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Abstract. We show that if F'is a free Lie algebra of rank at least 2 and if G is a
non-trivial finite group of automorphisms of F then the fixed point subalgebra F¢
is not finitely generated. Some similar results are proved for relatively free Lie
algebras.
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1. Introduction. Well known results in commutative and non-commutative
invariant theory concern the action of a finite group on a free algebra (such as a
polynomial algebra or a free associative algebra) and give conditions under which
the fixed point subalgebra is finitely generated—see [6] for a survey. The corre-
sponding question for free Lie algebras was partly answered in [2] and [5]. The main
purpose of the present paper is to complete this answer. In [2], the first author
showed that if Fis a finitely generated free Lie algebra over a field K, where the rank
of Fis at least 2, and if G is a non-trivial finite group of graded Lie algebra auto-
morphisms of F, then the fixed point subalgebra FC is not finitely generated. A
similar result was later (and independently) proved by Drensky ([5]) for an arbitrary
non-trivial finite subgroup G of Aut(F), but under the additional assumption that
|G| is not divisible by the characteristic of K. The first main result of the present
paper is a common extension of these two results (which also applies to free Lie
algebras which are not finitely generated).

THEOREM A. Let F be a free Lie algebra of rank greater than 1 over a field K and
let G be a non-trivial finite subgroup of Aut(F). Then FC is not finitely generated.

Drensky ([5]) also obtained an analogous result for free metabelian Lie algebras
but again under the assumption that |G| is not divisible by the characteristic of K.
Our second main result removes this restriction.

THEOREM B. Let M be a free metabelian Lie algebra of rank greater than 1 over a
field K and let G be a non-trivial finite subgroup of Aut(M). Then MC is not finitely

generated.

Our third main result is a closely-related one for arbitrary finitely generated
relatively free Lie algebras, under some additional mild restrictions on K and G.
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THEOREM C. Let R be a finitely generated relatively free Lie algebra over an infi-
nite field K and let G be a non-trivial finite subgroup of Aut(R) which acts faithfully on
the derived factor algebra R/R', where R =[R, R]. Then RC is finitely generated if
and only if R is nilpotent.

It is hoped that the methods used in the proofs of these results will be of inde-
pendent interest. In particular, we give a simple but useful necessary condition for a
subalgebra of a free Lie algebra to be finitely generated (see Lemma 2.3).

Section 2 of this paper contains some definitions, notation and preliminary
results, and we continue in Section 3 with a key result about polynomial algebras.
Theorems B and C will be proved in Section 4, and Theorem A will be proved in
Section 5.

2. Preliminaries. Let K be a field and let G be a group. For any (right) KG-
module U we write

U={ueU:ug=uforall geG).

If E is a K-algebra (associative or non-associative) and if G is a subgroup of the
group of algebra automorphisms Aut(F) then we write the action of G on the right.
Thus E may be regarded as a KG-module and EC is a subalgebra of E, the fixed
point subalgebra of E.

For any subset S of a K-space (vector space over K) we write (S) for the K-
subspace spanned by S.

For background material on Lie algebras we refer to [1] and [9]. For any Lie
algebra L we use commutator notation [u, v] to denote the product of elements # and
v of L, while [uy, uy, ..., u,] denotes the left-normed product of elements uy, ..., u,
of L. The derived algebra [L, L] and the second derived algebra [[L, L], [L, L]] of L
will usually be denoted by L’ and L”, respectively. For each positive integer m, y,,,(L)
denotes the m-th term of the lower central series of L: thus y1(L) = L, y»(L) =L’
and ym(L) = [mel(L)» L] for all m=>2.

As usual we say that L is residually nilpotent if (,,_, ym(L) = {0}. We write
IA(L) for the normal subgroup of Aut(L) consisting of all automorphisms of
L which induce the identity automorphism on L/L’; these are the so-called
IA-automorphisms.

LEMMA 2.1. Let L be a residually nilpotent Lie algebra over a field K and let G
be a non-trivial finite subgroup of 1A(L). Then K has prime characteristic p and G is a

p-group.

Proof. Let g be a non-trivial element of G and let n be the order of g. Since g is
non-trivial there exists an element « of L such that ag # a. Write ag = a + b, where
b # 0. Thus, since g € IA(L), we have b € y»(L). Since L is residually nilpotent, there
exists a positive integer m such that b € y,,(L) but b¢ y,,,.1(L). Since g € IA(L), we
find that bg — b € yyq1(L).

An easy calculation shows that a = ag" = a + nb + ¢ where ¢ € y,,41(L). Thus
nb € Yur1(L). Since b ¢ y,,,.1(L) we find that K has non-zero characteristic p and 7 is
divisible by p. Arguing by induction on n, we can assume that g” has p-power order.
Hence g has p-power order, and so G is a p-group.
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LEMMA 2.2. Let G be a non-trivial group of automorphisms of a residually nilpo-
tent Lie algebra L. Then LY + L' # L.

