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This study investigates water waves generated by a bottom obstacle translating at a
subcritical speed in constant water depth, using a combination of analytical and numerical
approaches. The newly derived analytical solutions reveal two types of waves – the
transient free waves that propagate radially outwards, and the trapped wave that stays on
top of the translating bottom obstacle. Closed-form asymptotic solutions for both the free
surface and the flow velocities are derived in the far field, and near the leading wave or
in the shallow water limit. The far-field leading waves are mathematically shown to be
insensitive to the exact shape of the obstacle. Numerical long-wave models are employed
to examine effects unaccountable by the linear analytical solutions. Nonlinear effects are
found to cause only small deviations from the linear solutions. The effects of the obstacle’s
acceleration and deceleration are also examined numerically. Overall, the idealised linear
analytical solutions predict well the characteristics of water waves generated by a bottom
obstacle, and therefore can serve as the cornerstone of a theory-based model for quickly
predicting the tsunamis generated by a submarine landslide.
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1. Introduction

This study investigates water waves generated by an obstacle moving along the sea
bottom. Many analytical studies on this subject exist. In the simplest scenario, Tinti,
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Bortolucci & Chiavettieri (2001) solved the linear shallow water wave equations in 1DH
(one-dimensional in the horizontal direction) constant depth for waves generated by a
bottom obstacle that suddenly begins travelling at a constant speed. Closed-form solutions,
reflecting the existence of three different waves, were obtained. Didenkulova, Nikolkina
& Pelinovsky (2011) and Lo & Liu (2017) examined the resonance case more closely.
By cross-sectional averaging, Didenkulova & Pelinovsky (2013) extended the analysis
to narrow bays and channels. For linear long waves generated by a deformable bottom
boundary on a slope in 1DH, Tuck & Hwang (1972) derived the general integral-form
analytical solutions consisting of three integrals. These integrals need to be numerically
integrated. Liu, Lynett & Synolakis (2003) found a special case for which the integral-form
solution can be simplified to only one integral. Another special case for which a
closed-form solution exists was found by Lo & Liu (2017). Simplified solutions were also
found by Didenkulova et al. (2010) on a convex slope.

In 2DH (two-dimensional in the horizontal direction), Sammarco & Renzi (2008)
first derived analytical solutions for bottom-obstacle-generated linear long waves on a
plane beach. Renzi & Sammarco (2010) extended the analysis to consider the wave
propagation around a conical island. While these 2DH analytical solutions are exact and
the 2DH configuration is more realistic than a 1DH one, the analytical solutions are in a
complex form comprising an infinite series and multiple integrals that need to be evaluated
numerically. Therefore, they cannot be easily analysed or used. Solving the linear shallow
water equations directly using numerical methods may be more convenient in practice,
as discussed by Lo & Liu (2017). To date, closed-form analytical expressions linking the
obstacle parameters to the water wave characteristics in 2DH are still lacking.

The main intended application of these studies are tsunamis generated by a landslide.
Some historical landmark events include: the 1958 Lituya Bay megatsunami, where a
subaerial landslide generated water waves producing a local runup height of up to 524 m
(see e.g. Fritz, Mohammed & Yoo 2009); the 1998 Papua New Guinea tsunami, which
resulted in over 2000 casualties and affected at least 25 km of coastline, is commonly
believed to have been caused by a submarine landslide (see e.g. Lynett et al. 2003);
most recently, the 2018 Sulawesi earthquake and tsunami, which resulted in over 4000
casualties, is believed to have been caused by a combination of tectonic and landslide
sources (see e.g. Liu et al. 2020). While subaerial landslides, or submarine landslides
occurring very close to shore, are capable of generating waves of extremely large
amplitudes (such as the 1958 Lituya Bay tsunami), their area of impact is generally
confined and local. On the other hand, submarine landslides occurring in the open
ocean, most likely on continental slopes, are larger (longer) in scale and thus have
the potential for generating regional tsunamis, such as the 1998 Papua New Guinea
tsunami.

To more realistically model landslide-generated tsunamis, more complex theoretical
formulations have been proposed. On a slope in 1DH, Özeren & Postacioglu (2012)
obtained analytical solutions to the nonlinear shallow water wave equations for
landslide-generated tsunamis using hodograph transforms. Wang, Liu & Mei (2011)
adopted the lubrication theory to allow for a self-evolving solid landslide, coupled with
the nonlinear shallow water wave equations. In 2DH, Couston, Mei & Alam (2015)
considered nonlinear long waves in the Lagrangian frame of reference to investigate
landslide tsunamis in lakes. While more complex and realistic, these formulations all
need to be resolved by numerical methods. Of course, in practical applications, numerical
models are the most prevalent tools for studying landslide-generated tsunamis (see e.g.
Løvholt et al. 2015 for a review); alternatively, reciprocal Green’s functions can also be
employed for fast forecasting (see e.g. Chen et al. 2020).
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As pointed out in the review paper by Løvholt et al. (2015), a clear knowledge
gap exists in the link between the parameters of a landslide and its tsunamigenic
potential. We see this missing piece of knowledge as an analogy to Okada’s model,
which is widely used to study earthquake-generated tsunamis. Using the linear elastic
dislocation model, Okada (1985) derived analytical expressions linking the fault plane
parameters of an earthquake to the resulting seafloor displacement. The earth was
assumed to be flat and a homogeneous isotropic elastic material, and the fault plane
was assumed to be a rectangular patch. To model the tsunami generated by the seafloor
displacement, the seafloor displacement is often assumed to be instantaneous, and the
corresponding water surface displacement mimics the seafloor displacement. The free
surface displacement is then used as the initial condition for a tsunami propagation model
of choice, in which complex bathymetry data can be considered. Despite the numerous
idealisations in this sequence of approximations, this approach has served as the standard
in conventional modelling of earthquake-generated tsunamis. The main justification for
these simplifications is that great uncertainties inherently exist in the earthquake and fault
parameters, and thus more accurately modelling the resulting seafloor and water surface
displacements brings only minimal benefits. For a review on tsunami modelling, readers
are referred to Saito (2017) and Grezio et al. (2017).

In the landslide–tsunami research community, however, such an analytical model
linking the landslide parameters to the water waves is lacking. While many scholars had
investigated this issue for submarine landslides (see e.g. Striem & Miloh 1976; Pelinovsky
& Poplavsky 1996; Watts 1998; Murty 2003), none of them provided a universal model
that can be widely applied in practical applications. To date, the most commonly used
model for prescribing the tsunami generated by a submarine landslide is that proposed by
Grilli & Watts (2005) and Watts et al. (2005). However, their model is purely empirical,
relying on parameter tuning to acquire best-fitting results. Therefore, it cannot be used
in predictive studies. On the other hand, although subaerial landslides are beyond the
scope of this study, we acknowledge that significant research efforts have been poured into
deriving empirical equations to describe water waves generated by subaerial landslides
(see e.g. Fritz, Hager & Minor 2003; Heller & Hager 2010; Heller & Spinneken 2015).
Without a simple landslide–wave generation model linking the landslide parameters
to the water waves, the entire landslide–wave generation process must be simulated,
which is computationally costly and severely hinders probabilistic hazard assessment
studies.

The present study attempts to fill this knowledge gap in the wave generation process by
submarine landslides. By deriving new analytical solutions and extracting new insights
from the results, we seek to pave the way for the construction of a simple theory-based
wave generation model for landslide tsunamis, analogous to Okada’s model for earthquake
tsunamis. The simplest configuration consisting of a solid obstacle translating along the
bottom boundary in 2DH constant water depth at a prescribed speed is considered. Only
subcritical forcing speeds are discussed in this study. Linear analytical investigations are
first presented in § 2. Closed-form asymptotic solutions, clearly reflecting the scaling
relations between the obstacle and the water waves it generates, are derived. To address
the shortcomings of the linear analytical solutions, numerical investigations are conducted
in § 3. More specifically, the deviations from the analytical solutions due to nonlinear
effects, obstacle acceleration effects and obstacle deceleration effects are investigated
numerically. In § 4, we conclude the study and share recommendations for future
studies.
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z′ = 0

z′

y′

x′

Moving solid

z′ = –d
A

d

η′

L

B′(x′, y′, t′,)

Figure 1. A dimensional definition sketch of water waves generated by a moving bottom obstacle. Both the
free surface displacement and the thickness of the obstacle are assumed small in linear wave models; such
assumptions are not needed in nonlinear wave models. This study considers only bottom obstacles translating
at a subcritical speed.

2. Analytical solutions

This study examines inviscid, incompressible and irrotational water waves generated by a
moving bottom obstacle in constant water depth in the three-dimensional space. Hence,
the free surface waves are two-dimensional in the horizontal space (2DH). The moving
bottom obstacle is interpreted as a deformable bottom boundary. As sketched in figure 1
using dimensional quantities, the bottom boundary deformation caused by the moving
obstacle is captured by B′(x′, y′, t′). The obstacle is a solid with a characteristic length of
L and a maximum thickness of A. The constant water depth is d. The free surface elevation
η′(x′, y′, t′) is defined as the displacement of the free surface from the still water level,
which is located at z′ = 0. Here, L is chosen as the characteristic horizontal length scale,
A is chosen as the characteristic vertical length scale, the linear long-wave celerity

√
gd,

in which g denotes the gravitational acceleration, is chosen as the characteristic speed and
hence the characteristic time scale is L/

√
gd. The variables are then normalised as follows:

(x, y, z, t) =
(

x′

L
,

y′

L
,

z′

d
,

t′

L/
√

gd

)
, (B, η) =

(
B′

A
,
η′

A

)
. (2.1a,b)

The linear and fully dispersive wave model (hereinafter LFD) for such a flow problem
is well known (see e.g. Mei, Stiassnie & Yue 2005). The Laplace equation, which is the
continuity equation for incompressible and irrotational flows, and the linearised boundary
conditions are

μ2φxx + μ2φyy + φzz = 0, −1 < z < 0,
φz = μ2Bt, z = −1,
φz = μ2ηt, z = 0,
φt + η = 0, z = 0,

⎫⎪⎪⎬⎪⎪⎭ (2.2)

where φ(x, y, z, t) = φ′(x′, y′, z′, t′)/(εL
√

gd) is the velocity potential. The parameter ε =
A/d measures how strong nonlinearity is. In a linear wave model, ε is assumed to be small
– both the water surface displacement and the bottom boundary deformation are assumed
small in comparison with the water depth. On the other hand, the parameter μ = d/L
is a measure of how strong frequency dispersion is. In (2.2), no assumptions are made
regarding the order of magnitude of μ. Hence, this wave system is fully dispersive.

The system of equations in (2.2) is a classical linear wave problem and can be solved
by applying the Laplace and Fourier transforms. In this study, the Fourier transform of a
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function f (x) is defined as

f̄ (k) = 1√
2π

∫ ∞

−∞
f (x) e−ikx dx, f (x) = 1√

2π

∫ ∞

−∞
f̄ (k) eikx dk, (2.3a,b)

where the bar denotes Fourier transformation in the x direction. A wide tilde will be used
to denote that in the y direction. Whereas k is the wavenumber in the x-space, l is the
wavenumber in the y-space. On the other hand, in this study, the Laplace transform of a
function f (t) is defined as

...
f (s) =

∫ ∞

0
f (t) e−st dt, f (t) = 1

2πi
lim

T→∞

∫ γ+iT

γ−iT

...
f (s) est ds, (2.4a,b)

where the triple dots denote a Laplace transformed function, and γ is a vertical contour in
the complex plane chosen so that all singularities of

...
f (s) are to the left of it.

After Fourier–Laplace transforming (2.2) and simplifying, the transformed solution
reads

...˜̄φ = 1
coshμq

1
s2 + q2D2

((
s ˜φ(x, y, 0, 0)− ˜η(x, y, 0)

)
cosh (μq(z + 1))

−
(

s
...˜̄B − ˜B(x, y, 0)

)
cosh(μqz)+ μs2

q

(
s
...˜̄B − ˜B(x, y, 0)

)
sinh(μqz)

)
, (2.5)

where
q =

√
k2 + l2 (2.6)

will be used throughout the study to simplify the expressions, and

D =
√

tanh(μq)
μq

(2.7)

is the normalised wave celerity of linear dispersive waves in 2DH constant depth. Here,
D(μq) is plotted in figure 2 as a function of μq – it has a maximum of one at μq = 0, and
decays to zero as μq increases. We note that q � 0 according to (2.6).

The transformed free surface
...˜̄η can be recovered as

...˜̄η = −s
...

˜φ(x, y, 0, t)+ ˜φ(x, y, 0, 0)
.

