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Abstract

A detailed analysis of management and performance fees for asset managers and investment funds is
undertaken. While fund fees are considered as a cost of capital for investors, the structuring of such fee
mechanisms in a fund can also influence a fund manager’s decisions and investment strategy, thereby also
influencing the investment performance of the investors funds. The study undertaken will allow for an
assessment of the effect of fee structures and the potential for asymmetric incentives to arise that may pro-
mote adverse risk-taking behaviours by the fund manager, to the detriment of the investor or retiree who
places a portion of their retirement savings into such a managed fund with such fee structures. As such,
understanding the mechanism of fee charging as well as pricing the fees correctly is vital. An exploration
of the application of actuarial distortion pricing methods for complete and incomplete market valuation
is performed on a variety of path-dependent option-like performance fee structures for various funds in
the European and American markets. Furthermore, several scenario analysis and sensitivity studies are
undertaken. The class of Net Asset Value models adopted are Lévy processes, and the pricing is performed
via Monte Carlo techniques.
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1. Introduction

The focus of this paper is on the study of performance fees in investment funds, that play an
important role in the development of retirement savings for many retirees, either through self-
managed superannuation/retirement accounts or through pension funds outsourcing of asset
management. We believe this is particular relevant in situations where retirees have at least some
reasonable portion of their retirement savings in a self-managed account of some form and typ-
ically have the ability to allocate retirement capital to different managed funds, which can incur
differing fee structures.

There are multiple aspects one could study when it comes to looking into the relationship
between fund performance, investment manager decision-making and structuring of remunera-
tion. There exists a robust literature that explores the role of investment decision-making when a
fund manager is directly incentivised via options written on the underlying assets that are present
in the portfolio under their management. Such problems are very important to study as the choice
of such remuneration structuring could compromise the investment decision-makers ability to
remain objective and to act in the best interest of the investors in their fund. Such problems have
been studied in works such as Carpenter (2000) and the references therein.
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In this paper, we explore a different but related class of problems compared to those studied in
the aforementioned paper and related literature. In particular, our primary interest is to seek to
understand how to undertake a valuation of various fee structures that arise in fund management,
when the funds are not actively traded and whereby efficient market conditions do not occur,
thereby requiring alternatives to risk-neutral pricing of such fee structures.

The paper extends the literature seeking to understand the relationship between fund per-
formance, risk and return versus fee structures, building upon prior works that studied various
aspects of performance fee structures in Davanzo & Nesbitt (1987), Foster & Young (2010), Golec
(1996), Dellva & Olson (1998) and Golec (2003). The term investment or managed fund can refer
to numerous types of fund including mutual funds which give small or individual investors access
to professionally managed portfolios of equities, bonds, and other securities; exchange traded
funds or ETF’s; and actively managed funds seeking to earn an active return or alpha such as
hedge funds, to name a few examples. We will not be particularly concerned with the class of fund
in this work; rather we will be focused instead on the mathematical interpretation and pricing of
fees charged by such funds for a variety of fee model structures.

We also observe that there is a robust literature on the study of option compensation mech-
anisms for fund managers, where for instance a risk averse fund manager may be compensated
with a call option on the assets within the portfolio under their control, see interesting works in
this area and the references therein Coles et al. (2006), Hall & Murphy (2002), Low (2009) and
Ross (2004).

In order to undertake this study, we first develop two dependent stochastic Lévy process mod-
els for the Net Asset Value (NAV) of the fund and the NAV of the reference index fund upon
which relative performance of the managed fund NAV versus index fund NAV will determine
the performance fee payouts. Having developed the stochastic model, the main contributions of
this work are then to explore pricing of various industry-based models for fee structures and per-
formance incentive mechanisms that arise regularly in fund management. We seek to price such
fee structures in order to quantitatively assess their value to investors and to determine if such
fund management fees are competitive from an investors perspective. In order to perform the
pricing, we demonstrate that such fee structures can be interpreted under an option-like payoff
function that can then be priced via a Monte Carlo pricing simulation. We utilise a Monte Carlo
simulation-based approach since the pricing framework will require the evaluation of the various
fee and incentive mechanisms which result in the payoff function of the option, characterising
such fee and incentive structures, being path-dependent, and therefore, it does not admit a closed
form solution. Consequently, we calibrate examples based on diffusion and on jump diffusion
models that represent the assumptions regarding the pricing framework in the real-world con-
text and then perform the pricing numerically under different complete and incomplete market
assumptions.