Proof. 1t is sufficient to prove the result in the case where G is cyclic. Suppose
then that g is a generator of G. Since g # 1 there exists a € L such that ag —a # 0,
and since L is residually nilpotent there exists a positive integer m such that
ag — a¢ ym+1(L). Hence, by taking such a pair (a, m) where m is minimal, we can
assume that ag — a¢ Y, 1(L) but ug —u € y,,(L) for all u e L. Note then that
ug —u € Ypy1(L) forallu e L.

We claim that a¢ L¢ + L'. Suppose to the contrary that a = b + ¢ where b € LC
and ¢ € L'. Then

ag=bg+cg=b+c+d
where d € y,,,+1(L). Thus ag — a = d € y,,,+1(L). This is the required contradiction.

For a field K and a non-empty set X we write P for the free commutative asso-
ciative K-algebra freely generated by X (in other words, P is the polynomial algebra
K[X]). Also, we write 4 for the free associative K-algebra freely generated by X.
Furthermore, F denotes the free Lie algebra over K freely generated by X and M
denotes the free metabelian Lie algebra over K freely generated by X. As usual, we
may regard A as a Lie algebra under the operation defined by [u, v] = uv — vu for all
u,v € A and then Fis identified with the Lie subalgebra of A (freely) generated by X.
Furthermore, M is isomorphic to the factor algebra F/F”. Our convention is that P
and 4 have an identity element and that subalgebras of P and 4 are taken to contain
this element. Monomials of P, 4, F and M are defined in the usual way as non-zero
(iterated) products of elements of X (in the case of F and M, such a product is a Lie
product which is not necessarily left-normed). The degree of a monomial is the
length of this product. In the cases of P and A, the identity element is the only
monomial of degree 0, whereas F and M have no monomials of degree 0.

If Eis any of P, A, F or M then for each non-negative integer n we write E, for
the K-subspace spanned by the monomials of degree n. Thus E is a K-space direct
sum

E=FE®EDOED....

This decomposition is a grading of E in the sense that, for all i, j>0, every product
of an element of £; and an element of E; belongs to E;;;. The degree of an arbitrary
element u of E, denoted by deg(u), is the smallest value of »n such that
ueEy®E ®...d E,. Note that Py and A, are spanned by the identity elements of
P and A, respectively, while Fy = {0} and M, = {0}. For each positive integer m, we
have y,,(F) = F,,, ® F,,,»1 ® ... and y,,(M) = M,, ® M,,,,1 & ... . Thus, in connection
with Lemmas 2.1 and 2.2, we note that both F and M are residually nilpotent.
Let x € X. Then, for each n>0, we can write

En = EO,n b...08 En,m
where, fori=1,...,n, E;, is the K-subspace spanned by all monomials of degree n

which have x-degree i (that is, monomials of degree n with exactly i factors equal to
x). Note that, for all n>2, we have F,,,, = {0} and M, , = {0}.
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Let E(x) denote the subspace of E spanned by E; and all monomials which have
at least one factor from X\{x}. Thus

EX)=E®E)1 ®(Ey2®E12)®..0E®...0E_1.)d....

Note that F(x) = (X\{x}) ® F’ and M(x) = (X\{x}) & M".

Let ¢ be any real number satisfying 0 <g<<1. We write E(x, ¢) for the subspace
of E spanned by all subspaces E;, with n>0 and i<gn. In this notation, E = E(x, 1)
and

Ex)= | Ex. 9. 2.1

0<g<l

LEMMA 2.3. Let E be P, A, F or M.

(1) For each q with 0<g<1, E(x, q) is a subalgebra of E, and E(x) is a subalgebra
of E.
(i) Let S be a finitely generated subalgebra of E such that S C E(x). Then
S C E(x, q) for some g with 0<q < 1.

Proof. (i) Let 0<¢g<1. Suppose that u € E;, and v € E;,, where i<gn and
i<gn'. Then clearly the product of u# and v belongs to Ej;,+nw. But
i+ 17 <gn+qn' = q(n+n'). Both parts of (i) now follow.

(i1) This follows easily from (i) and (2.1).

Let E be P, A, F or M, as above, and let K; be an extension field of K. Then
K; ® E (tensor product taken over K) may be identified with the corresponding free
algebra over K; and we may regard E as embedded in K| ® E. Each algebra auto-
morphism of E extends, uniquely, to an algebra automorphism of K; ® E.

LEMMA 2.4. Let E be P, A, F or M and let K| be an extension field of K. Let G be
a group of automorphisms of E and view G as a group of automorphisms of K; ® E.
Then (K; ®E)G =K ® EC.

Proof. Clearly K; @ E° C (K, ® E)°. Let A be a K-basis of K;. Then
Ki® E=@, ., A ® E, where, for each A, the map E — A ® E given by a =1 ®a
(for a € E) is a K-space isomorphism. Suppose that Y A ® @, € (K| ® E)°, where
a, € E for each A. Then we obtain a;g = a; for each element g of G and each A; thus
(K1 ® E) C K, ® EC.