(2.8)

The velocity components in the x, y and z directions – u(x, y, z, t), v(x, y, z, t) and
w(x, y, z, t), respectively – can be calculated from the velocity potential as

u = φx, v = φy, w = φz. (2.9a–c)

2.1. Complete integral-form solutions
In order to acquire more specific solutions, further assumptions need to be made. Firstly,
the initial conditions to impose in solving (2.2) are specified as

η(x, y, 0) = 0, φ(x, y, 0, 0) = const. (2.10a,b)

Whereas η(x, y, 0) = 0 means an initially flat water surface, φ(x, y, 0, 0) = const. means
zero initial horizontal velocities on the still water surface, z = 0.
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Figure 2. The LFD wave celerity D in (2.7), plotted as a function of μq.

Second, we consider a bottom obstacle that suddenly starts moving in the x direction
at a constant speed of Fr > 0 for t > 0, where the Froude number Fr is defined as the
dimensional obstacle speed UB divided by the linear long-wave celerity

Fr = UB√
gd
. (2.11)

Such an idealisation is necessary for obtaining closed-form analytical solutions. This
sudden motion essentially corresponds to an infinitely large initial acceleration of the
obstacle. More discussions on the effects of acceleration will be provided in § 3.3. For
consistency and without loss of generality, the coordinate system shall be defined such
that the centre of mass of the bottom obstacle B is located at the origin (x, y) = (0, 0) at
t = 0.

We emphasise that, although no assumptions on the magnitude of Fr are needed to
derive the complete integral-form solutions, this study considers only bottom obstacles
translating at a subcritical speed, i.e. 0 < Fr < 1. The two main reasons are: first, the
wave characteristics due to subcritical, critical and supercritical Fr are fundamentally
different, and this study seeks to maintain a clear focus on the subcritical case. Second, the
primary intended application of this study is to provide basic scaling estimates for tsunamis
generated by a submarine landslide. A submarine landslide is unlikely to travel faster than
a subcritical speed. For example, in a water depth of 1500 m, which is the source depth
estimate by Watts et al. (2003) for the 1998 Papua New Guinea landslide tsunami, the
corresponding critical speed is 121 m s−1, or 436 km h−1. On the other hand, a subaerial
landslide, or a submarine landslide occurring very close to shore, is more likely to travel
at a supercritical speed due to the initially extremely shallow water depth. Nonetheless,
subaerial landslides are beyond the scope of this study.

For a bottom obstacle translating at speed Fr, the bottom obstacle function can be
written as

B(x, y, t) = B(x − Frt, y) (2.12)

and its Fourier transform is

˜̄B(k, l, t) = ˜B(x, y, 0) exp(−ikFrt) = ˜B0(x, y) exp(−ikFrt). (2.13)
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For convenience, we define B0(x, y) = B(x, y, 0) as the bottom obstacle shape function
that excludes the translation. Laplace transforming (2.13) gives

...˜̄B = B̃0(k, l)
1

s + ikFr
. (2.14)

After specifying the bottom obstacle function as (2.14) and imposing the initial
conditions (2.10a,b), the expression for the transformed free surface (2.8) becomes

...˜̄η(k, l, s) = −ikFrB̃0

cosh(μq)
s

s + ikFr
1

s2 + q2D2 , (2.15)

for which the closed-form inverse Laplace transform is available:

˜̄η(k, l, t) = B̃0

cosh(μq)

⎛⎜⎜⎜⎝−
Fr2 k2

q2

D2 − Fr2 k2

q2

exp(−ikFrt)+
Fr

k
q

2
(

D − Fr
k
q

) exp(−iq Dt)

−
Fr

k
q

2
(

D + Fr
k
q

) exp(iq Dt)

⎞⎟⎟⎠ . (2.16)

Noting the different wave components and writing out the definition of the inverse Fourier
transform, we then have the complete analytical solution in integral form as

η(x, y, t) = ηFr(x, y, t)+ η+(x, y, t),

ηFr(x, y, t) = − 1
2π

∫ ∞

−∞

∫ ∞

−∞
B̃0(k, l)

cosh(μq)

Fr2 k2

q2

D2 − Fr2 k2

q2

× exp(−ikFrt) exp(ikx) exp(ily) dk dl,

η+(x, y, t) = 1
2π

∫ ∞

−∞

∫ ∞

−∞
B̃0(k, l)

cosh(μq)

×

⎛⎜⎜⎝ Fr
k
q

2
(

D − Fr
k
q

) exp(−iq Dt)−
Fr

k
q

2
(

D + Fr
k
q

) exp(iq Dt)

⎞⎟⎟⎠
× exp(ikx) exp(ily) dk dl.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.17)

With a moving coordinate that follows the bottom obstacle, ξ = x − Frt, ηFr(x, y, t) can be
expressed as ηFr(ξ, y). Thus, ηFr is a steady-state solution in the moving coordinate. It is a
‘trapped wave’ of permanent shape that moves with the bottom obstacle. More discussions
on the trapped wave solution will be provided in § 2.5. On the other hand, η+ represents
transient free waves that travel at a speed of D (as indicated by the exp(iq Dt) and
exp(−iq Dt) terms), which is the linear dispersive wave speed for the wave component μq.

In 2DH, it is often more convenient to express the solutions in polar coordinates.
By using the substitutions x = r cos θ , y = r sin θ , k = q cosψ and l = q sinψ , the
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integral-form solutions (2.17) can be written as

η(r, θ, t) = ηFr(r, θ, t)+ η+(r, θ, t),

ηFr(r, θ, t) = − 1
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(μq)

Fr2 cos2 ψ

D2 − Fr2 cos2 ψ

× exp(−iqFr(cosψ)t) exp(iqr cos(ψ − θ)) dq dψ,

η+(r, θ, t) = 1
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(μq)

×
(

Fr cosψ
2(D − Fr cosψ)

exp(−iq Dt)− Fr cosψ
2(D + Fr cosψ)

exp(iq Dt)
)

× exp(iqr cos(ψ − θ)) dq dψ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.18)

In a similar manner, the integral-form solutions for the velocities can be obtained from
(2.5) and (2.9a–c). The exact expressions are provided in the supplementary material
available at https://doi.org/10.1017/jfm.2021.537.

Discontinuities exist in the solutions for D(q) = ±Fr cosψ . In Appendix A, we show
that these discontinuities either are integrable based on the Cauchy principal value, or
end up cancelled out by each other. Thus, when numerically integrating the complete
integral-form solutions, small regions near the discontinuities can be omitted, since their
net contribution to the integration is zero.

Lastly, we verify that if a 1DH bottom obstacle function is used, i.e. B(x, y, t) = B(x, t),
its Fourier transform becomes ˜̄B(k, l, t) = B̄(k, t)δ(l)

√
2π, where δ(l) is the Dirac delta

function, and the 1DH solutions as derived in Lo & Liu (2017) can be recovered.

2.2. Far-field asymptotic solutions, r → ∞
To reduce the complexity of the integral-form solutions and increase their usability,
asymptotic solutions can be sought. For the subcritical speed 0 < Fr < 1, the free wave
η+ is able to travel faster than the trapped wave ηFr, and eventually the free wave separates
from the trapped wave to become the leading wave. Hence, it is sufficient to consider
only η+ in the far field where r is large. For large r, the stationary phase approximation
can be applied to the ψ-integral in the expression for η+ given in (2.18). The phase
function q cos(ψ − θ) has stationary points at ψ0 = nπ + θ , where n is an integer. For
easier application of the stationary phase approximation, we shift the integration limits
for ψ to the left by a small distance so that ψ0 = θ,π + θ are the two stationary points
contained in the interval (this is permissible as the integrand is periodic in ψ with a period
of 2π). The main contributions to the integral then come from the vicinity of ψ = θ and
ψ = π + θ , and the ψ-integrals can be approximated for large r as

η+ � − 1√
2π

r−1/2
∫ ∞

0

B̃0(q,π + θ)

cosh(μq)
Fr cos θ

2(D + Fr cos θ)
q1/2 exp

(
−i
(

q(r + Dt)− π

4

))
dq

+ 1√
2π

r−1/2
∫ ∞

0

B̃0(q, θ)
cosh(μq)

Fr cos θ
2(D − Fr cos θ)

q1/2 exp
(

i
(

q(r − Dt)− π

4

))
dq
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+ 1√
2π

r−1/2
∫ ∞

0

B̃0(q,π + θ)

cosh(μq)
Fr cos θ

2(D − Fr cos θ)
q1/2 exp

(
−i
(

q(r − Dt)− π

4

))
dq

− 1√
2π

r−1/2
∫ ∞

0

B̃0(q, θ)
cosh(μq)

Fr cos θ
2(D + Fr cos θ)

q1/2 exp
(

i
(

q(r + Dt)− π

4

))
dq.

(2.19)

More details on the stationary phase approximation can be found in many classic
textbooks, e.g. Stoker (1992), Bender & Orszag (1999), Carrier, Krook & Pearson (2005)
and Mei et al. (2005).

Since t > 0 is required and r has to be large for (2.19) to be valid, (r + Dt) is always
large as well. Therefore, the two integrals with (r + Dt) in the exponential functions in
(2.19) vanish quickly due to fast-oscillating integrands. On the other hand, (r − Dt) can
remain small for large r as long as Dt � r. As a result, the two integrals with (r − Dt) in
the exponential functions in (2.19) must be kept. For the leading-order solution, the two
integrals involving (r + Dt) can be ignored, and we define the far-field solution ηfar, valid
for large r, as

ηfar = 1√
2π

r−1/2
∫ ∞

0

B̃0(q, θ)
cosh(μq)

Fr cos θ
2(D − Fr cos θ)

q1/2 exp
(

i
(

q(r − Dt)− π

4

))
dq

+ 1√
2π

r−1/2
∫ ∞

0

B̃0(q,π + θ)

cosh(μq)
Fr cos θ

2(D − Fr cos θ)
q1/2 exp

(
−i
(

q(r − Dt)− π

4

))
dq,

(2.20)

which is an accurate approximation of the exact solution η+ in (2.18) for large r and
0 < Fr < 1. For the purpose of verification, we have also directly computed the integrals
involving (r + Dt) and found them to be indeed negligibly small for large r (r > 1 is
sufficient in our tests).

A similar analysis can be performed on the velocity solutions to obtain the far-field
velocity solutions, which are shown in the supplementary material. When the velocities in
the x and y directions are converted to velocities in the r and θ directions, the horizontal
velocity in the θ direction becomes zero in the far field. Therefore, the waves spread strictly
radially in the far field.

Some observations can be made here on the far-field solution. First, the 2DH far-field
solution (2.20) decays in space as r−1/2 (which is a universal feature for water waves in
2DH due to geometric spreading). In addition, the bottom obstacle speed Fr shows up
as Fr cos θ . Lastly, in the vicinity of θ = ±π/2, the amplitude of the far-field solution
vanishes since cos θ → 0. Thus, water waves generated by a bottom obstacle translating
along the x-axis have the smallest (if not negligible) amplitude near the y-axis.

2.3. Far-field leading wave solutions, r � t → ∞
The method of stationary phase can be applied again on the q-integral in (2.20) to obtain
the far-field leading wave solution, as has been done in Mei et al. (2005) and Lo &
Liu (2017) for similar wave problems. In linear wave theory, the fastest wave travels at
a normalised speed of one. Therefore, the leading wave is located at r = t. By applying
the stationary phase approximation with the condition r = t, expanding the phase function
about q = 0 and retaining the first two non-zero terms, and keeping multiple expansion
terms for B0(q, θ), the far-field leading wave solution (valid for large r and r � t) is
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obtained as

ηlead(r, θ, t) = 1√
2π

r−1/2
{∫ ∞

0

[
B̃0(0, θ)+ qB̃0q(0, θ)+ q2

2
B̃0qq(0, θ)+ · · ·

]
Fr cos θ

2(1 − Fr cos θ)
q1/2 exp

(
i
(

q(r − t)+ 1
6

q3μ2t + · · · − π

4

))
dq

+
∫ ∞

0

[
B̃0(0, θ + π)+ qB̃0q(0, θ + π)+ q2

2
B̃0qq(0, θ + π)+ · · ·

]
Fr cos θ

2(1 − Fr cos θ)
q1/2 exp

(
−i
(

q(r − t)+ 1
6

q3μ2t + · · · − π

4

))
dq
}
.