To achieve this, we demonstrate how to formulate the resulting pricing problem as an option
pricing challenge in an incomplete market pricing context, and this naturally leads us to an actu-
arial pricing framework. In this context, we explore and contrast models for the managed fund
NAV and index fund NAV with and without jumps, and we also explore assumptions of complete
and efficient risk-neutral pricing to contrast to the realistic setting in this context of incomplete
market pricing undertaken by distortion pricing frameworks. We argue that incompleteness nat-
urally arises in this context as the majority of such funds are not tradable intra-daily and instead
just allow position changes at end-of-day only, resulting in a deviation from the standard efficient
market assumptions.

In order to make the case studies as practical as possible, the framework we develop in the
experimental results section will focus on the performance fee structures used by J.P. Morgan
asset management company. We selected their fee structures and incentive mechanisms as this
firm is representative of large commercial wealth management investment bank fee and incentive
structures used more widely in the asset and fund management sector. We price the fee under
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different scenarios based on the variations in historical volatility of the data, the variations in fee
structure, and the variations in charging mechanism.

The structure of this paper is as follows; in section 2, an overview of wealth management funds
fee and performance incentive mechanisms is reviewed. In section 3, the NAV models for the
managed fund and reference index fund are developed. Section 4 introduces the details of the fee
model and fee-adjusted fund NAV structures. Section 5 presents the valuation frameworks for the
fees when applied to the fund NAV relative to a reference index fund NAV for a variety of pricing
frameworks ranging from complete to incomplete actuarial pricing. This reviews the various ways
that one could approach the pricing of such fee structures and concludes with a Monte Carlo
pricing framework and algorithm for implementation of the pricing frameworks applied in non-
distortion and distortion-based pricing settings. Section 6 presents a real data case study to study
the performance fee pricing frameworks proposed and in the process outlines the required data
and information to set up such an analysis. Section 7 develops the results and analysis of the
pricing simulation studies, and section 8 provides discussion and analysis of the results.

2. Background on Wealth Management Funds, Fees and Performance Incentive
Mechanisms

An ideal fund structure aligns investors’ goals with fund managers’ incentives, which is aimed to
be achieved through a fee-based mechanism. There are four basic components that influence this
alignment: market forces, government regulation, incentive contracts and ownership structure.
Mutual funds generally emphasise the first two factors. In contrast, hedge funds tend to rely more
heavily on the latter two.

Fund fees are considered as a cost of capital for investors. Understanding the mechanism of fee
charging as well as pricing the fees correctly is vital since the fee structures affect the investor’s
net return. There exist numerous types of fee structures for management and performance of
investment funds.

The main components of managed funds fee structures involve:

1. the expense ratio which is an ongoing fee found in every mutual fund which is typically a fixed
percentage of assets under management;

2. the sales commission which is an upfront fee known as a “front-end load™;

3. aredemption fee that is otherwise known as a “surrender charge” when exiting a fund;

4. short-term trading fees which typically disincentivise regular trading in-and-out of funds
which may for instance be in 401(k) or managed superannuation; and

5. service or distribution fees.

The expense ratio component of fee structures can vary significantly according to several
attributes of the fund. One can readily delineate fees according to three basic attributes: active
management versus passive management; domestic versus foreign holdings; and constituent assets
in the fund such as small-cap versus large-cap funds.

