.7854 54.8371 −0.0517 −0.0944 51.4652 3.3202 6.0604
5 181.4987 181.5756 −0.0769 −0.0424 148.0422 33.4565 18.4335

3. Numerical results

As can be seen in [2, Tables 1 and 2], even using the original algorithms in [2] the errors are
kept small enough as long as the means are computed. Thus, we compute the second moments
instead and compare the results of the original and corrected algorithms.

Here, we execute simulations for an OU-TS process with α = 0.25. For the other parame-
ters, we set δ = 0.2, β = 0.5, θ = 0.25 and vary the value of ρ as 0.5, 1, 2, 5. We set X0 = 10.0
and simulate X0.5; next, we simulate X1 using the value of X0.5, which is repeated until we
simulate X5. We carried out the simulation one million times, and compared their mean square
with the second moment E[X2

5], where we can calculate E[X2
5] by using [2, (3.5)] and (2) as

follows:

E[X2
5] =

{
wX0 + ρθ

δβ1−α
(1 − w)
(1 − α)

}2

+ ρ2θ

2δβ2−α
(1 − w2)
(2 − α),

where w = e−5δ . The algorithms were coded in MATLAB (R2022b).
The simulation results are given in Table 1. Note that “Estim” in the third column represents

the mean square of one million simulation results, and “Diff” and “Error” in the fourth and fifth
columns are defined as Diff := Estim −E[X2

5] and Error := (Diff/E[X2
5]) × 100, respectively.

The last three columns display the results for the original algorithm, [2, Algorithm 3.2]. As seen
in Table 1, the errors of the corrected algorithm are small enough regardless of the value of ρ,
but for the original algorithm this is not the case. Furthermore, similar results were obtained for
the cases of OU-TS with α = 0.75 and OU-IG (inverse Gaussian), but they are not tabulated.
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