(2.21)

A few intermediate steps are needed to further simplify this expression.
With the simplifications of the transformed bottom obstacle shape function and its

derivatives, as discussed in Appendix B, and with the substitution p = (μ2t/2)1/2q3/2,
the far-field leading wave solution (2.21) can be rewritten as

ηlead(r, θ, t) = 2VB

3
√

π

(
2
μ2t

)1/2

r−1/2 Fr cos θ
2(1 − Fr cos θ)

Ω1

((
2
μ2t

)1/3

(r − t)

)

− 2M1(θ)

3
√

π

(
2
μ2t

)5/6

r−1/2 Fr cos θ
2(1 − Fr cos θ)

Ω ′
1

((
2
μ2t

)1/3

(r − t)

)

+ M2(θ)

3
√

π

(
2
μ2t

)7/6

r−1/2 Fr cos θ
2(1 − Fr cos θ)

Ω ′′
1

((
2
μ2t

)1/3

(r − t)

)
+ · · · ,
(2.22)

where the function Ω1(s) is defined as

Ω1(s) =

∫ ∞

0
cos

(
sp2/3 + 1

3
p2
)

dp +
∫ ∞

0
sin
(

sp2/3 + 1
3

p2
)

dp

2π
. (2.23)

In (2.22), VB (see (B3)) is the volume enclosed by the bottom obstacle, M1(θ) (see (B6))
is the ‘first moment of the bottom obstacle shape in the θ direction’ and M2(θ) (see (B9))
is the ‘second moment of the bottom obstacle shape in the θ direction’. Similarly to the
Lo & Liu (2017) findings for the 1DH case, in the far field, the leading wave generated
by a moving bottom obstacle depends primarily on the volume enclosed by the obstacle.
The exact shape of the obstacle, which shows up as the higher-order moments in (2.22),
has only secondary effects that decay more rapidly in time. In this study, when plotting the
far-field leading wave solution, only the first term in (2.22) is considered.

The far-field leading wave solution (2.22) reveals two important facts: first, regardless
of the obstacle shape, the leading waves generated by a translating bottom obstacle
evolve into the same shape due to frequency dispersion; second, to the leading order, the
volume enclosed by the obstacle is directly proportional to the leading wave amplitude.
Interestingly, these facts appear to hold true even in more complex configurations. For
example, in the Sælevik, Jensen & Pedersen (2009) 2-D laboratory experiments on water
waves generated by subaerial landslides, the volume (or area in two dimensions) enclosed
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by the landslide was found to be the governing parameter for the leading wave amplitude.
In the Paris et al. (2019) 2DH numerical simulations of the 2017 landslide tsunami event
in Karrat Fjord, Greenland, the characteristic shape of the leading wave was found to be
independent of the landslide volume, and increasing the landslide volume only seemed to
increase the leading wave amplitude linearly.

The newly derived analytical solution (2.22) is unprecedented. Not only are assumptions
on the obstacle shape function not needed in the derivation, but the new analytical solution
also proves the above-mentioned observations to be true – i.e. the dependence of wave
amplitude on the obstacle volume and the insensitivity to the exact obstacle shape – albeit
in a highly idealised set-up.

The function Ω1(s), (2.23), accounts for the exact shape of the far-field leading
wave solution (2.22). It should be noted that the role of Ω1(s) in the 2DH
bottom-obstacle-generated wave problem is similar to that of the function T( p) presented
in Kajiura (1963) and Mei et al. (2005), who assumed a specific forcing function to derive
analytical solutions for earthquake-generated tsunamis. In the classic 1DH far-field leading
wave solutions (see e.g. Mei et al. 2005; Lo & Liu 2017), the function that accounts for
the exact wave shape is the Airy function, defined as

Ai(s) =

∫ ∞

0
cos

(
sp + 1

3
p3
)

dp

π
. (2.24)

While the integral representation of the Airy function is well known, the p-integrals in
Ω1(s) are not of a common form, and will need to be examined more closely. The two
functions are compared in figure 3. A main difference between Ω1(s) and Ai(s) is that,
while the leading wave in Ai(s) has the largest amplitude, the trailing waves in Ω1(s) all
have a larger amplitude than the leading wave. The leading wave inΩ1(s) has a maximum
of 0.390 at s � −0.467, and the first trailing wave has a maximum of 0.568 at s � −4.47.
On the other hand, the leading wave in Ai(s) has a maximum of 0.536 at s � −1.02,
and the first trailing wave has a maximum of 0.380 at s � −4.83. In both functions,
the leading wave has the longest wavelength. That the trailing waves of Ω1(s) all have
a larger amplitude than the leading wave is consistent with the Okal & Synolakis (2016)
observation that the leading wave of a tsunami is not always the largest.

Differently from the 1DH problem, wave spreading in 2DH is accounted for by the
addition of r−1/2 (which is a universal feature due to geometric spreading) and cos θ in the
solutions. In addition, the far-field leading wave in 2DH decays in time as t−1/2, whereas
that in 1DH decays in time as t−1/3. Due to the term Fr cos θ/2(1 − Fr cos θ), water waves
generated by a bottom obstacle moving in the θ = 0 direction always vanish near θ =
±π/2. Since only subcritical obstacle speeds are considered, i.e. 0 < Fr < 1, resonance
does not occur for the far-field leading wave.

While the far-field leading wave solution (2.22) appears simple and universal, the
trailing waves are not captured. Thus, little insight on the rest of the wave field can be
gained without numerically evaluating the more representative integral-form solutions
(2.17), (2.18), or (2.20). Lastly, it should be understood that the far-field leading wave
solution relies on the leading-order frequency dispersion effect to manifest. The more
frequency dispersive a problem is – that is, the largerμ is or the deeper the water depth is in
comparison to the obstacle length – the sooner the far-field leading wave solution becomes
valid; vice versa. Therefore, in the shallow water limit, μ → 0, the far-field leading wave
solution will never be reached. However, in such a limiting case, closed-form far-field
solutions can be obtained, as will be discussed in § 2.4.
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f (s)

Figure 3. The Ω1 function, (2.23), compared with the Airy function Ai, (2.24). Solid line: f (s) = Ω1(s);
dashed line: f (s) = Ai(s).

In a similar manner, the velocity solutions (normalised by ε
√

gd) for the far-field leading
wave can also be derived (details can be found in the supplementary material). The results
are

ulead(r, θ, t) = ηlead(r, θ, t) cos θ, vlead(r, θ, t) = ηlead(r, θ, t) sin θ,

wlead(r, θ, t) = 0, (2.25a–c)

where the expression for ηlead has been given in (2.22). Since the longest wave
corresponding to q = 0 travels the fastest to become the leading wave, the far-field leading
waves are long waves. Consistent with the characteristics of long waves, the horizontal
velocities of the far-field leading wave show no depth variation; i.e. ulead and vlead do not
depend on z. In addition, the vertical velocity of the far-field leading wave is zero; i.e.
wlead = 0. When the horizontal velocities are expressed in the r and θ directions, related
by

Rlead(r, θ, z, t) = ulead(r, θ, z, t) cos θ + vlead(r, θ, z, t) sin θ,

Θlead(r, θ, z, t) = −ulead(r, θ, z, t) sin θ + vlead(r, θ, z, t) cos θ,

}
(2.26)

the far-field leading wave velocity solutions become even more concise:

Rlead(r, θ, t) = ηlead(r, θ, t), Θlead(r, θ, t) = 0, wlead(r, θ, t) = 0. (2.27a–c)

The newly derived velocity solutions such as (2.27a–c) are unprecedented. Traditionally,
the initial flow velocities under a tsunami wave are assumed to be zero. While this
assumption is reasonable for earthquake-generated tsunamis, it is not at all a reasonable
assumption for landslide-generated tsunamis. Differently from the earthquake–wave
generation process, the landslide–wave generation process is dynamic – the initial tsunami
waves at the end of the wave generation process have non-zero initial flow velocities and
must be considered. The far-field leading wave velocity solutions (2.27a–c) provide a
simple means to link the free surface elevation to the flow velocities.

To check the accuracy of the far-field leading wave solutions, they should be compared
with the complete solutions. In order to plot the complete integral-form solutions, an
obstacle shape must be specified. As a reference shape in this study, we consider a radially
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Figure 4. The free surface elevations predicted by the linear and fully dispersive analytical solutions at three
different times, with Fr = 0.5, μ = 0.3 and the Gaussian-shaped B0 given in (2.28). (a–c) The complete
integral-form solution (2.18); (d– f ) the first term of the far-field leading wave solution (2.22), accurate for
large r and near r = t for (a,d) t = 2; (b,e) t = 6; (c, f ) t = 10.

symmetric Gaussian-shaped obstacle whose characteristic length is four times its standard
deviation

B0(r) = e−8r2
. (2.28)

For Fr = 0.5 and μ = 0.3, the wave fields at t = 2, 6, 10 are compared in figure 4. The
trapped wave, which follows the obstacle and is omitted in the asymptotic solutions, can be
clearly identified in the complete solutions near x = 1, 3, 5 along the x-axis, at t = 2, 6, 10,
respectively. The free waves manifest as rings of waves that propagate radially outwards.
Qualitatively, the far-field leading wave solution, theoretically accurate only for large r and
near r = t, indeed appears to capture well the overall wave characteristics near the leading
wave.

Taking a closer look, we plot the wave profiles in four different θ directions in figure 5.
The discrepancy can now be seen more clearly: while the leading wave near r = t quickly
converges to the far-field leading wave solution, the trailing waves do not. Hence, it
is consistent with the asymptotic approximations made in the solution process – the
closed-form far-field leading wave solution (2.22) is valid only in the far field (where r
is large) and near the leading wave (where r � t). In this example, r � 6 appears to be
sufficiently large.

To see how well the far-field leading wave velocity solutions (2.25a–c) compare with the
complete integral-form solutions (expressions are shown in the supplementary material),
the solutions at t = 6 are plotted in figure 6. It can be seen that, qualitatively, the far-field
leading wave solutions indeed agree with the complete solutions, in the far field (large r),
near the leading wave (near r = t), and away from the trapped wave (near x = Frt). The
far-field horizontal velocity in the θ direction is derived to be zero – this feature starts to
manifest in the complete velocity solutions at t = 6.

2.4. Shallow water solutions, μ → 0
As mentioned previously, the far-field leading wave solution relies on the leading-order
frequency dispersion effect to manifest. In the shallow water limit, μ → 0, the far-field
leading wave solution will never be reached. Due to the lack of frequency dispersion (and
thus the waves do not change shape as they propagate), the shape effect of the bottom
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Figure 5. The free surface elevations predicted by the LFD analytical solutions plotted along four different
directions at three different times, with Fr = 0.5, μ = 0.3 and the Gaussian-shaped B0 given in (2.28): (a–d)
t = 2; (e–h) t = 6; (i–l) t = 10 for (a,e,i) θ = 0; (b, f, j) θ = π/4; (c,g,k) θ = 3π/4; (d,h,l) θ = π. Circles,
numerically integrated complete solution (2.18); dashed line, the first term of the far-field leading wave solution
(2.22), accurate for large r and near r = t.
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Figure 6. The flow velocities predicted by the LFD analytical solutions at t = 6, with Fr = 0.5, μ = 0.3 and
the Gaussian-shaped B0 given in (2.28). To enhance legibility, velocities near the bottom obstacle or the origin,
where the asymptotic solutions are not applicable, are not shown. The corresponding free surface elevations
are also plotted in the background. (a) The complete velocity solutions (shown in the supplementary material)
at the still water surface z = 0; (b) the far-field leading wave velocity solutions (2.27a–c), accurate for large r
and near r = t.

obstacle is always present – each differently shaped obstacle generates differently shaped
waves. Nonetheless, the shallow water limit allows for significant simplification of the
analytical solutions. As a result, the most basic wave solutions can be obtained, particularly
suitable for providing scaling relations between the bottom obstacle and the generated
waves. By taking the limit of the LFD far-field solution (2.20) as μ → 0, the far-field
solution in shallow water becomes

ηfar = 1√
2π

r−1/2 Fr cos θ
2(1 − Fr cos θ)

∫ ∞

0
B̃0(q, θ)q1/2 exp

(
i
(

q(r − t)− π

4

))
dq
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+ 1√
2π

r−1/2 Fr cos θ
2(1 − Fr cos θ)

∫ ∞

0
B̃0(q,π + θ)q1/2 exp

(
−i
(

q(r − t)− π

4

))
dq.

(2.29)

The integrands are simpler in this case and closed-form expressions are available for
specific bottom obstacle shape functions B0.