Historically, actively managed funds are argued to have higher operating expenses than passive
funds or index funds and consequently this results in relatively higher fee structures. The operat-
ing expenses of active funds are attributed to the ongoing analysis and research work required to
be conducted when trying to determine the best securities to own.

There are also differences between domestic and internationally focused funds. Typically inter-
national funds have higher fees than domestic funds as it can cost more to purchase investments
that are traded outside of say the US, and this cost is passed along in the form of higher expense
ratios.

Small-cap funds have higher fees than large-cap funds. It costs more to buy and sell small stocks
due to challenges with their market liquidity, price volatility and volume available to trade of such
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assets when compared to large-cap funds. This higher cost is passed along in the form of higher
expense ratios.

Index funds or passively managed funds typically have the lowest fees, and these types of funds
have proven to be a strong indicator of good future fund performance. Furthermore, the chal-
lenging situation with assessment of different fee models is compounded by the fact that different
companies may charge widely varying expense ratios for similar funds.

In addition to these aforementioned fee structures that are present in various manifestations in
all funds, one can also increasingly encounter what are known as performance fee funds, which
charge total expenses, including the performance fee. A performance fee is a type of fee paid to a
fund manager as a reward for outperformance. As note in Arnott (2005), one may view clients who
favour performance-based fees as “tacitly accepting their inability to choose active managers.” The
performance fee is aimed to incentivise the portfolio manager with the objectives of the investor,
driving the outcomes towards a type of Pareto efficiency where both parties are as well off or better
off when the fund performs well and, consequently, management effort should be higher for funds
with incentive fees.

Symmetric (fulcrum fee) and asymmetric (bonus plan) fees are two main types of performance
fees. Although both types provide rewards for the manager’s performance, the fulcrum fee struc-
ture symmetrically penalises the manager in the case of under-performance while the bonus plan
structure does not do so. According to Carhart (1997), the asymmetric fees result in riskier strate-
gies compared to symmetric fees. Moreover, asymmetric fees lead to sub-optimal performance
compared to symmetric fees in Pohjanpalo (2013). It should be noted that an asymmetric struc-
ture for the performance fee is, at the time of writing, illegal in the United States if applied to
mutual funds (Pohjanpalo, 2013).

The reason for the ongoing debate regarding what types of performance fees allow for flexible
incentive structures while not adversely exposing investors to excess risk is due to the fact that a
fund manager’s decisions and strategy can also be affected by the performance fee structure. It is
possible that the manager will take more risks and act on their own interest to maximise their own
wealth instead of an investors’ wealth. In other words, there is a challenge with asymmetric fee
structures in that there is a potential for increased downside risk and investment draw-down that
may arise when a fund manager is incentivised to take on greater risk to maximise the expected
fee return without taking into account tail exposure, draw-down, diversification factors that may
penalise the investors longer-term holdings, sentiments echoed in numerous earlier works such
as Grinold & Rudd (1987). According to Guasoni & Obtdj (2016), the performance fee can cause
risk shifting in hedge funds. Interestingly, in their work, the notion that high watermarks always
increase risk taking is proven to be wrong. Instead, the risk-shifting direction depends on the
risk aversion of the manager and higher performance fees will shrink the manager’s risk aversion
toward unity.

Regarding mutual funds, according to Pohjanpalo (2013), managers with poor mid-year per-
formance tend to take more risks in order to get back on track in a single-period study while, in a
multi-period study, there are mixed empirical findings in risk-taking behaviour of the managers.
This is because risk shifting is affected by concerns related to the future value of fee income due
to the fact that increasing risk in the first period can cause a negative effect to the income in the
subsequent periods (Pohjanpalo, 2013). There are also empirical results in Huang et al. (2009)
showing that risk-shifting funds perform worse compared to risk-stabilising funds.