The following result is elementary and well-known, at least in the finite-
dimensional case.

LEMMA 2.5. Let U be a non-zero KG-module, where K is a field of prime char-
acteristic p and G is a finite p-group. Then U # {0}.

Proof. Let I be a right ideal of KG which is minimal subject to Ul # {0} and let J
be a right ideal of KG which is maximal in /. Thus UJ = {0}. By the conditions on K
and G, every irreducible KG-module is trivial. Thus /(g — 1) € J for all g € G. Hence
UI(g—1)={0} forallg € G, and so UI C U°.
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In Section 5 we shall require the following simple result.
LEMMA 2.6. Let K be a field of prime characteristic p and let i, ..., u,—1 be
elements of K which are not all zero. Then there exists k € {1,...,p — 1} such that

wh+ b+ ko #0.

Proof. We can write u’f—i—u’f—l—...—i—uﬁfq as slv’f—i—...—i—smvf;, with

1<m<p—1, where vy, ..., v, are the distinct non-zero elements of {1, ..., u,—1}
and where 1 <s;<p —1fori=1,..., m. The van der Monde matrix
V1 1% PP, V%
22 2
vV vy,
M I J1n
it ol

is non-singular: hence its columns are linearly independent. Thus

Sl(vlv--~7V’1M)+---+Sm(Vn7,...,VZ;) # (0,...,0).

Hence 51V + ... + 5,05 # 0 for some k € {1,...,m}.

3. Polynomial algebras. The purpose of this section is to derive a result about
polynomial algebras which will be used in Section 4 in our study of free metabelian
Lie algebras.

Let K be a field. As in Section 2, let X be a non-empty set and let P be the
polynomial algebra K[X]. Let V' denote the subspace of P spanned by X. If 4 is any
element of the general linear group GL(¥) then the action of # may be extended
(uniquely) to P so that / acts as an algebra automorphism of P. Each subspace P,,
for n=0, is invariant under the action of /. The automorphisms of P of this type will
be called the graded automorphisms of P. If H is a group of graded automorphisms
then we may, of course, regard P as a KH-module.

LeEmMA 3.1. Let P = K[X] where |X| > 1. Let H be a finite group of graded auto-
morphisms of P. Let x € X, let q be a real number such that 0<q < 1, and let r be a

positive integer. Then there exists a positive integer s, with s =r, and an element a of Py
such that )", ah¢ P(x, ).

Proof. If K, is an extension field of K and if ) ,_,; ah € P(x, q) for all a € P then
it follows that >, _,ah € (K; ® P)(x, q) for all a € K; @ P,. Thus we may assume
that K is infinite. Clearly we may also assume that |H| > 1.

As before we write V' = (X) = Py. Let H = {hy, hy, ..., h,_1} where hy = 1 and
n=|H|. Fori=1,...,n—11let V;={ve V:vh =v}. Then each of Vy,..., V,_
and (X\{x}) is a proper subspace of V. But it is well-known and easy to see that a
non-zero vector space over an infinite field is not equal to the (set-theoretic) union of
any finite collection of proper subspaces. Hence there exists v € V' such that

vE ViU UV, U(X\{x}).
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It follows that the elements vhq, ..., vh,_; are distinct.
The matrix
1 1 .. 1
V/’lo Vh] e V/1n71
(ho)'™" h"™h L ()"

with entries from the integral domain P is a non-singular (van der Monde) matrix
over Q, the field of quotients of P. Thus the vectors

(1, vho, ..., (vho)"™"), ... (1, vhpy, .., (Why )™

are linearly independent over Q, and so linearly independent over K. By considering
the components Py, ..., P,_|, we see that the elements

14+ O0ho)+ ...+ Oho)™ 1+ hy) + o+ ()"

are linearly independent over K. (The argument we have used is basically the same
as the proof of Proposition 3.1 of [4].)

For each non-negative integer m, write v(m) = v" + v+l 4 4yl We
shall show that there exists m with m>r such that Zf’;ol v(im)h; ¢ P(x, q). It follows
that Z:':ol V" h; ¢ P(x, q) for some je {0,...,n—1}. This will give the required

result.
Note that
n—1 n—1
D vomhi =Y (h)" + (vh)™ L ()™ (3.1)
i=0 i=0
n—1
= Z(l + (vh) + ..+ (vh) Dok (3.2)
i=0

For i=0,...,n—1, write vh; = A;x +w; where A; € K and w; € (X\{x}). Since
vé (X\{x}) we have Xy # 0.