Here, we derive the solutions for the reference Gaussian-shaped obstacle, (2.28), which
is a radially symmetric obstacle shape function where B0(x, y) = B0(r); B̃0 can then be
simplified to

B̃0 = 1
2π

∫ ∞

−∞

∫ ∞

−∞
B0(x, y) exp(−ikx) exp(−ily) dx dy

= 1
2π

∫ ∞

0

∫ 2π

0
B0(r) exp(−iqr cos(θ − ψ))r dθ dr

= 1
2π

∫ ∞

0
B0(r)r

∫ 2π

0
exp(−iqr cos(θ − ψ)) dθ dr

= 1
2π

∫ ∞

0
B0(r)r

∫ 2π

0
exp(−iqr cosα) dα dr

=
∫ ∞

0
B0(r)rJ0(qr) dr = H0{B0(r)}, (2.30)

where Jn(s) is the order-n Bessel function of the first kind and Hn{ f } denotes the order-n
Hankel transform of the function f . The expression for the Bessel integral J0(qr) =∫ 2π

0 exp(−iqr cosα) dα/2π is used in the above equation.
For a real-valued obstacle shape function B0, H0(B0) is also real. The far-field solution

(2.29) can then be simplified for a radially symmetric obstacle as

ηfar = 1√
π

Fr cos θ
2(1 − Fr cos θ)

r−1/2
∫ ∞

0
H0{B0}q1/2 (cos (q(r − t))+ sin (q(r − t))) dq.

(2.31)

The q-integral in the equation above can be evaluated in closed-form for the
Gaussian-shaped obstacle (2.28). The far-field solution (2.31) then becomes

ηfar(r, θ, t) = √
π

Fr cos θ
2(1 − Fr cos θ)

r−1/2Ω2(r − t), (2.32)

which is a wave that propagates radially outwards at a normalised speed of one.
In (2.32), Ω2(s) is defined as

Ω2(s) = |s|3/2 exp(−4s2)

[
I5/4

(
4s2
)

− I1/4

(
4s2
)

+ 1
8s2 I1/4

(
4s2
)

+ sgn(s)
(

I−1/4

(
4s2
)

− I3/4

(
4s2
))]

, (2.33)

where In(s) is the modified Bessel function of the first kind of order n, and sgn(s) returns
the sign of s. Similarly to Ω1(s), (2.23), in the dispersive leading wave solution, the
function Ω2(r − t) = Ω2(s) is a function of one variable only, and is the only term that
accounts for the exact wave shape in (2.32). As shown in figure 7, Ω2(s) has the shape
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Figure 7. The Ω2 function defined in (2.33) plotted as a function of s.

of the letter ‘N’, with a leading maximum of 0.213 at s � 0.138, which is followed
by a minimum of −0.0979 at s � −0.437. While a discontinuity exists at s = 0 due
to the division by 8s2 in (2.33), the limit as s → 0 can be shown to be Ω2(s → 0) =
21/4/[8Γ (5/4)] � 0.164, where Γ denotes the gamma function.

The shallow water far-field velocity solutions, valid for large r, can be derived to be

ufar(r, θ, t) = ηfar(r, θ, t) cos θ, vfar(r, θ, t) = ηfar(r, θ, t) sin θ. (2.34a,b)

Or, expressed in the r and θ directions:

Rfar(r, θ, t) = ηfar(r, θ, t), Θfar(r, θ, t) = 0. (2.35a,b)

To check the accuracy of the shallow water far-field solution (2.32), we compare it
against the numerically integrated complete solutions (2.18) in the shallow water limit
where μ → 0. For the Gaussian-shaped obstacle with Fr = 0.5, the wave fields are
compared in figure 8 at t = 2, 6, 10. Due to the lack of frequency dispersion in shallow
water, the waves do not deform. As a result, the trapped wave (which follows the obstacle)
and the free waves (which propagate at a speed of one) can be easily identified. For a
closer look, the results are plotted along four different directions in figure 9. Overall,
the shallow water far-field solution quickly becomes accurate as r increases. At r � 2,
it already captures parts of the free wave well; for r � 6, it captures the free wave almost
perfectly.

2.5. Trapped wave solutions
While this study primarily concerns the free wave η+, in this section we take a closer
look at the trapped wave ηFr, which was first identified in (2.17). If a moving coordinate
is introduced, ξ = x − Frt, ηFr(x, y, t) becomes independent of time and can be expressed
as

ηFr(ξ, y) = − 1
2π

∫ ∞

−∞

∫ ∞

−∞
B̃0(k, l)

cosh(μq)

Fr2 k2

q2

D2 − Fr2 k2

q2

eikξeily dk dl. (2.36)
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Figure 8. The free surface elevations predicted by the linear shallow water analytical solutions at three
different times, with Fr = 0.5 and the Gaussian-shaped B0 given in (2.28). (a–c) The complete integral-form
solution (2.18) in the shallow water limit, μ → 0; (d– f ) the far-field solution (2.32), accurate for large r for
(a,d) t = 2; (b,e) t = 6; (c, f ) t = 10.
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Figure 9. The free surface elevations predicted by the linear shallow water analytical solutions plotted along
four different directions at three different times, with Fr = 0.5 and the Gaussian-shaped B0 given in (2.28).
Circles, the complete integral-form solution (2.18) in the shallow water limit, μ → 0; dashed line, the far-field
solution (2.32), accurate for large r: (a–d) t = 2; (e–h) t = 6; (i–l) t = 10. (a,e,i) θ = 0; (b, f, j) θ = π/4; (c,g,k)
θ = 3π/4; (d,h,l) θ = π.

Converted to polar coordinates (centred about the obstacle) using the substitutions ξ =
rFr cos θFr, y = rFr sin θFr, k = q cosψ , and l = q sinψ , the expression above becomes

ηFr(rFr, θFr) = − 1
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(μq)

Fr2 cos2 ψ

D2 − Fr2 cos2 ψ
exp(iqrFr cos(ψ − θFr)) dq dψ. (2.37)

Other than translating with the bottom obstacle, the trapped wave does not change in time.
Therefore, it only needs to be numerically evaluated once.

For the example using a Gaussian-shaped obstacle with Fr = 0.5 and μ = 0.3, the wave
field and the velocities of the trapped wave are plotted in figure 10, and the free surface
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Figure 10. The wave and velocity fields (at the still water surface z = 0) associated with the ‘trapped wave’
analytical solutions, with Fr = 0.5, μ = 0.3 and the Gaussian-shaped B0 given in (2.28). (a) The integral-form
solutions (2.18), shown in the supplementary material, for the trapped wave only; (b) the integral-form solutions
in the shallow water limit, μ → 0.
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Figure 11. The free surface elevations associated with the ‘trapped wave’ analytical solutions plotted along
four different transects, with Fr = 0.5, μ = 0.3 and the Gaussian-shaped B0 given in (2.28): (a) along y = 0;
(b) along y = 0.2; (c) along y = 0.4; (d) along y = 0.6. Circle and solid line, integral-form solution (2.18), for
the trapped wave only; cross and dashed line, the integral-form solution in the shallow water limit, μ → 0.

elevations along four different transects are plotted in figure 11. Both the fully dispersive
solutions and the shallow water solutions are shown in the figures. On the water surface,
the bottom obstacle forces a significant depression, with a minimum of approximately
−0.131 in the fully dispersive solution, and two minor elevations, with a maximum of
approximately 0.027 in the fully dispersive solution. The amplitudes decrease as the
distance to the x-axis increases. To satisfy these translating water surface perturbations,
non-zero flow velocities exist. By comparing the fully dispersive results with the shallow
water results, it can be observed that the overall features of the wave and velocity fields are
highly similar. However, frequency dispersion effects appear to smooth out the extrema
– in the shallow water results, the water surface depression and the elevations all have
slightly larger amplitudes.

2.6. Remarks on the analytical solutions
The above analytical analyses reveal that a translating bottom obstacle generates two types
of waves – the free waves that propagate freely outwards and the trapped wave that stays on
top of the obstacle. While the trapped wave is a steady-state solution (relative to the moving
obstacle) that does not warrant further investigation, the free waves are more complex and
require further attention.

The newly derived dispersive far-field leading wave solution (2.22) is a closed-form
expression that accurately approximates the leading free waves in the far field (r � t � 6 is
found to be sufficiently large in the examples). The far-field leading wave solution indicates
that, regardless of the bottom obstacle shape, due to frequency dispersion all leading waves
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evolve into the same shape (captured by the function Ω1), and the volume enclosed by
the bottom obstacle is directly proportional to the wave amplitude. These findings are
of practical value, as they justify fixing an obstacle shape in laboratory experiments or
numerical simulations, and allow the results from different studies to be generalised. In
addition, the far-field leading wave flow velocities are given in (2.27a–c), which shows
that the leading waves spread radially outwards in the far field. The velocity solutions
such as (2.27a–c) provide a simple means to relate the free surface elevation to the flow
velocities, on which information is often missing in tsunami studies.

In a nearly non-dispersive problem, an unphysically large distance (which approaches
infinity in the non-dispersive limit) may be needed for the far-field leading wave solution
to become valid. In such a situation, the shallow water far-field solution (2.29) is a
more accurate model for describing the free waves in the far field (r � 6 is found to
be sufficiently large in the examples). The non-dispersive free waves are N-shaped (as
described by the function Ω2, plotted in figure 7), which are led by a crest in the
downwind direction (−π/2 < θ < π/2) and are led by a trough in the upwind direction
(π/2 < θ < 3π/2). The corresponding velocities are given in (2.35a,b), which shows that
the free waves spread radially outwards in the far field. Although the Gaussian shape (2.28)
is assumed in deriving the shallow water solutions, this act can be justified by the far-field
leading wave solution (2.22), which states that the differences in obstacle shapes have no
impacts on the leading wave asymptotically.

Similarly to Okada’s model (Okada 1985; see the discussion in § 1) for linking the
parameters of an earthquake to the resulting seafloor displacement, and consequently
the water surface displacement caused by the seafloor displacement, the closed-form
asymptotic solutions (2.22) and (2.29) provide a means for linking the parameters of a
submarine landslide (i.e. a translating bottom obstacle) to the water waves it generates. In
addition, flow velocities can be calculated from (2.27a–c) or (2.35a,b). These asymptotic
solutions can be used as the initial conditions for a tsunami propagation model of choice,
which can propagate the landslide-generated leading waves into a larger domain with
complex bathymetry. However, the idealisations assumed in the analytical derivations do
not approximate reality well. For example, both a constant water depth and a suddenly
moving bottom obstacle are assumed, neither of which holds true for a submarine
landslide. Hence, extensive empirical tuning is still needed to construct an operational
landslide tsunami generation model. Some numerical investigations will be demonstrated
in § 3.

3. Numerical investigations

In § 2, both complete integral-form analytical solutions and closed-form asymptotic
solutions have been derived for small-amplitude water waves generated by a bottom
obstacle translating at a subcritical speed. While the analytical solutions reveal the scaling
relations and the overall wave characteristics of this wave generation and evolution
problem, they are necessarily limited by the small-amplitude assumption. As a result,
nonlinear effects are not captured. In addition, simple mathematical expressions can
be found only for a bottom obstacle that suddenly starts moving at a constant speed,
essentially corresponding to an infinitely large initial acceleration; the effects due to the
bottom obstacle’s acceleration and deceleration cannot be examined using the present
analytical approach.

To complement and verify the analytical solutions derived in § 2, in this section
we employ numerical methods to solve five different sets of long-wave equations. The
long-wave models to consider include: the linear shallow water wave equations (LSWE,
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which is linear and non-dispersive, with a truncation error of O(ε, μ2)), the linear and
weakly dispersive wave model (LWD, with a truncation error of O(ε, μ4)), the nonlinear
shallow water wave equations (NSWE, which is nonlinear and non-dispersive, with a
truncation error of O(μ2)), the weakly nonlinear and weakly dispersive wave model
(WNWD, with a truncation error of O(εμ2, μ4)) and the fully nonlinear and weakly
dispersive wave model (FNWD, with a truncation error of O(μ4)). The last two, WNWD
and FNWD, are commonly referred to as ‘Boussinesq-type’ long-wave models. More
detailed information on long-wave equations can be found in, e.g. Wei et al. (1995), Lynett
& Liu (2002) and Mitsotakis (2009).

Robust numerical methods for solving these long-wave equations are nowadays
considered well known (see e.g. Toro 2001; Li & Raichlen 2002; Wei, Mao & Cheung
2006; Shiach & Mingham 2009; Kazolea et al. 2012; Shi et al. 2012; Dutykh & Kalisch
2013; Zhou, Zhan & Li 2016; Hatland & Kalisch 2019). Therefore, detailed descriptions
of the numerical models need not be shown here. Interested readers are referred to
the supplementary material. Once again, we emphasise that while both the complete
integral-form analytical solutions and the numerical solvers can be applied to examine
the critical and supercritical cases where Fr � 1, in this study we keep a clear focus on the
subcritical case where 0 < Fr < 1.