Often the performance fees have to be allocated based on some evidence of outperformance
relative to some pre-defined benchmark. A substantial and growing fraction of mutual funds earn
performance/incentive fees which are based on their returns relative to a benchmark. Often the
structure of these fees act asymmetrically. They tend to reward the fund manager for outper-
formance relative to pre-defined benchmark over a pre-defined assessment period, but do not
penalise poor performance.
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Several studies have been undertaken to explore the relationships between performance fee
structures and performance of the fund. In Servaes & Sigurdsson (2018), they demonstrated that
funds with performance fees have annual risk-adjusted returns that under-perform funds that
don’t charge such fees. They attribute this result to two classes of funds and their structuring,
rather than the fund manager attributes, that bias the sample performance. The two classes are
those funds without a stochastic benchmark against which performance is measured and funds
with a benchmark that is easy to beat.

Furthermore, when assessing relative performance of funds compared to benchmarks in order
to determine fee impacts on investors returns, one should also take into account the period of
study. For instance, whether the period involves: “risk on” or “risk off” periods and what political
and macro-economic factors may influence the observational study and consequently the results
of such analysis. In recent times, from a UK/European perspective, following Brexit, and unprece-
dented financial disruption due to COVID-19 pandemic the future of the European capital market
is more uncertain and hard to predict. The uncertainty of the market clearly affects the course of
the fund prices. However, this market still represents a huge share of global investments and is
open to access to British investors. The United States also face a new era under extreme quanti-
tative easing measures brought forward by the Federal Reserve to tackle the financial shock that
occurred at the onset of the first wave of the COVID-19 pandemic and the subsequent loss of eco-
nomic activity that prevailed throughout 2020 and into 2021. Both large world-class regions are
experiencing a period of unstable economics. Therefore, it is of immediate interest to study the
performance fee price for European and American funds. We narrow the funds of interest to only
mutual funds due to the availability of publicly accessible data. We choose to investigate funds
offered by the J.P. Morgan asset management company since the company is ranked 6th as the
best asset management company in the world, based on Investment and Pensions Europe ranks
in Wang (2000), and again because the fund data from this company is publicly accessible.

3. NAV Models

We will develop a class of stochastic models for the real-world and risk-adjusted pricing formu-
lations of the NAV of a fund and the equivalent for the performance benchmark. Then, we will
explore pricing of these fee-based options for a variety of different fee structures under two differ-
ent pricing frameworks. One will be based on a complete and efficient market risk-neutral pricing
formulation, and the second will be exploring an incomplete or inefficient market pricing formu-
lation. The complete market pricing will be applicable to highly liquid funds and indexes while
the incomplete will reflect NAV dynamics of much less liquid funds. In this section, we present
the stochastic models for the fund NAV and reference index NAV.

We assume that we start with a price process for a portfolio of managed assets denoted gener-
ically by (X;), which will characterise the funds gross asset value (per share) at time ¢ before
any charges and fees. We then build a pair of jump diffusion processes for two such funds,

firstly the managed fund of interests NAV, which we will denote by process (X;F)> to distin-
guish it from the reference fund price process since the managed fund will be affected by fees.

As such, the random variable, XEF) € R, is the fund NAV at time ¢t which includes an accrual
for all fees and expenses including performance fees up to time ¢. Secondly, the reference index

funds NAV or benchmark NAV will be denoted throughout by process (XED) with random

variables at time ¢ given by Xﬁl) € R to indicate the benchmark reference index funds NAV at
time ¢.
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We assume the fund NAV and benchmark NAV each follow a real-world jump diffusion model
specified as follows:

NB@)
ax(P = (= dp = pup) X dt + op X7 awP +xPal 3o (17 -1) |,
i=1
1
o (1)
ax? = —di = ) X dt + oy X0 aw” + xPal 3 (10 -1) |,
i=1

where subscript F and I refer to the parameters/state process for the fund and the reference index
fund, respectively, and we describe the model parameters as follows:

r is the risk-free rate (domestic interest rates),

dr and dj are dividends (foreign interest rates),

r and pu are the drifts,

or > 0 is the volatility of the fund NAYV,

o1 > 0 is the volatility of the benchmark NAYV,

W,(F) is a Py(r) -Brownian motion and WEI) is a Py -Brownian motion,

NB(t) and ND(t) are each independent Poisson processes with rates Ap >0 and Ay >0
respectively,

{ ]i(F)} and { ]1-(1)} are independent sequences of identically distributed non-negative random

variables such that Yi(') =log (]i(')) are random variables with an asymmetric double exponential
distribution with density

fr() =p.n exp(=mp)ly=o + (1 — p)nz exp(n2y)y <o (2)
with p € [0, 1].