We deal separately with the cases where K has non-zero characteristic and where
it has characteristic 0. Suppose first that K has prime characteristic p. Take m to be a
power of p such that m>r, m>n and m > g(m 4+ n — 1). Suppose, in order to get a
contradiction, that ) ,v(m)h; € P(x,q). Since m is a power of p, we have
(vhy)" = A"x™ + w" for each i. Hence, by (3.2),

D v =Y N1+ h) A OB TOX D (L () A+ (k)"

1

The monomials occurring in 3" ,(1 + (v;) + ...+ (vh;)" " )w/" have x-degree which
does not exceed n—1. But, since m>=>n, the monomials occurring in
DA+ (h)+ ..+ (vhy)""")x™ have x-degree which exceeds n — 1. Hence these
monomials must also occur in Y_; v(m)h;. Since Y. v(m)h; € P(x, g), we obtain
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D ONA A+ (h) 4.+ (h)"THX" € P(x, q).

l

But every monomial occurring in (1 4+ (vh;) + ... + (vh;)""")x™ has degree at most
m+n — 1 and x-degree at least m. Since m > g(m + n — 1) we deduce that

S A4 0h) A ()R =0,

Thus
A+ OB+ A+ (h) ) =0,

Since A9 #0, this contradicts the linear independence of the -elements
1+ (vhy) + ...+ (kL.

Now suppose that K has characteristic 0. Take m so that m>=r and
m > q(m+n —1). Suppose, to get a contradiction, that ). v(m)h; € P(x, q). Since
> . v(m)h; has degree at most m+n — 1, where m > g(m+n — 1), it follows that
every monomial occurring in ), v(m)h; has x-degree which is at most m — 1. Thus
> v(m)h; becomes 0 when differentiated m times with respect to x. Hence, by (3.1),

3> ((m! JODAT+((m + 1) DA (vhy) + ...

1

o (Ot = DY = DY) =0,

By comparison of the degrees we see that
D (m+ DA (v =0,
forj=0,...,n— 1. Hence }_; A”(vh;)’ = 0 for each j and so

SR+ () + A ) =0,

l

We now have a contradiction as in the previous case.

4. Free metabelian Lie algebras. Let K be a field. As in Section 2, let X be a non-
empty set, let P be the polynomial algebra K[X], and let M be the free metabelian Lie
algebra over K freely generated by X. Let V' denote the subspace spanned by X: note
that we use the same notation for this in both P and M. We regard V' ® P (tensor
product taken over K) as a right P-module in the obvious way. Clearly it is a free P-
module with {x ® 1 : x € X} as a free generating set.

It is well-known and easy to verify that the derived algebra M’ of M may be
viewed as a right P-module in which the image of an element u of M’ under the
action of a monomial xj---x, of P (where xq,...,x, € X) is the left-normed Lie
product [u, xq, ..., x,]. (One way to see this is to use the fact that M’ is naturally a
module for the Lie algebra M /M’ and P may be regarded as the universal envelop-
ing algebra of M/M’.) For u € M" and v € P we write [i; v] to denote the image of u
under the module action of v.
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LEMMA 4.1. (i) There is a P-module embedding ¢ : M’ — V & P in which

isva, oo, vle=vi®@wavz- v, — 1 @ Vv - v, 4.1)
forallr=2 and all vi,vy,...,v, € V.
(i1) If u is a non-zero element of M' and v is a non-zero element of P then

[u; v] #£ 0.

Proof. (i) We first note that there is a K-space embedding ¢: M' — V® P
satisfying (4.1): the analogous result over the integers holds by Theorem 3.1 of [7],
and the result over K can be proved similarly or deduced from the integral result by

tensoring with K. For all v, vy, ..., v,, v € V, with r>=2, we have
([v1, v, .-+, V;‘]IS)V =V QVV3-- V¥V — V2 @ VIV3- -+ V.V
=, va, ..., V]
=[[vi, v, ..., v]; Ve

It follows that ¢ is a P-module homomorphism.

(i1) Suppose u € M’ and v € P where u # 0 and v # 0. By (i), [&; v]le = (ue)v and
ue #0. Since V® P is a free P-module and P is an integral domain, V' ® P is
torsion-free as a P-module. Thus (ug)v # 0, and so [u; v] #Z 0.

Let Q be the field of quotients of P. Since V' ® P is a free right P-module it may
be embedded in V' ® Q, which is a vector space over Q (with Q acting on the right)
with basis {x® 1 : x € X}.

Suppose that G is a subgroup of Aut(M) and write N = G NIA(M). Thus Nis a
normal subgroup of G: it is the kernel of the action of G on M/M’. Write G = G/N
and, for each g € G, write g for the element gN of G/N. Since N acts trivially on
M/M', we may regard M/M’ as a KG-module, and G acts faithfully on this module.
There is a K-space isomorphism from M /M’ to V such that x + M’ is mapped to x
for all x € X. Using this isomorphism we may regard G as a subgroup of GL(}) and
so G may be regarded as a group of graded automorphisms of P (see Section 3). In
particular, P is a KG-module.

LeEMMA 4.2. With G and G as above, let u € M' and v € P. Then, for all g € G,
[u; v]g = [ug; vgl.
Proof. This is straightforward.