Typically, to model a long-wave problem, one employs just one set of long-wave
equations and develop a numerical solver for it. However, in this study, we utilise the
different sets of long-wave equations to study the effects due to nonlinearity alone,
frequency dispersion alone, and nonlinear frequency dispersion. For the same wave
problem, comparing the results predicted by the different long-wave models enables the
isolation of each of these effects. For example, comparing the LSWE results with the
NSWE results reveals the effects due to nonlinearity alone; comparing the LSWE results
with the LWD results reveals the effects due to frequency dispersion alone; comparing the
NSWE results or the LWD results with the WNWD results or the FNWD results reveals
the effects due to nonlinear frequency dispersion. Lynett & Liu (2002) employed such an
approach to study bottom-obstacle-generated waves in 1DH; in this study, we adopt this
approach to study bottom-obstacle-generated waves in 2DH, with a focus on examining
the deviations from the linear analytical solutions.

3.1. Nonlinear effects
First and foremost, under the same idealised configuration consisting of a solid bottom
obstacle translating at a constant speed in constant water depth, what are the effects of
nonlinearity and how do the results deviate from the linear analytical solution? Two classes
of nonlinear effects are examined: the non-dispersive nonlinear effects and the dispersive
nonlinear effects. The non-dispersive nonlinear effects, accounted for purely by the O(ε)
terms in the long-wave equations, can be isolated by comparing the NSWE results with the
LSWE results. The dispersive nonlinear effects, accounted for by the interplay between the
O(ε) terms, the O(μ2) terms and the cross-terms (if available) in the long-wave equations,
can be isolated by comparing the FNWD or WNWD results with the LWD results.

To demonstrate these effects, we shall consider the same example used throughout
this study, with Fr = 0.5, ε = 0.3, μ = 0.3 and the Gaussian-shaped B0 given in (2.28);
fairly large ε = 0.3 and μ = 0.3 are intentionally chosen to highlight the nonlinear effects
and the frequency dispersion effects, respectively. Of course, by increasing the values of
ε and Fr, nonlinearity can be further strengthened. Here, we pick just one example to
demonstrate the characteristics of the nonlinear effects.
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Figure 12. The free surface elevations predicted by different wave models at t = 10, with Fr = 0.5, ε = 0.3,
μ = 0.3 and the Gaussian-shaped B0 given in (2.28). (a) LSWE; (b) NSWE; (c) the far-field shallow water
solution (2.32), accurate for large r; (d) LWD; (e) WNWD; ( f ) the first term of the far-field leading wave
solution (2.22), accurate for large r and near r = t.
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Figure 13. The free surface elevations predicted by different wave models plotted along four different
directions at t = 10, with Fr = 0.5, ε = 0.3, μ = 0.3 and the Gaussian-shaped B0 given in (2.28). (a–d) The
non-dispersive models, in which the solid lines denote the LSWE results, the dash-dot lines denote the NSWE
results and the dashed lines denote the far-field shallow water solution (2.32), accurate for large r. (e–h) The
dispersive models, in which the solid lines denote the LWD results, the dash-dot lines denote the WNWD
results, the dotted lines denote the FNWD results and the dashed lines denote the first term of the far-field
leading wave solution (2.22), accurate for large r and near r = t. (a,e) θ = 0; (b, f ) θ = π/4; (c,g) θ = 3π/4;
(d,h) θ = π.

Let us examine the non-dispersive results first. The numerical results predicted by
LSWE, NSWE and the far-field LSWE asymptotic solution are compared in figure 12(a–c)
and figure 13(a–d) at t = 10. It can be observed that the non-dispersive results all
demonstrate similar characteristics: N-shaped leading waves consisting of an elevation
and a depression propagate radially outwards. However, the wave shapes are different due
to non-dispersive nonlinear effects. Figure 13 shows that non-dispersive nonlinear effects
steepen the wavefronts, resulting in more stretched and tilted waves.

Interestingly, since bottom-obstacle-generated waves are directional, i.e. they have
different amplitudes in different directions, nonlinearity is not globally important within
the same problem. Specifically, as revealed by the far-field LSWE asymptotic solution
(2.32) and figure 13, water waves in the upwind direction (i.e. π/2 < θ < 3π/2,
opposite the obstacle’s direction of travel) have much smaller amplitudes than those
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in the downwind direction (i.e. −π/2 < θ < π/2, in the obstacle’s direction of travel).
Therefore, although nonlinear effects are significant in the downwind direction in this
example, as revealed by the significant deviations of the NSWE results from the LSWE
results in figure 13(a,b), they are not significant in the upwind direction, as revealed by the
good performance of LSWE in figure 13(c,d). This observation suggests that in estimating
the nonlinearity of bottom-obstacle-generated waves, a direction of interest must also be
specified. Furthermore, due to the radial spreading in 2DH, wave amplitudes continue to
decrease as the waves spread outwards; an initially nonlinear wave field will eventually
become linear enough to be approximated by the linear wave theory.

Next, we examine the dispersive results. The numerical results predicted by LWD,
WNWD and the far-field leading wave solution are compared in figures 12(d–f ) and
figure 13(e–h) at t = 10. The wave fields appear highly similar, and only minor differences
in the trailing waves can be seen. A closer inspection in four select directions, i.e. figure 13,
shows the differences more clearly. Due to frequency dispersion, the leading waves all
assume similar shapes and resemble the linear far-field leading wave solution (2.22);
dispersive nonlinear effects seem to only increase the wave height of the leading waves. In
this example, the linear models (i.e. LWD and the far-field leading wave solution) perform
well except in the θ = 0 direction, where wave nonlinearity is the strongest. In contrast
to the non-dispersive results, due to frequency dispersion, the overall wave nonlinearity is
further decreased, making linear dispersive wave models more widely applicable.

Lastly, we note that both the WNWD results and the FNWD results are shown in
figure 13. Nearly no discrepancy is observed. This is not surprising as differences between
these two wave models are expected only in circumstances with strong nonlinearity,
such as wave shoaling and wave breaking. In our 2DH problem with a local source,
the overall wave nonlinearity actually decreases as the waves spread radially outwards –
the difference between the WNWD results and the FNWD results is negligible, at least
for the leading waves. Therefore, in this study, WNWD is used as the representative
nonlinear and frequency dispersive long-wave model. From a practical point of view, this
is desirable, since WNWD is computationally more efficient, and FNWD suffers from
potential instability issues (see e.g. Madsen & Fuhrman 2020). We further remark that no
significant difference between the leading waves predicted by WNWD and those predicted
by FNWD was observed in the numerous simulations performed in Lo (2018), where the
parameter range tested was 0.3 � Fr � 0.7, 0.01 � ε � 0.3 and 0.01 � μ � 0.3.

3.2. Obstacle shape effects
The linear and dispersive far-field leading wave solution (2.22) indicates that due to
frequency dispersion, all leading waves regardless of the bottom obstacle shape eventually
evolve to have the same shape, but with different amplitudes. On the other hand, the linear
and non-dispersive shallow water far-field solution (2.29) indicates that the non-dispersive
free waves assume an N-shape and spread radially outwards without changing shape. Due
to the lack of frequency dispersion, the wave shape is necessarily tied to the obstacle shape.
In this section, the numerical solvers shall be utilised to see how nonlinear effects change
these findings based on the linear analytical solutions. In addition, how sensitive the wave
shape is to the obstacle shape in the non-dispersive limit will also be discussed.

In the numerical investigation, five different smooth and radially symmetric obstacle
shapes are considered: the Gaussian shape that has been introduced in (2.28), the cubic
exponential shape, the quartic exponential shape, the secant shape and the secant squared
shape. The mathematical definitions of these five shapes are listed in table 1, and the five
shapes are plotted in figure 14 as functions of r. These five obstacle shapes have the same
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Figure 14. The five smooth and radially symmetric bottom obstacle shapes considered in this study plotted
as functions of r. The five different shapes have the same maximum height and enclose the same amount
of volume, and their definitions are listed in table 1. Solid line, the Gaussian shape; dash-dot line, the cubic
exponential shape; dotted line, the quartic exponential shape; circle, the secant shape; cross, the secant squared
shape.

Shape description B0(r)

Gaussian e−8r2

Cubic exponential exp
(

−
(

8Γ
(

5
3

))3/2
)

|r3|
Quartic exponential exp(−16πr4)

Secant sech(4
√

2
√

Car)
Secant squared sech2(4

√
ln 2r)

Table 1. The five different smooth bottom obstacle shape functions B0 plotted in figure 14. They all have
the same maximum height and enclose the same amount of volume, VB = π/8. Here, Ca � 0.915965 is the
Catalan constant; Γ denotes the gamma function.

maximum height and enclose the same amount of volume. As can be seen from figure 14,
the five different shapes can be regarded as having different characteristic steepness. The
quartic exponential shape has the steepest face, the cubic exponential shape has the second
steepest face, the Gaussian shape has the median steepness, the secant squared shape has
the second mildest face and the secant shape has the mildest face.

Firstly, let us consider the simplest scenario – the results predicted by LSWE using the
five different shapes. For the same example with Fr = 0.5, the free surface elevations
at t = 10 in four select directions are plotted in figure 15(a–d). The overall wave
characteristics appear insensitive to the obstacle shape – the free waves are N-shaped and
propagate radially outwards at a speed of one. The characteristic steepness of the obstacle
shape appears to only affect the extrema of the N-shaped waves – the steeper the obstacle
face is, the larger the magnitudes of the extrema. It can also be observed that the milder
the obstacle face is, the smoother and more stretched out the resulting waves are. Then, we
include nonlinear effects – the NSWE results with ε = 0.3 are plotted in figure 15(e–h).
The obstacle shape effects appear similar to those in the linear case.

From the comparisons for the non-dispersive cases, i.e. figure 15(a–h), we conclude that
the obstacle shape effects are secondary. The obstacle shape does not appear to impact the
overall wave characteristics. A difference in obstacle shape primarily introduces relatively
small perturbations to the magnitudes of the extrema and the smoothness of the wave
shape. Thus, we claim that the closed-form far-field LSWE solution (2.29), although
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Figure 15. The free surface elevations generated by bottom obstacles of different shapes and predicted by
different wave models, plotted along four different directions at t = 10, with Fr = 0.5, ε = 0.3 and μ = 0.3.
The five different shapes are defined in table 1 and plotted in figure 14. Solid line, the Gaussian shape; dash-dot
line, the cubic exponential shape; dotted line, the quartic exponential shape; circle, the secant shape; cross,
the secant squared shape. In the top two rows, the dashed lines denote the far-field shallow water solution
(2.29); in the bottom two rows, the dashed lines denote the first term of the far-field leading wave solution
(2.22). (a–d) LSWE; (e–h) NSWE; (i–l) LWD; (m– p) WNWD. (a,e,i,m) θ = 0; (b, f, j,n) θ = π/4; (c,g,k,o)
θ = 3π/4; (d,h,l, p) θ = π.

derived for a Gaussian-shaped obstacle, can be used as the simplest scaling relation
between a translating bottom obstacle and the water waves it generates, regardless of the
exact obstacle shape.

Next, we consider the frequency dispersive cases. We first verify that the far-field
leading waves are insensitive to the exact obstacle shape within the linear and dispersive
framework. In figure 15(i–l), the LWD results with μ = 0.3 and the far-field leading wave
solution (2.22) are plotted. The leading waves due to the five different obstacle shapes
indeed converge to the far-field leading wave solution (2.22). Then, we include nonlinear
effects – the WNWD results with ε = μ = 0.3 are plotted in figure 15(m–p). Somewhat
surprisingly, even in the presence of nonlinear effects, the leading waves are still not very
sensitive to the exact obstacle shape and appear to converge to the same shape. While some
amplitude differences show in the results – steeper obstacle faces result in slightly larger
wave amplitudes – the overall wave shapes are nearly identical. Consistent with the linear
analytical solution (2.22), the findings from this numerical investigation suggest that in
modelling the far-field leading waves generated by a translating bottom obstacle, it is more
important to estimate its enclosed volume than to capture its exact shape.