Having specified the Lévy process models for the fund NAV and benchmark NAV; it will be ben-
eficial to also present the time discretised representations of these models. This will be required
in section 4 where we define a variety of fee pricing models, each case will be some form of path-
dependent payoff structure that will be priced or evaluated at time ¢ according to option pricing
mechanism. The pricing of which will be performed numerically via Monte Carlo distortion pric-
ing. To achieve this, we first need to provide a representation of the discrete time characterisations
of the NAV models that will be used for Monte Carlo distortion pricing. We will do this for two
classes of models, those without jump diffusion structures (Ar = A; =0) and those with jump
diffusion structures (A = A7 =1).

3.1 Time discretised net asset value models (no jumps)
If we consider the case that (\p = A; =0), then we have a pure diffusion model. For a small
time interval At, given the NAV process values, X;F) and X;I), at time ¢, we discretise the fund

NAV Xgr)m and the benchmark NAV Xg: A; at time ¢+ At by applying the lognormal model
given by

F F ~
X§+)At =X§ ) exp((up — 0.50'}%) At + opvV AtZX(F),tJFAt) , )

ngAt =X§I) exp((ﬁ; - 0.5012) At + oV AtZXu),HAt) ,
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where ir and jig are the generic drift functions. For instance, in the model in Equation (1) these
would be given by fip = r — dp — up and iy = r — di — 1, respectively. Furthermore, under this
discretised lognormal distribution form, the random vector (Zx ;4 a» Zx() 14 a;) is distributed
as a standard bivariate normal distribution with correlation op;. We also denote the tracking error
standard deviation of the difference between fund and benchmark returns by op_r.

3.2 Time discretised net asset value models (with jumps)

If we consider the case that (A = A; = 1), then we have a jump diffusion model where we consider
the Lévy Process structures which incorporate the Poisson Process jump diffusion components in
addition to the geometric random walk components. It was shown in Kou (2002) that the solution
to this class of NAV jump diffusion models is given by

N

~ 1 ‘
XEF) =X(()F) exp{ <MF — EO’%) t+ O’FWt(F)} l_[ Vi(F),
i=1
- (4)
() _ 5 ~ 1, o 77y
Xy =X, exp{(ul — EGI> t+orW; } l_! Vi,
i=
where in each model one has (dropping temporarily index F or I)
m 2
EVl=p——+0-p)—— m>0,m>0 (5)
m—1 n+1

with 77 > 1 ensuring that E[V] <oo and E[X;] <oco. From these solutions to the diffusion
equations, one can then obtain a discretised return over an interval of time At as follows:

(F)

xB  x® 1 ® IR S
t+At i 2
T:exp (MF_EOF) At+UF<Wt+At_Wt >+ Z Yi >

; =N 41

o (6)
JRONT 1 0 (1) NZ“A’ m
t+At 3 n
X(I) — exp (MI —_ 50’}) At + UI(Wt+At - Wt ) + Yi
; i=N" 41

where the summation over an empty set is taken to be zero. Of course, one can then make a small
time scale approximation for the exponential which would expand as approximately exp(x) ~
1+ x4+ x2/2 by

) ()
Xipar =X

® = [lpAt + opv AtZ + BY (7)
X,

where Z and B are standard normal and Bernoulli random variables, respectively, with Pr(B =
1)=XAAtand Pr(B=0)=1— AAtand Y is given by the following

E*, wp.
v— w.p. p (@)
E-, wp. 1-p,

where ET and E™ are exponential random variables with means 1/7; and 1/7, respectively.
Having defined the real-world processes and their time discretisations under consideration for
describing the NAV of the fund and the reference index fund, we next introduce the fees models.
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Table 1. Overview of fee payment schedules.