With G, N and G as above, MY is a KG-submodule of M. But since N acts tri-
vially on this module we may regard it as a KG-module. Thus, for g € G and
ue MY, we have ug=ug. The same considerations apply to the submodule
MY N M, and we note that MY N M = (M')". It is easily verified that (M")" is a P-
submodule of M’ (in fact, (M’)" is an ideal of M).

LEMMA 4.3. Let M be a free metabelian Lie algebra of rank greater than 1 over a
field K and let G be a finite subgroup of Aut(M). Then M© N M’ # {0}.
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Proof. We take a free generating set X of M and use the notation developed
in connection with Lemmas 4.1 and 4.2. By Lemma 2.4 we may assume that K is
infinite.

We first prove that MY N M’ # {0}. If N = {1} this is clear. But if N # {1} then,
by Lemma 2.1, K has prime characteristic p and N is a p-group. In this case
MN M = (M) +# {0} by Lemma 2.5.

Let go, g1, ..., gs—1 be elements of G such that G= {go,-.-,8,_1) where g, =1
and n = |G|. Clearly we may assume that G # N; thus n > 1. Since G acts faithfully
on V, it follows, as in the proof of Lemma 3.1, that there exists a non-zero element v
of V such that the elements vg,, ..., vg,_; are distinct.

Recall that (M")" may be regarded as a KG-module and that (M")" # {0}. Let u
be a non-zero element of (M")". Thus each of ug,, ..., ug, , is an element of (M")".
Since vg,, ..., vg,_; are distinct elements of P, it is easy to verify (by considering the
elements (vgl-)(vgj)*1 in the multiplicative group of the field of quotients Q) that there
exist infinitely many positive integers ¢ such that (vg,)’, ..., (vg,_;)" are distinct. We
choose ¢ so that deg(ug,)<t+1 for i=0,...,n—1, and we write w ='. Thus
wgy, - .., wg,_; are distinct elements of P;.

Let Z be the matrix

n—1

1 Vl’go e (M7§0)
1 wg, ... (wg)"!
Lowguy o (g,

Thus Z is a van der Monde matrix over the field O, and it is invertible over Q.
_ We claim that the element [u; 1 +w+ ... + w11 of (M) generates a regular
KG-module. To prove this, suppose that
n—1

D kil T+w+ .. 4+ g) =0, (4.2)
i=0

where Ag, ..., A,—1 € K. We shall prove that ,; =0 fori=0,...,n—1.
By (4.2) and Lemma 4.2, we have

> o hfugi 14+ wg) + ...+ (wg)''1=0. (4.3)

For i=0,...,n—1, write ¢; = A;(ug;)e € V® P. By Lemma 4.1, ¢ is a homo-
morphism of P-modules. Thus, applying ¢ to (4.3), we obtain

S el +g) + ...+ (wg)" ) = 0. (4.4)
But ¢, e V@ (P ®...® P,) for each i, by the choice of ¢ and the definition of &.

Thus
ei(ng»)j eEVRPjir1®...® P(j+l)t)
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for j=0,...,n— 1. Hence, by (4.4), Ziei(wgi)j =0 forj=0,...,n— 1. In matrix
notation,

(eo,...,en1)Z=1(0,...,0).

We may regard each e; as an element of the Q-space V' ® Q. Thus, since Z is inver-
tible over Q, we obtain ¢; = 0 for all i. But, since ¢ is an embedding, (1g;)e # 0 for all
i. Thus A; = 0 for all i.

Therefore, as claimed, [u; 1 +w + ... + w"~!] generates a regular KG-module. It
follows that the element

w; L+w+ ...+ NG+ +...+38,.)

is a non-zero element of (M’)" which is fixed by G. Thus we have a non-zero element
of (M")°.

LEMMA 4.4. Let M be the free metabelian Lie algebra over a field K on a free
generating set X with |X| > 1. Let G be a finite subgroup of Aut(M) and write
N =GNIA(M) and G = G/N. Let x € X and let q be a real number with 0<q < 1.
Then there exists c € MN N M’ such that

Z ch¢ M(x, q).

heG

Proof. Write G = {g,, ..., 8,1} where g, = 1 and n = |G|. By Lemma 4.3 there
exists a non-zero element u of (M')°. Let ¢ be the degree of u. Choose ¢’ so that
g < g’ < 1 and choose a positive integer r so that (¢’ — ¢)r > gt. Let P = K[X] and
make P into a KG-module as explained before the statement of Lemma 4.2. By
Lemma 3.1, there exists s>r and a € P, such that ), ag;¢ P(x,q’). Let ¢ = [u; a].
Thus ¢ e (M)Y. Also, >.cgi=[u; Y ;ag] by Lemma 4.2. We claim that
[u; 3 agil ¢ M(x, q).