3.3. Obstacle acceleration effects
Thus far in this study, the bottom obstacle is assumed to suddenly start travelling at a
normalised constant speed Fr from a halt. This is done to facilitate the analyses – it makes
the derivation of closed-form analytical solutions possible, and allows the motion of the
bottom obstacle to be fully described with just one parameter, Fr. However, realistically, no

923 A26-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

53
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.537


On water waves generated by a translating bottom obstacle

–10
0

5

10

–5 0 5 10 –10
0

5

10

–5 0 5 10 –10
0

5

10

–5 0 5 10

–10
0

5

10

–5 0 5 10 –10
0

5

10

–5 0 5 10 –10
0

5

10

–5 0 5 10

–10
0

5

10

–5 0 5 10 –10
0

5

10

–5 0 5 10 –10
–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0

5

10

–5 0 5 10

η

x

y

y

y

x x

(b)(a) (c)

(h)(g) (i)

(e)(d) ( f )

Figure 16. The free surface elevations generated by an initially stationary Gaussian-shaped bottom obstacle
accelerating for a duration of tacc until it reaches the normalised constant speed Fr = 0.5. The results are
numerically simulated based on LSWE. (a–c) Instantaneous acceleration, tacc → 0; (d– f ) tacc = 1; (g–i) tacc =
2. (a,d,g) t = 2; (b,e,h) t = 6; (c, f,i) t = 10.

objects can suddenly travel at a constant speed from a halt, as this would mean an infinitely
large initial acceleration. Therefore, in this section, we shall employ the numerical solvers,
which place no restrictions on the obstacle’s motion, to investigate the effects due to the
obstacle’s acceleration.

To make the obstacle’s motion as tractable and parametrisable as possible, we consider
the simplest way to account for obstacle acceleration in our problem set-up: a new input
parameter tacc is introduced so that the bottom obstacle accelerates from a halt to a
normalised constant speed Fr over a duration of tacc. The obstacle then continues travelling
at the constant speed indefinitely. The case in which the obstacle suddenly starts travelling
at a constant speed then corresponds to the limiting case where tacc → 0.

As a first step, we again consider the simplest scenario – the results predicted by
LSWE with different acceleration times tacc. Snapshots of the wave fields at three different
instants, t = 2, t = 6 and t = 10, and with different acceleration times tacc → 0, tacc = 1
and tacc = 2, are shown in figure 16. The overall wave pattern appears similar: free waves
propagate radially outwards, followed by the trapped wave that stays on top of the bottom
obstacle.

Since linear long waves do not deform when travelling freely in constant water depth,
we expect a quasi-steady state to be reached by the outward-propagating free waves after
some time, regardless of tacc. Specifically, in the far field, i.e. for a sufficiently large r,
we expect the free waves to assume a fixed shape whose amplitude decays as r−1/2 due
to radial spreading, as suggested by the far-field shallow water solution (2.29). To check
this hypothesis, we plot the free surface elevations for tacc = 1 in four select directions at
different instants in figure 17. In addition, the r−1/2 decay rate is compared with the actual
decay rate of the leading wave. Our hypothesis appears true: regardless of the acceleration
time tacc, the free waves eventually assume a fixed shape whose amplitude decays as r−1/2;
that is, a quasi-steady state can be reached.

That a quasi-steady state can be reached by the free waves regardless of the
bottom obstacle’s acceleration time tacc greatly simplifies the investigation on obstacle
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Figure 17. The free surface elevations generated by an initially stationary Gaussian-shaped bottom obstacle
accelerating for a duration of tacc = 1 until it reaches the normalised constant speed Fr = 0.5. The results are
numerically simulated based on LSWE and plotted along four different directions at five different times. Solid
line, t = 6; dash-dot line, t = 7; dotted line, t = 8; circle, t = 9; cross, t = 10. The dashed lines denote the
r−1/2 decay rate suggested by the far-field solution (2.29). Panels show (a) θ = 0; (b) θ = π/4; (c) θ = 3π/4;
(d) θ = π.

acceleration effects, at least in the linear shallow water limit. All that remains to be
examined is how tacc changes the wave shape in comparison with the reference case where
tacc → 0. The wave fields in figure 16 show that the larger the acceleration time tacc (i.e.
the slower the acceleration), the smaller the wave height and the longer the wavelength.
Similar findings on the effects of acceleration were obtained by others under different
obstacle-generated wave configurations; e.g. Sue, Nokes & Davidson (2011), Whittaker
et al. (2017) and Romano et al. (2017, 2020). For a closer look, the free surface elevations
predicted by LSWE with five different values of tacc are plotted in the top row of figure 18
in four select directions at t = 10. The effects of tacc in the linear shallow water limit can
now be clearly seen: tacc → 0 corresponds to the most extreme case with the largest wave
height, and larger values of tacc result in smaller but longer waves.

Except for a time shift, the tacc = 0.5 results appear highly similar to the tacc → 0
results. That water waves generated by a sufficiently fast accelerating obstacle share
similar characteristics regardless of the actual magnitude of acceleration is consistent with
the Romano et al. (2020) numerical experiments on landslide-generated tsunamis. This
finding further simplifies the investigation on obstacle acceleration effects: the limiting
case tacc → 0, for which analytical solutions are derived, can be regarded as the most
extreme and thus the most conservative scenario. On the other hand, tacc � 0 corresponds
to a creeping obstacle motion, which is inefficient at generating water waves. In the
limiting case where tacc → ∞, the free surface displacement is expected to be negligible
and converge to the still water solution.

Next, we account for nonlinear effects. The NSWE results are shown in figure 18(e–h).
The same findings still hold. However, as the waves can now steepen due to nonlinear
effects, the free waves continuously deform in addition to decaying at the rate r−1/2. In
addition, larger values of tacc result in smaller but longer waves, further reducing the
importance of nonlinearity and increasing the applicability of linear wave models.

Frequency dispersion effects in the absence of nonlinearity can be examined by
inspecting the LWD results, plotted in figure 18(i–l). Grossly simplifying the obstacle
acceleration effects, due to frequency dispersion, the leading waves in the far field all
appear to converge to the far-field leading wave solution (derived for tacc → 0), except with
different time shifts. Including both frequency dispersion effects and nonlinear effects, the
WNWD results are plotted in figure 18(m– p). It can be seen that nonlinearity only seems
to increase the wave heights slightly. Just like in the LWD results, the leading waves all
appear to converge to the asymptotic solution but with different time shifts. To see how
similar the wave fields due to different tacc are, snapshots of the wave fields predicted
by WNWD are shown in figure 19 for tacc → 0, tacc = 1, and tacc = 2. The wave fields

923 A26-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

53
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.537


On water waves generated by a translating bottom obstacle

–0.02
0

0.04
0.02

0.06

–0.02
0

0.04
0.02

0.06

–0.02
0

0.04
0.02

0.06

–0.02
0

0.04
0.02

0.06

–4 –2 0 2 –4 –2 0 2 –4 –2 0 2 –4 –2 0 2

–0.02
0

0.04
0.02

0.06

–0.02
0

0.04
0.02

0.06

–0.02
0

0.04
0.02

0.06

–0.02
0

0.04
0.02

0.06

–4 –2 0 2 –4 –2 0 2 –4 –2 0 2 –4 –2 0 2

–0.02

0

0.02

0.04

–0.02

0

0.02

0.04

–0.02

0

0.02

0.04

–0.02

0

0.02

0.04

–4 –2 0 2 –4 –2 0 2 –4 –2 0 2 –4 –2 0 2

–0.02

0

0.02

0.04

–0.02

0

0.02

0.04

–0.02

0

0.02

0.04

–0.02

0

0.02

0.04

–4 –2

r–t r–t r–t r–t
0 2 –4 –2 0 2 –4 –2 0 2 –4 –2 0 2

η

η

η

η

(b)(a) (c) (d )

(n)(m) (o) (p)

( j)(i) (k) (l)

( f )(e) (g) (h)

Figure 18. The free surface elevations generated by an initially stationary Gaussian-shaped bottom obstacle
(ε = 0.3, μ = 0.3) accelerating for a duration of tacc until it reaches the normalised constant speed Fr = 0.5.
The results are numerically simulated based on different wave models and plotted along four different directions
at t = 10. Solid line, instantaneous acceleration, tacc → 0; dash-dot line, tacc = 0.5; dotted line, tacc = 1;
circle, tacc = 1.5; cross, tacc = 2. (a–d) LSWE; (e–h) NSWE; (i–l) LWD; (m– p): WNWD. For (a,e,i,m) θ = 0;
(b, f, j,n) θ = π/4; (c,g,k,o) θ = 3π/4; (d,h,l, p) θ = π.

appear highly similar, further confirming the observation that obstacle acceleration effects
are nearly negligible in the far field for dispersive water waves.

3.4. Obstacle deceleration effects and the leading wave separation time, tsep

Realistically, most moving objects eventually decelerate to a halt. Thus, in this section
we seek to investigate the effects due the obstacle’s deceleration. Again, meticulous
considerations must be taken in order to make the obstacle’s motion as tractable and
parametrisable as possible. To allow for obstacle deceleration as an extension of existing
work, we consider a bottom obstacle that accelerates over a duration of tacc to reach
a normalised constant speed Fr. The obstacle then travels at the constant speed for a
duration of tFr, before decelerating to a halt over a duration of tdec. To isolate obstacle
deceleration effects from the acceleration effects, here we consider only the limiting case
where tacc → 0. We shall show that if tFr is larger than the ‘leading wave separation time’,
tsep, the leading waves become insensitive to tdec.

The duration of the constant speed movement, tFr, is expected to have significant impacts
on the generated water waves, since it directly controls the forcing time. Each different
value of tFr results in a unique wave field, making any generalisation of the findings
difficult or impossible. Nonetheless, for a sufficiently large tFr, i.e. for a sufficiently long
forcing time, the leading waves are able to travel far enough ahead of the bottom obstacle
to become separated free waves unaffected by the wave forcing. Thus, there should exist a
separation time tsep such that the leadings waves generated by a moving bottom obstacle
becomes insensitive to the obstacle’s subsequent motion (such as deceleration, controlled
by tdec) for tFr � tsep.
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Figure 19. The free surface elevations generated by an initially stationary Gaussian-shaped bottom obstacle
(ε = 0.3, μ = 0.3) accelerating for a duration of tacc until it reaches the normalised constant speed Fr = 0.5.
The results are numerically simulated based on WNWD. (a–c) Instantaneous acceleration, tacc → 0; (d– f )
tacc = 1; (g–i) tacc = 2. For (a,d,g) t = 2; (b,e,h) t = 6; (c, f,i) t = 10.

For linear long waves in constant water depth, analytical expressions for the leading
wave separation time tsep can be derived. Suppose at t = 0, the obstacle suddenly starts
moving at a normalised constant speed Fr into the positive x direction from the origin. The
first ring of disturbance, which can be seen as the representative location of the leading
waves, is immediately generated and propagates radially outwards at a normalised speed
of one. Hence, the radius of the first disturbance ring can be denoted as t, whereas the x
coordinate of the obstacle can be denoted as Frt. The distance between the bottom obstacle,
located at (x, y) = (Frt, 0), and the first disturbance ring in the θ direction, located at
(x, y) = (t cos θ, t sin θ), can be calculated as

s = t
√
(cos θ − Fr)2 + sin θ2 = t

√
1 − 2Fr cos θ + Fr2. (3.1)

Since the normalised characteristic wavelength is one, we assume the leading wave in the
θ direction to have sufficiently separated from the bottom obstacle when the normalised
distance between the two is one; i.e. s = 1 (alternately, an arbitrary separation distance can
be specified). Consequently, the leading wave separation time can be expressed as

tsep(θ) = 1√
1 − 2Fr cos θ + Fr2

. (3.2)

Thus, the separation time tsep is a function of the direction of interest, θ . The leading
waves in different directions require different amounts of time to separate from the bottom
obstacle. While the leading wave in the θ = π direction separates from the obstacle the
soonest, the leading wave in the θ = 0 direction takes the longest time to separate from
the obstacle: tsep(0) = 1/(1 − Fr).

When the bottom obstacle decelerates after a sufficiently long forcing time, i.e. tFr �
tsep, we expect the deceleration to have no effects on the leading waves, which have
sufficiently separated from the obstacle already. To test the concept of the leading wave
separation time tsep and the expression derived in (3.2), we specify tFr = tsep(0) = 2 in the
same example with Fr = 0.5, and plot the wave fields predicted by LSWE due to different
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Figure 20. The free surface elevations generated by a Gaussian-shaped bottom obstacle which suddenly starts
moving at a normalised constant speed Fr = 0.5 for a duration of tFr = tsep(0) = 2, before decelerating to a halt
over a duration of tdec. The results are numerically simulated based on LSWE. (a–c) Instantaneous deceleration,
tdec → 0; (d– f ) tdec = 1; (g–i) tdec = 2. For (a,d,g) t = 2; (b,e,h) t = 6; (c, f,i) t = 10.

deceleration times tdec in figure 20. The leading waves indeed appear to be unaffected by
the obstacle’s deceleration, as the trailing waves caused by the deceleration can never catch
up.