Fee accrual and payment

Type MF OF PF
Accrual Daily Daily Daily
Payment Monthly Monthly Yearly

4. Fee Models and Fee-Adjusted Fund NAV

In this section, we analyse various charging mechanisms of performance fees, and we will explicitly
characterise both their functional form and frequency of payment. We will base the development
of these fee structures on those one may obtain from the prospectus of the ]J.P. Morgan asset
management company. We feel such a model is an appropriate representation of leading industry
practice. However, we note that such fee structures are in general widely adopted in the industry
in various similar forms. Furthermore, on occasion we have generalised some components when
they were presented in public disclosure with some ambiguity, and as such, the results we obtain
represent a fair coverage of realistic fee structures but may not mirror perfectly the practical fee
schemes in all ways in the industry practice across different firms.

In developing the fee structure models, we will assume that all the fees are paid through deduc-
tion from the fund and the word “being charged” is the same as “being paid” but different from
“being accrued.” Due to ambiguity in the definition of high watermark and high watermark return,
we assume that high watermark return is the return defined in Equation (12). We use the maxi-
mum charged rates if no exact rate is available, and there is no change in the charged rates for the
whole period of study. The cumulative share class and cumulative benchmark returns are assumed
to be set to zero after the performance fee is paid. We assume no accrual of the performance fee
across each valuation year, since fees will be required to be paid in full at or prior to the close
of each year. The number of shares is assumed to be constant during the whole period of study.
We also assume the operating and administrative fee (OF), and management and advisory fee are
paid on the last business day of the valuation month and the performance fee is paid on the last
business day of the valuation year where the valuation month and valuation year are the month
and year on which we perform our analysis of the fees.

In this section, we will seek to outline the structure of performance fee models considered.
The three models for charging performance fees will be the “Claw-Back” mechanism, the “High
Watermark” mechanism, and “High Watermark with Cap” mechanism.

Using these three performance fee models, we will construct the following comparative models
for fees. The first will act as a reference model (model 0) obtained by disregarding the claw-back
condition, which will be based on the cumulative share class return greater than the cumula-
tive benchmark return and will therefore have a symmetric-penalisation structure. The remaining
three models (Models 1-3) will be based on the three mechanisms given by “Claw-Back” mech-
anism, the “High Watermark” mechanism, and “High Watermark with Cap” mechanism, and
model 4 which was created as a “Replicate High Watermark” to investigate further the “High
Watermark” mechanism.

For each model, we provide the details of how fee accrual and payment are calculated and
deducted. We also give the payoff function of each mechanism. Because the share classes of
interest to this study are I and C, we take only management and advisory fee (MF), OF, and perfor-
mance fee (PF) into consideration. Table 1 summarises the frequency of fee accrual and payment
for all mechanisms.

Using these time schedules outlined in Table 1, we can then develop the NAV processes pre-
sented for the fund and the reference index, to construct the process AX; which will characterise
the fee-adjusted fund NAV at time ¢ which is a fund NAV adjusted for daily accumulated perfor-
mance fee accrued on the prior valuation period in [0, t — 1]. We will denote the process for AX;
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as defining the fee-adjusted fund NAV obtained by assuming the earned fund performance fee is
reinvested into the fund and therefore, at any time ¢, one would have an adjusted fund NAV given
by the process:

AX, = x4 pppM? 9

where the performance fee determined at the valuation day ¢ is denoted by PPFEMS) which
depends on the type of performance fee structure (indexed by model index M; outlined below
in section 4.1) and which depends on the NAV processes of the fund and the reference index, to
be defined below.