Write u =uy +...4+u, where u; € M; for j=2,...,¢. Since u has degree ¢,
u; # 0. Suppose, in order to get a contradiction, that [u; Y. ag;] € M(x, ¢). Since
ag; € Py for all i, it follows that [u; ) ,ag] e M(x,q). Note also that
[t D ag] € My,

Write u, = Z/’:O u;, where u;, e M;, for j=0,...,¢t. Similarly, write
> ag; = Z;:O d; s where d;; € Pj for j=0,...,s and write [u,; )_;ag,] = Zj‘ié € st
where e, € M; , for j=0,...,54+t. Choose k maximal subject to u, # 0 and

choose / maximal subject to d;; # 0. Then ey, # 0 by Lemma 4.1(ii). But, by the
choice of a, we have [ > ¢’s. Also, (¢’ — q)s > gt. Hence k+ =] > g(s + t). Thus
[us; Y, ag;]¢ M(x, g), which is a contradiction.

Proof of Theorem B. Suppose, in order to get a contradiction, that M is finitely
generated. By Lemma 2.2, MY + M’ # M. Let X, be a free generating set for M.
Thus M = (Xj) ® M'. Take a basis X for (X;) so that, for some x € X, we have
MY C (X\{x}) @ M. 1t is easy to verify that X is a free generating set for M and, in
the notation of Section 2, MY € M(x). Thus, by Lemma 2.3(ii), there exists ¢ with
0<gq < 1 such that M € M(x, ). By Lemma 4.4, there exists ¢ € (M")" such that

> neg Ché¢ M(x, q). But
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> che M € M(x, g).

heG
This is the required contradiction.
Theorem C will be derived as a corollary of the following result.

THEOREM 4.5. Let R be a Lie algebra over a field K such that R/R" is a free
metabelian Lie algebra of rank greater than 1. Let G be a non-trivial finite subgroup of
Aut(R) such that G acts faithfully on R/R'. Then R is not finitely generated.

Proof. Write M = R/R". Thus M is a free metabelian Lie algebra of rank
greater than 1 and M/M’ may be identified with R/R’. Since G acts faithfully on
R/R' it acts faithfully on M/M’ and so it acts faithfully on M. Thus we may regard
G as a group of automorphisms of M.

Suppose, in order to get a contradiction, that R is finitely generated, and write
S = (RY+ R")/R". Thus S is a finitely generated subalgebra of M. Also,

(S+ M)/M S (M/M)° £ M/M.

Thus, as in the proof of Theorem B, we may choose a free generating set X of M and
an element x of X such that S C M(x). By Lemma 2.3(ii), there exists ¢ with
0<g¢g < 1 such that S € M(x, ¢). Note that N = G N TA(M) = {1}. Thus, by Lemma
4.4, there exists ¢ € M’ such that }__; cg¢ M(x, g).

Let w be any element of R such that w + R” = ¢. Since }_,.; wg € RY, we have

geCG

ng—i— R’ € S C M(x, g).
geCG

But
Z wg+ R = Z cg¢ M(x, q).

geG geG

This is the required contradiction.

Proof of Theorem C. Under the hypotheses of Theorem C, suppose that R is
relatively free in V, where V is a variety of Lie algebras over K. If R is nilpotent then
R is finite-dimensional and so RY is finitely generated.

Now assume that R is not nilpotent. Thus R has rank greater than 1. We shall
show that RY is not finitely generated. By Theorem 4.5 it is enough to show that V
contains the variety of all metabelian Lie algebras over K. Suppose, in order to get a
contradiction, that this does not hold. Then, by a well-known argument (see the proof
of Corollary 5.4 of [3], for example), V satisfies an Engel identity. Hence R satisfies
an Engel identity. But R is finitely generated. Therefore, by the results of Kostrikin
([8]) and Zel’'manov ([10]), R is nilpotent. This is the required contradiction.

5. Free Lie algebras. Let K be a field. As in Section 2, let X be a non-empty set,
let A be the free associative K-algebra on X, and let F be the free Lie K-algebra on X.
As before we take F C A. Elements of X will sometimes be called letters.

https://doi.org/10.1017/50017089500020024 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500020024

178 R. M. BRYANT AND A. I. PAPISTAS

If a, b, ¢ and d are monomials of 4 (any of which may be the identity element)
such that d = abc then we say that « is an initial segment of d, b is a segment of d,
and c is a final segment of d. For any monomial a of 4 we write a for the monomial
of A obtained by writing the letters of @ in reverse order: that is, if a = xjx; -+ - x,,
where x; € X for i=1,...,n, then a = x,--- x,x;. Note that the monomials of 4
form a K-basis of 4. Thus each element u of 4 may be uniquely expressed as a linear
combination of monomials of 4 with coefficients in K. Every monomial ¢ of 4 has a
coefficient (possibly 0) in this expression: we call it the coefficient of @ in u. We shall
be particularly concerned with the special case where u € F.

LEMMA 5.1. Let f € F, let a be a monomial of A, and let A be the coefficient of a in
1. Then the coefficient of @ in [ is (—1)%&@+1 3.

Proof. See Lemma 1.7 of [9].