The free surface elevations in four select directions are plotted in the first row of
figure 21. In addition, the far-field shallow water solution (2.29) where the obstacle moves
at a constant speed indefinitely are also shown. The results clearly show the leading wave
to be unaffected by the obstacle’s deceleration, and the far-field shallow water solution
(2.29) can be used to accurately predict the leading waves regardless of the deceleration
time tdec. The trailing waves, however, are affected. The limiting case tdec → 0 has the
largest trailing waves, and larger values of tdec result in smaller but longer trailing waves.
These trailing waves are originally trapped waves that follow the bottom obstacle. As
the obstacle slows down, these trapped waves get released and become trailing waves.
Therefore, in the reference case where the obstacle moves at a constant speed indefinitely,
these trailing waves are absent. To account for nonlinear effects, the NSWE results are
shown in figure 21(e–h). The findings remain unchanged.

To allow for frequency dispersion in the absence of nonlinearity, the LWD results are
shown in figure 21(i–l). The results again appear to converge to some asymptotic form
but with slight time shifts. However, this asymptotic form now differs from the far-field
leading wave solution (2.22) where the obstacle moves at a constant speed indefinitely.
Since frequency dispersion allows parts of the trailing waves to catch up with parts of the
leading waves, whether additional trailing waves exist or not should have an impact on
the overall wave shape. While additional trailing waves are generated when the obstacle
slows down and releases the trapped waves, no additional trailing waves are generated in
the reference case where the obstacle moves at a constant speed indefinitely. Thus, the
leading waves are expected to assume different shapes in these two somewhat different
cases. Nevertheless, we note that the far-field leading wave solution (2.22) still estimates
well the wave height of the first wave, and a strong discrepancy in wave shape only shows
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Figure 21. The free surface elevations generated by a Gaussian-shaped bottom obstacle (ε = 0.3 and μ = 0.3)
which suddenly starts moving at a normalised constant speed Fr = 0.5 for a duration of tFr = tsep(0) = 2,
before decelerating to a halt over a duration of tdec. The results are plotted along four different directions at
t = 10. Solid line, instantaneous deceleration, tdec → 0; dash-dot line, tdec = 0.5; dotted line, tdec = 1; circle,
tdec = 1.5; cross, tdec = 2. In the top two rows, the dashed lines denote the far-field shallow water solution
(2.29) where the obstacle moves at a constant speed indefinitely; in the bottom two rows, the dashed lines
denote the first term of the far-field leading wave solution (2.22) where the obstacle moves at a constant speed
indefinitely. (a–d) LSWE; (e–h) NSWE; (i–l) LWD; (m– p) WNWD. For (a,e,i,m) θ = 0; (b, f, j,n) θ = π/4;
(c,g,k,o) θ = 3π/4; (d,h,l, p) θ = π.

in the θ = 0 direction, where the additional trailing waves generated by the obstacle’s
deceleration are the closest to the leading waves.

To account for nonlinear frequency dispersion effects, the WNWD results are shown
in figure 21(m– p). Once again, nonlinearity in the presence of frequency dispersion only
seems to increase the wave amplitudes slightly. The findings based on the LWD results still
hold. To see how similar the wave fields due to different tdec are, snapshots of the wave
fields predicted by WNWD are shown in figure 22 for tdec → 0, tdec = 1, and tdec = 2.
The wave fields appear highly similar, further confirming the hypothesis that the leading
waves are insensitive to the obstacle’s deceleration if tFr � tsep.

4. Concluding remarks

In this study, we investigated water waves generated by a bottom obstacle translating at a
subcritical speed. New analytical solutions were derived using the LFD wave theory. An
idealised configuration, consisting of a solid bottom obstacle that suddenly starts travelling
at a constant speed in a constant water depth, was considered. With this configuration,
complete integral-form solutions were obtained for both free surface elevation and flow
velocities. The analytical solutions reveal two types of waves – the free waves that
propagate outwards away from the source at the linear wave speed, and the trapped wave
of a fixed shape that always stays on top of the bottom obstacle. Discontinuities exist
in the integrands of the complete integral-form solutions. However, we showed these
discontinuities to be either integrable based on the Cauchy principal value, or cancelled
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Figure 22. The free surface elevations generated by a Gaussian-shaped bottom obstacle (ε = 0.3 and μ = 0.3)
which suddenly starts moving at a normalised constant speed Fr = 0.5 for a duration of tFr = tsep(0) = 2,
before decelerating to a halt over a duration of tdec. The results are numerically simulated based on WNWD.
(a–c) Instantaneous deceleration, tdec → 0; (d– f ) tdec = 1; (g–i) tdec = 2. For (a,d,g) t = 2; (b,e,h) t = 6;
(c, f,i) t = 10.

out by a component of identical magnitude and opposite sign. As a result, the integral-form
solutions were numerically evaluated by carefully avoiding the discontinuities.

For a bottom obstacle travelling at a subcritical speed, the free waves it generates
eventually propagate ahead of the obstacle to become the dominant waves. Asymptotic
solutions in the far field, i.e. for a large distance r away from the origin (r � 6 was
found to be sufficient in the examples), were derived. The free waves were shown to
propagate strictly radially outwards in the far field. For a Gaussian obstacle shape and in
the shallow water limit, closed-form far-field solutions were obtained. The newly derived
far-field shallow water solutions provide the simplest picture and scaling relations of water
waves generated by a translating bottom obstacle: the free waves are N-shaped, propagate
radially outwards, have different signs and amplitudes in different propagation directions,
and maintain a fixed shape except with an amplitude decay rate of r−1/2 due to radial
spreading.

Another round of asymptotic approximation was performed on the far-field solutions
to obtain the far-field leading wave solutions, accurate for large r and near the leading
wave, r � t (r � t � 6 was found to be sufficient in the examples). The far-field leading
wave solutions are in closed forms, and thus easy to use. Without the need to specify
an obstacle shape, the newly derived far-field leading wave solutions show that, due to
frequency dispersion, all leading waves eventually evolve to the same shape, which is
insensitive to the exact shape of the obstacle. The volume enclosed by the obstacle has
the strongest effect on the amplitude of the leading waves, whereas the exact shape of
the obstacle has but secondary effects. This analytical finding is highly helpful, as it
enables the generalisation of the results obtained from numerical simulations or laboratory
experiments on bottom-obstacle-generated waves, in which a fixed obstacle shape must be
specified in each realisation.

Numerical experiments were carried out to examine nonlinear effects. In the absence of
frequency dispersion, nonlinear effects were found to steepen the wave fronts. Nonetheless,
the overall wave pattern suggested by the analytical solutions remained unchanged:
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N-shaped waves, with different signs and amplitudes in different propagation directions,
travel radially outwards, and their amplitudes decay due to radial spreading. In the presence
of frequency dispersion, nonlinear effects only seemed to increase the wave amplitudes
slightly. Since the free waves generated by a translating bottom obstacle are directional, i.e.
the wave amplitudes are different in different propagation directions θ , nonlinearity may
not be globally significant. The waves in the downwind direction (−π/2 < θ < π/2) are
always larger than the waves in the upwind direction (π/2 < θ < 3π/2). In addition, due
to radial spreading, wave amplitudes decay continuously; initially large waves eventually
decay to small-amplitude waves that can be accurately described by linear wave models.
Similarly, obstacle shape effects were also investigated in the presence of nonlinearity.
The overall wave shape was found to remain insensitive to the exact obstacle shape.
Only small differences in wave amplitudes were observed. All in all, we found the linear
analytical solutions to be effective tools for understanding and predicting the leading-order
characteristics of the leading waves generated by a bottom obstacle translating at a
subcritical speed.

Numerical solvers were also utilised to examine the effects due to the obstacle’s
acceleration. The obstacle was allowed to accelerate at a prescribed rate until a specified
constant speed was reached. The numerical results based on LSWE indicated the existence
of quasi-steady state solutions for the leading waves generated by an accelerating obstacle
– the leading waves maintained a fixed shape in the far field, except for an amplitude
decay rate of r−1/2. We found that a larger obstacle acceleration resulted in larger but
shorter waves, and that as the initial acceleration increased, the generated waves appeared
to converge to the limiting case with an infinitely large initial acceleration, i.e. the
idealised configuration in which the bottom obstacle suddenly starts travelling at a constant
speed. Therefore, the linear analytical solutions can be regarded as conservative estimates
that predict the largest waves. Nonlinear effects and nonlinear frequency dispersion
effects were also examined by comparing the numerical results predicted by the different
long-wave models. The deviations from the linear wave model results were insignificant.

To examine the effects due to the obstacle’s deceleration, the concept of leading wave
separation time was proposed. The leading wave separation time is the time required for
the leading waves to travel far enough away from the obstacle to become unaffected by the
wave forcing. If the wave forcing duration is shorter than the leading wave separation
time, all waves are affected by the obstacle’s exact motion (such as acceleration and
deceleration), and each different trajectory of the obstacle is expected to result in a
different wave field, making attempts to generalise the results difficult. However, if the
wave forcing duration is longer than the leading wave separation time, the leading waves
are able to separate from the wave forcing and become free waves, which are insensitive to
the obstacle’s subsequent motion (such as deceleration). This hypothesis was successfully
verified by numerical experiments, in which the obstacle travelled at a constant speed for a
duration as long as the leading wave separation time, before decelerating at different rates
to a halt. Obstacle deceleration indeed had negligible effects on the leading waves.

This study was primarily motivated by tsunamis generated by a submarine landslide.
Realistically, the exact shape and the exact motion, let alone the exact material composition
and properties, of a submarine landslide cannot be easily determined. While (almost)
any shape and any motion can be used in numerical or laboratory experiments, their
geophysical relevance cannot be verified. Furthermore, findings based on a specific
experimental set-up can be difficult to generalise. To circumvent these difficulties,
in this study we instead focused on a highly idealised configuration, in which the
problem becomes parametrisable and closed-form analytical solutions are available. These
analytical solutions – specifically, the dispersive far-field leading wave solution (2.22) and
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the shallow water far-field solution (2.29) – proved to be effective tools for predicting
the leading-order wave characteristics. Similarly to Okada’s model, which links the
parameters of an earthquake to the resulting seafloor displacement, and consequently the
water waves generated by the seafloor displacement, the closed-form asymptotic solutions
(2.22) and (2.29), and their corresponding flow velocities (2.27a–c) and (2.35a,b),
respectively, provide means for linking the parameters of a submarine landslide to the
water waves it generates. Therefore, the newly derived analytical solutions have the
potential to become the cornerstone of a theory-based model for quickly predicting
the tsunamis generated by a submarine landslide.

Effects unaccountable by the linear analytical solutions can be numerically investigated,
as demonstrated in § 3. It was shown that under certain conditions, the leading waves
generated by a bottom obstacle remain insensitive to the exact shape and the exact motion
of the obstacle. While this study is limited to constant water depth, it nonetheless provides
the most basic scaling estimates and insights for bottom-obstacle-generated waves. To
account for wave shoaling effects, variable water depths may be considered in a future
study by adopting a semi-empirical approach. The ultimate objective is to construct an
operational landslide tsunami generation model using a combination of analytical and
empirical methods; this study has presented the essential ingredients.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.537.
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Appendix A. Discontinuities in the analytical solutions

Discontinuities exist in the analytical solutions derived in § 2. For example, in (2.18), i.e.

ηFr(r, θ, t) = − 1
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(μq)

Fr2 cos2 ψ

D2 − Fr2 cos2 ψ

× exp(−iqFr(cosψ)t) exp(iqr cos(ψ − θ)) dq dψ, (A1)

and

η+(r, θ, t) = 1
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(μq)

(
Fr cosψ

2(D − Fr cosψ)
exp(−iq Dt)

− Fr cosψ
2(D + Fr cosψ)

exp(iq Dt)
)

exp(iqr cos(ψ − θ)) dq dψ, (A2)

discontinuities occur for D = ±Fr cosψ . Here, we show that these discontinuities are
either integrable based on the Cauchy principal value or cancelled out by each other.
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A.1. The trapped wave ηFr

Firstly, we consider the trapped wave ηFr in (A1). Discontinuities exist in the integrand
when D2 = Fr2 cos2 ψ , or cosψ = ±D/Fr. Since 0 � D(q) � 1 and Fr > 0, cosψ =
±D/Fr is possible only for D(q) � Fr.