In order to define the fee structures to specify PPFEMS), we will first define below the share class
return (FR), the benchmark return (IR) and then the excess return (ER) of the fund relative to the
reference index fund return. Then in section 4.1, we will be able to use these definitions to define

the PPFMY,
By considering a time interval ¢, to t;, we define these quantities as follows:
AXy — AX
FRyy 1 = ! L >
AXy,
@ @
IRt b = th - Xto (10)
L X(I)

ERy, 1y = FRy, 1y — IRy, 1,

For some of the fee structure models, the high watermark HWM; at time ¢, which is the highest
value of the funds NAV since the start of the investment period, and its return RHWM;, for T <
ty <t, are given by:

HWM, =max{x(",..., x{"},

HWM, — X" (11)
®

where ty denotes the first business day of the valuation year and 7 denotes the day for which the
last time a performance fee was paid. However, the High Watermark mechanism applied in the
both 2017 and 2021 prospectuses (J.P.Morgan Asset Management, 2017, 2021) is based on high
watermark return HWMR; as defined below
x® _ x®
HWMR, = ~— ", (12)
x®
T

where T < ty < t and the difference in this definition is that the numerator of the second definition
utilises the fund NAV at time t, instead of the highest fund NAV up until time t.

Using these defined return series, one may then specify several practical classes of fee struc-
tures used widely in the fund management industry. In order to define accrual performance fee on

day ¢, denoted by PPF;MS), we will represent for each fee model choice M; a fee structure formu-
lated as a type of discounted option with different payoff functions, used to specify the fee model

type.

4.1 Model-specific Performance Fee (PF) structures

A daily accrual of a fee will take place constantly, for each fee model type, whenever the following
fee model structure conditions are satisfied:
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C1 (Claw-Back condition) Y =% FRys 1 > > i=% IRgs 1,
C> (HWM condition) Y *=!  FRy | > HWMR;,

s=ty
C3 (CAP condition) Y= FRes—1 — Y oy, IRys—1 > CAP,
C4 (RHWM condition) Y i=f  FRys_1 > RHWM,,

where the threshold CAP is a percentage set by the fund manager charging the fees. Using these
conditions, one may define several versions of Performance Fee Model (PPF). We will distinguish
the i-th model via a model index M;. For each model, there will be a family of PPF’s for that model
such that each member of the family of models is determined by the parameter a; € R™, which
set by the fund manager.

Definition 1. (Reference Mechanism (Model My)) The (daily) accruing payoff of performance fee
PPFEMO) at day t is given by

PPFMY) = max(a;ER; ;-1 AX;—1,0) . (13)

Definition 2. (Claw-Back Mechanism (Model M 1)) The (daily) accruing payoff of performance fee
PPFEMI) at day t is given by

PPFng) _ @ ERy s 1AX—1,  ifCyis true, "
0, otherwise.

In the M, fee model family, the indicator function of the event that Zi% IRs_1 acts as a
hurdle rate, and the word “Claw-Back” reflects the characteristic of the mechanism that the payoff
will be accrued in case of claw-back performance but not a jump-back performance (i.e. the under-
1)

)

performance needs to recover before any accrual). Although PPFEM can be negative, to penalise

the manager in case of under-performance, the cumulative PP]FEM1 will never be negative since

we will not accrue negative PPFEMI) if it makes the cumulative amount drop below zero. PPFEMI)
is also called the “Periodic Performance Fee Accrual” in typical fund manager parlance.

Definition 3. (High Watermark Mechanism (Model M5)) The (daily) accruing payoff of perfor-

marnce fee PPFEMz) at day t is given by
ayERy; 1AX;—1,  ifCy and C; are true,
pPFM?) = f (15)
0, otherwise,

In the case of the M, fee model family, it builds upon the claw-back condition and adds an
additional High Water Mark condition to be exceed in order to satisfy the condition to begin
accruing fees.