If K has prime characteristic p, then for all e, f € 4 and any non-negative integer

T we have .
le./"1=le.fs---. /],

where there are p™ copies of f in the second commutator (see (1.6.1) of [9], for
example). Thus if e, f € F then [e, /7] € F. Much of the work towards the proof of
Theorem A is done in the proof of the following technical result.

LeEmMA 5.2. Let K be a field of prime characteristic p, let X be a set such that
|X| > 1, let A be the free associative K-algebra on X, and let F be the free Lie K-
algebra on X, where we take F C A. Let x € X, let q be a real number with 0<q < 1,
let e be a non-zero element of F’, and let fi, ..., f,—1 be elements of F' which are not all
zero. Then there exists a non-negative integer t such that

[e, X" + (x+ /1) + ...+ (x + /1,1 1¢ F(x, 9).

Proof. For any monomial v of 4 we shall write /(v) for the largest non-negative
integer s such that x* is an initial segment of v and r,(v) for the largest s such that x*
is a final segment of v.

Fori=1,...,p—1, let Q; be the set of monomials of 4 which have non-zero
coefficient in f;, and write Q = QU ... U Q,_;. Choose a € 2 so that for all v € Q
either [.(v) < Iy(a) or [,(v) = [.(a) and deg(v) <deg(a). By Lemma 5.1, a € Q. Also, a
has the property that for all ve Q either ry(v) <re(@ or ry(v)=r.a) and
deg(v) <deg(a). Without loss of generality we may assume that a € Q. (Thus, also,

ae Ql.)
For i=1,...,p—1, let A; be the coefficient of a in f;. Thus A; # 0 and, by
Lemma 5.1, @ has coefficient (—1)%€@*1; in fi. For i=1,...,p—1, write

i = (=1)%EDT2 Thus y; is the product of the coefficients of a and a in f;. By
Lemma 2.6 there exists k € {1, ..., p — 1} such that ,u’f + ...+ u’;q #0.

Let I' be the set of monomials of 4 which have non-zero coefficient in e. Let ¢ be
a monomial of 4 of smallest possible degree such that ¢x” € T" for some n>0. For
this monomial ¢, choose n as large as possible such that cx" € I and write b = ¢x”".
Furthermore, let £ be the coefficient of b in e: thus & # 0.
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Note that, since e, fi, ..., f,—1 € F’, every element of I' U @ has degree at least 2,
and no element of I' U Q is a power of x.

Choose a positive integer / so that deg(v)</for all v e T U Q. Let ¢ be a power
of p chosen so that when m is defined as m =t — k(/+2) we have m>[ and
ki4+m > q(3kl+ [+ m). Let

u=[e,x"+(x+/1) +...+ x4+

We shall show that u¢ A(x, ¢). This will establish the required result because
F(x, q) € A(x, q).
Write d = b(x'ad)*x™. Thus d is a monomial of 4. We shall prove that d appears
in u with non-zero coefficient and that d does not belong to A(x, q).
Letie{l,...,p— 1}. Since

e, (x +/)T = e(x + /) = (x +f)e,

we can write [e, (x + ;)] as a linear combination of terms of the form vgv; - - - v, and
terms of the form vy ---v,vy where vg € I" and vy, ..., v, € {x} U Q;. No term of the
form vy --- vy can be equal to d because d has a final segment x”, but m>=deg(vo)
and v is not a power of x.

We shall prove that if vyv; - - - v, = d then there is an equality of (¢ + 1)-tuples

o, vi,...,v)=(0b,x,...,x,a,d,x,...

(5.1)

ST
Rl

9 x’
Xy e, X, A, A, X, ., X),
where the (¢ + 1)-tuple on the right is the one given by the factorisation b(x'ad)*x™
of d. Suppose then that vyv; ---v, = d, where v € " and v, ..., v, € {x} U Q;.

Since />deg(vy), vy is an initial segment of hx’. But v, cannot have the form bx*
with s> 1 because of the choice of b. Hence vy is an initial segment of 5. Recall that
b = ¢x". By the choice of ¢, vy is not an initial segment of ¢ unless vy = ¢. Thus vy has
the form vy = cx” where 0<#’ <n, and so b = vox"". Hence

vy = X (Xad)k X
Write
X (aay = wy oy
where wi, ..., w, € {x, ad}, exactly as x and ad appear in x"~" (x'a@)*x™. It is easily

verified that r =n —n' + ¢ — k. Also,

ViV = Wi Wy

For j=1,...,¢ take a(j) and B(j) in {1,...,r} so that when v; is regarded as a
segment of wy - - - w, it has its first letter within wy(;, and its last letter within wg ).