For D(q) < Fr, the four critical ψ values are

ψ1 = cos−1(D/Fr), ψ2 = π − ψ1, ψ3 = π + ψ1, ψ4 = 2π − ψ1. (A3a–d)

To analyse the behaviour of ηFr near these four discontinuities, we break the integral
solution into multiple parts:

ηFr(r, θ, t) = − 1
2π

∫ ∞

0

∫ 2π

0
GFr(q, ψ, r, θ, t) dψ dq

= − 1
2π

lim
δ→0

{∫ ∞

0

∫ ψ1−δ

0
GFr dψ dq +

∫ ∞

0

∫ ψ1+δ

ψ1−δ
GFr dψ dq

+
∫ ∞

0

∫ ψ2−δ

ψ1+δ
GFr dψ dq +

∫ ∞

0

∫ ψ2+δ

ψ2−δ
GFr dψ dq

+
∫ ∞

0

∫ ψ3−δ

ψ2+δ
GFr dψ dq +

∫ ∞

0

∫ ψ3+δ

ψ3−δ
GFr dψ dq

+
∫ ∞

0

∫ ψ4−δ

ψ3+δ
GFr dψ dq +

∫ ∞

0

∫ ψ4+δ

ψ4−δ
GFr dψ dq

+
∫ ∞

0

∫ 2π

ψ4+δ
GFr dψ dq

}
, (A4)

where GFr(q, ψ, r, θ, t) is used to denote the integrand in (A1).
The integral of interest is thus of the form

I∗(r, θ, t) = lim
δ→0

∫ ∞

0

∫ ψ∗+δ

ψ∗−δ
qB̃0(q, ψ)
cosh(μq)

Fr2 cos2 ψ

D2 − Fr2 cos2 ψ

× exp(−iqFr(cosψ)t) exp(iqr cos(ψ − θ)) dψ dq, (A5)

where ψ∗ denotes the critical values of ψ . Following an approach similar to the Lo & Liu
(2017) analysis for 1DH problems, we use the Taylor series to expand each term in the
integrand about ψ = ψ∗ to obtain

I∗ = lim
δ→0

∫ ∞

0

∫ ψ∗+δ

ψ∗−δ
qB̃0(q, ψ∗)
cosh(μq)

Fr2 cos2 ψ∗
2Fr2(ψ − ψ∗) sinψ∗ cosψ∗

× exp(−iqFr(cosψ∗)t) exp(iqr cos(ψ∗ − θ)) dψ dq

=
∫ ∞

0

qB̃0(q, ψ∗)
cosh(μq)

1
2 tanψ∗

exp(−iqFr(cosψ∗)t)

× exp(iqr cos(ψ∗ − θ)) dq
[

lim
δ→0

∫ ψ∗+δ

ψ∗−δ
1

ψ − ψ∗
dψ
]
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=
∫ ∞

0

qB̃0(q, ψ∗)
cosh(μq)

1
2 tanψ∗

exp(−iqFr(cosψ∗)t)

× exp(iqr cos(ψ∗ − θ)) dq
[

lim
δ→0

∫ δ

−δ
1
u

du
]
. (A6)

Based on the Cauchy principal value, the u-integral is zero; hence the discontinuities at
ψ = ψ∗ = ψ1, ψ2, ψ3, ψ4 are integrable.

For D(q) = Fr so that cosψ = ±1, only two critical values of ψ exist: ψ1 = 0, and
ψ2 = π. Differently from the case for D(q) < Fr, an extra term needs to be kept in the
Taylor series expansion of D2 − Fr2 cos2 ψ to ensure a non-zero denominator. The integral
of interest now simplifies to

I∗ = lim
δ→0

∫ ∞

0

∫ ψ∗+δ

ψ∗−δ
qB̃0(q, ψ∗)
cosh(μq)

Fr2 cos2 ψ∗
Fr2(ψ − ψ∗)2 cos2 ψ∗

× exp(−iqFr(cosψ∗)t) exp(iqr cos(ψ∗ − θ)) dψ dq

=
∫ ∞

0

qB̃0(q, ψ∗)
cosh(μq)

exp(−iqFr(cosψ∗)t)

× exp(iqr cos(ψ∗ − θ)) dq
[

lim
δ→0

∫ ψ∗+δ

ψ∗−δ
1

(ψ − ψ∗)2
dψ
]

=
∫ ∞

0

qB̃0(q, ψ∗)
cosh(μq)

1
2 tanψ∗

exp(−iqFr(cosψ∗)t)

× exp(iqr cos(ψ∗ − θ)) dq
[

lim
δ→0

∫ δ

−δ
1
u2 du

]
. (A7)

The limit does not exist in this case. Hence, the discontinuities at ψ = ψ∗ = ψ1, ψ2 are
not integrable for the case D(q) = Fr. However, we will show in the next section that these
discontinuities end up being cancelled out by identical components in the free wave η+.

A.2. The free wave η+
Next, we consider the free wave η+ in (A2). The free wave can be further decomposed into
two parts: η+ = η+,1 + η+,2 with

η+,1(r, θ, t) = 1
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(μq)

Fr cosψ
2(D − Fr cosψ)

× exp(−iq Dt) exp(iqr cos(ψ − θ)) dq dψ (A8)

and

η+,2(r, θ, t) = − 1
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(μq)

Fr cosψ
2(D + Fr cosψ)

× exp(iq Dt) exp(iqr cos(ψ − θ)) dq dψ. (A9)

For η+,1, discontinuities exist when D = Fr cosψ , or cosψ = D/Fr. Again, since 0 �
D(q) � 1 and Fr > 0, cosψ = D/Fr is possible only for D(q) � Fr. For D(q) < Fr, the
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two criticalψ values are:ψ1 = cos−1(D/Fr) andψ4 = 2π − ψ1. To analyse the behaviour
of η+,1 near these two discontinuities where D = Fr cosψ , only the integral of the form

I∗,1(r, θ, t) = lim
δ→0

∫ ∞

0

∫ ψ∗+δ

ψ∗−δ
qB̃0(q, ψ)
cosh(μq)

Fr cosψ
2(D − Fr cosψ)

× exp(−iqFr(cosψ∗)t) exp(iqr cos(ψ − θ)) dψ dq (A10)

needs to be examined. Expanding each function of ψ in the integrand about ψ = ψ∗,
keeping the first non-zero terms, and simplifying yields

I∗,1 =
∫ ∞

0

qB̃0(q, ψ∗)
cosh(μq)

1
2 tanψ∗

exp(−iqFr(cosψ∗)t) exp(iqr cos(ψ∗ − θ)) dq

×
[

lim
δ→0

∫ δ

−δ
1
u

du
]
. (A11)

The result ends up the same as that for the trapped wave – the discontinuities at ψ = ψ∗ =
ψ1, ψ4 are integrable since the principal value of the u-integral is zero.

For D(q) = Fr so that cosψ = 1, only one critical ψ value exists: ψ1 = 0. Differently
from the case for D(q) < Fr, an extra term needs to be kept in the Taylor series expansion
of D − Fr cosψ to ensure a non-zero denominator. The integral of interest simplifies to

I∗,1 =
∫ ∞

0

qB̃0(q, ψ∗)
cosh(μq)

1
2 tanψ∗

exp(−iqFr(cosψ∗)t) exp(iqr cos(ψ∗ − θ)) dq

×
[

lim
δ→0

∫ δ

−δ
1
u2 du

]
, (A12)

which again is the same as the result for the trapped wave – the limit does not exist and thus
the discontinuity at ψ = ψ∗ = ψ1 is not integrable for the case D(q) = Fr. However, the
sign difference between the trapped wave (A1) and η+,1 (A8) should be noted. Although
the discontinuity (A12) is not integrable, it gets cancelled out by an identical component
in the trapped wave, i.e. (A7).

Similar analyses can be repeated for η+,2 in (A9). For η+,2, discontinuities exist when
D = −Fr cosψ , or cosψ = −D/Fr. Again, since 0 � D(q) � 1 and Fr > 0, cosψ =
D/Fr is possible only for D(q) � Fr. For D(q) < Fr, the two critical ψ values are:
ψ2 = π − cos−1(D/Fr) and ψ3 = π − cos−1(D/Fr). The integral of interest is

I∗,2(r, θ, t) = lim
δ→0

∫ ∞

0

∫ ψ∗+δ

ψ∗−δ
qB̃0(q, ψ)
cosh(μq)

Fr cosψ
2(D + Fr cosψ)

× exp(iqFr(cosψ∗)t) exp(iqr cos(ψ − θ)) dψ dq

= −
∫ ∞

0

qB̃0(q, ψ∗)
cosh(μq)

1
2 tanψ∗

exp(−iqFr(cosψ∗)t)

× exp(iqr cos(ψ∗ − θ)) dq
[

lim
δ→0

∫ δ

−δ
1
u

du
]
. (A13)

The discontinuities at ψ = ψ∗ = ψ2, ψ3 for D(q) < Fr are integrable since the Cauchy
principal value of the u-integral is zero.

923 A26-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

53
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.537


On water waves generated by a translating bottom obstacle

For D(q) = Fr so that cosψ = −1, only one critical ψ value exists: ψ2 = π. The
integral of interest simplifies to

I∗,2 = −
∫ ∞

0

qB̃0(q, ψ∗)
cosh(μq)

1
2 tanψ∗

exp(−iqFr(cosψ∗)t) exp(iqr cos(ψ∗ − θ)) dq

×
[

lim
δ→0

∫ δ

−δ
1
u2 du

]
. (A14)

The limit does not exist and thus the discontinuity at ψ = ψ∗ = ψ2 is not integrable for
the case D(q) = Fr. However, due to the sign difference between (A14) and its counterpart
in the trapped wave, (A7), this discontinuity, although not integrable, gets cancelled out
by an identical component in the trapped wave.

A.3. The complete solution η = ηFr + η+
Since the complete solution is η = ηFr + η+, the findings from §§ A.1 and A.2 should
be considered together. The results suggest that the discontinuities in the integrands are
all integrable for the components of q such that D(q) < Fr. For the resonant component
of q such that D(q) = Fr, each of the discontinuities is not integrable; however, when
added together to assemble the complete solution, the discontinuities cancel each other
out. Altogether, these analyses suggest that when numerically integrating the complete
integral-form solutions, small regions near the discontinuities can be omitted, since their
net contribution to the integration is zero.

Appendix B. Fourier transforming the bottom obstacle shape function

Here, we take a closer look at the transformed bottom obstacle shape function and its
derivatives. Writing out the expression for B̃0(q, ψ) gives

B̃0(q, ψ) = 1
2π

∫ ∞

0

∫ 2π

0
B0(r, θ) exp(−iqr cos(θ − ψ))r dθ dr. (B1)

Thus,

B̃0(0, ψ) = 1
2π

∫ ∞

0

∫ 2π

0
B0(r, θ)r dθ dr (B2)

is related to the volume VB enclosed by the bottom obstacle as

B̃0(0, ψ) = 1
2π

VB. (B3)

It should be noted that B̃0(0, ψ) is independent of the value of ψ .
Similarly,

B̃0q(q, ψ) = − i
2π

∫ ∞

0

∫ 2π

0
B0(r, θ)r cos(θ − ψ) exp(−iqr cos(θ − ψ))r dθ dr. (B4)

Thus,

B̃0q(0, ψ) = − i
2π

∫ ∞

0

∫ 2π

0
B0(r, θ)r cos(θ − ψ)r dθ dr (B5)
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is related to the ‘first moment of the bottom obstacle shape in the ψ direction, M1(ψ)’, as

B̃0q(0, ψ) = − i
2π

M1(ψ). (B6)

It should be noted that M1(θ + π) = −M1(θ), and that M1 = 0 if the bottom obstacle
shape function is radially symmetric; i.e. B0(r, θ) = B0(r).

In yet another similar manner,

B̃0qq(q, ψ) = − 1
2π

∫ ∞

0

∫ 2π

0
B0(r, θ)r2 cos(θ − ψ)2 exp(−iqr cos(θ − ψ))r dθ dr.

(B7)
Thus,

B̃0qq(0, ψ) = − 1
2π

∫ ∞

0

∫ 2π

0
B0(r, θ)r2 cos(θ − ψ)2r dθ dr (B8)

is related to the ‘second moment of the bottom obstacle shape in the ψ direction, M2(ψ)’,
as

B̃0qq(0, ψ) = − 1
2π

M2(ψ). (B9)

Again, it should be noted that M2(θ + π) = M2(θ), and that for a radially symmetric
bottom obstacle shape function, M2 simplifies to

M2 = π

∫ ∞

0
B0(r)r3 dr. (B10)
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