We claim that if v; € @; then wy(;) = aa. For suppose otherwise that wy) = x
for some j with v; € Q;. Then v; is an initial segment of wy;)---w,, which is a
monomial with an initial segment of the form x’a with s>1. Hence /(v;) > /.(a),
contrary to the choice of a. Similarly, if v; € ©; then wg ;) = aa because no element
of ©Q; can be a final segment of any monomial with a final segment of the form ax*
with s> 1, because of the maximality of ry(a).
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Therefore, for je {l,...,1}, if v, € Q; then wy;) =aa and wg) = aa. Since
[=deg(v;) we must have a(j) = B(j) in this case. But, clearly, if v; = x then we also
have a(j) = B(j). It follows that there are integers o(0), o(1), ..., o(r) with

0=00)<o(l)<...<o(r)=t
such that

W1 = V1 Vo(1), W2 = Vo(1)+1 " Vo@)s ---» Wr = Vo@r—1)+1""" Vi

If w; = aa then we cannot have o(j) — o(j — 1) = 1 because this gives ad = vq(;)
which implies /(vo(;)) = [(a) and deg(ve(;)) > deg(a), contrary to the choice of a.
Thus, if w;=aa we have o(j)—o(j—1)=2. Of course, if w;=x we have
o(j)—o(j—1)=1. There are k values of j for which w;=aa and there are
n—n' + t — 2k values of j for which w; = x. Since ¢ = Zj(a(j) —o(j— 1)), we obtain

=2k +m—n +1t—2k).

Thus n —#n' =0 and whenever w; = aa we must have o(j) —o(j— 1) = 2, that is
W) = Vo(j)=1Vo())-

In order to examine this last equation suppose that aa = v where
v,V € {x} U Q. If deg(v) < deg(a) then v € Q;, r.(v') = ry(a) and deg(v') > deg(a),
which is impossible. Thus deg(v)>deg(a). Hence v € Q; and /. (v) = [,(a); thus
deg(v) = deg(a). It follows that v=a and v =a. Therefore, whenever
Wj = Vo(j)-1Ve(j) We have vo(j)-1 = a and vy(;) = a.

It follows that

i, va, e v) =0, ., X, 4,8, Xy, X),

where the #-tuple on the right is the one given by the factors of x”‘”'(x’aé)kx’”. But
n—n' =0 and so b = vy. Thus we obtain (5.1).

Therefore, when [e, (x + f;)'] is written as a linear combination of terms
vovy - -+ v, and vy - - - v, v, as previously described, the only term which is equal to the
monomial d is the one specified by (5.1) (and this can only occur if i has the property
that a € ;). This term has coefficient Suf‘ It follows that the coefficient of d in u is
é(,u]f +...4+ u’;fl). Thus d has non-zero coefficient in u.

The x-degree of d is at least k/ + m, whereas

deg(d) <!+ k(I +2) +m = 3kl + [+ m.
Since kl + m > q(3kl 4+ [ 4+ m) we see that d¢ A(x, q). Hence u¢ A(x, g), as required.

LEMMA 5.3. Let F be a free Lie algebra of rank greater than 1 over a field K of
prime characteristic p. Let G be a group of 1A-automorphisms of F such that G is
cyclic of order p. Then FC is not finitely generated.

Proof. Let g be an element of G which generates G. In order to get a contra-
diction, assume that FC is finitely generated. By Lemma 2.2, F¢ + F’ # F. Thus (as
in the proof of Theorem B) we may choose a free generating set X of F and an ele-
ment x of X such that FC C (X\{x}) ® F’. By Lemma 2.3, there exists ¢ with
0<gq < 1 such that F¢ C F(x, q).
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Write xg = x +fi, xg> =x+/fo,...,xg" ' = x+f,_1, where fi,...,f,-1 € F'.
Note that f; # 0. By Lemma 2.5 there exists a non-zero element e of (F'). Let 7 be
as given by Lemma 5.2 and write w = [e, x’']. Thus w € F. Clearly

w(ll4+g+...+gHeF%CFx,q).
But
wl+g+...+¢ D =le.x +x+A)V +...+ &+ ]

Thus, by Lemma 5.2, w(l +g+ ...+ g’~")¢ F(x, ¢). This is the required contra-
diction.

Proof of Theorem A. We first deal with the case where G is simple. Let
N =GNIA(F). Thus N=1{1} or N=G. If N = {1} then the result follows from
Theorem 4.5. On the other hand, if N = G then, by Lemma 2.1, K has prime char-
acteristic p and G is a p-group; so it follows that G is cyclic of order p and the result
is given by Lemma 5.3.

For the general case we argue by induction on |G| and assume that G is not
simple. Thus G has a non-trivial normal subgroup B such that G/B is simple. By the
inductive hypothesis, F? is not finitely generated. Clearly F? is G-invariant. If G acts
trivially on F2 then F¢ = F® and the result follows. Thus we may assume that G acts
non-trivially on F2. Since G/B is simple it follows that G/B acts faithfully on F5. By
the theorem of Shirshov and Witt (see [9] for example), F? is a free Lie algebra over
K. Since F® is not finitely generated, it is free of rank greater than 1. Hence, by the
inductive hypothesis, (F#)°/% is not finitely generated. In other words, F¢ is not
finitely generated.
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