Definition 4. (High Watermark with Cap Mechanism (Model M3)) The (daily) accruing payoff of
performance fee PPFt(M3) at day t is given by

a (CAP — Zzzi;l ERS,S_1> AX;_1, if C1, Ca, and C5 are true,

PPFEMS) = { aER; ;1 AX,_1, if Cy and C; are true but Cs is false, (16)

0, otherwise,
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In the case of the M3 fee model family, it builds upon the claw-back condition, the High
Watermark condition and adds a third condition based on a performance fee cap in case the
fund does exceptionally well relative to the reference index. This has the effect of protecting the
investors gains should exceptional gains be achieved in a given period by the fund manager, where

CAP — Y =11 ER, | implies there will be no accrual of performance fee above CAP.

s=ty
Definition 5. (Replicate High Watermark Mechanism (Model My)) The (daily) accruing payoff
of performance fee PPFEM“) at day t is given by
aER ¢ 1AX; 1,  if Cy and Cy are true,
PPFMY) — S f 17)
0, otherwise,

Having now defined the different fee model structures, it is now important to ask about the
valuation of these different fee structures under the specified fund NAV stochastic models and the
reference index NAV stochastic models. We will do so by considering two basic questions:

e Does their valuation warrant their application with regard to performance gains for investors?
and
e Which of these fee structures is most reasonably valued from the investors perspective?

To achieve the required analysis to address these questions, we will reformulate the valuation
question for these fee structures as an option pricing question. We will then consider the option
pricing framework in both a classical risk-neutral and also an actuarial incomplete distortion
pricing contexts.

This will involve consideration of the following pricing challenge. We would like to determine,
at any time ¢ € [0, T;] in the j-th year, the values of performance fees at the end of the year which

are paid annually, denoted generically by P; (}"tX(F), .7-"tXU); /\/ls). This is the model M; perfor-
mance fee structures discounted present valuation, which can be obtained by taking the pricing
kernel discounted valuation as follows
® _x0
Pi(F FXS M) =Eq[exp(—r(T) - 1) Hr] (18)
for an appropriately selected pricing framework, to be discussed in the following section and an
option-like discounted end-of-year payoft denoted generically by H; which is selected from one
of the fee models {PPF§M1>, pPFM?), pppM3) ppptMy) }

4.2 Valuation incorporating Performance Fees (PF), Operation Fees (OF) and Management
Fees (MF)

We denote the (daily) accruing payoff of OF OF; at day ¢ and the (daily) accruing payoff of
management and advisory fee MF; at day ¢, respectively, by:

ao

OF; = —X;,
2@1512 (19)
MF; = —X;,
252
for pre-defined constants ag, a; € Rt where the gross asset value per share X; is given by
XEF) + Pj(]:tX(F), ftxm; Ms)
X, = o : (20)
T 2527 252

which is derived from the relation XEF) =X — OF; — MF; — P; (]-"tX(F), ]_—tx(”; MS).
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5. Valuation Frameworks for Performance Fee Structures

In this section, we outline the framework adopted to study performance fees as well as the
mathematical approaches used to value the performance fees.

We note that different fee structures will indeed generate different remuneration outcomes for
the fund managers. The standard practice in the industry involves the fund establishing the given
fee structures to be adopted; these are typically fixed, at least for a reasonable length of time such as
annual but often a lot longer than just annual and they are communicated to the investor through
the prospectuses that summarise these structures. Changing fee structures too often requires a lot
of investor communication and reporting requirements, changes to accounting systems and costs
as well as providing the potential to deter investors from keeping their capital in the fund. As such,
we will assume that the fund fees structures are held constant throughout the period of study.

5.1 Scenario-based analysis versus stochastic optimal control approaches

There are two approaches one could adopt to study the valuation of performance fees, the first
assumes that the fund manager desires to fix apriori the fee structures based on their target level
of risk-return over a range of various investment strategies that they have a mandate to consider to
apply when deploying capital from investors. The objective in this context is then to study which
fee structures will achieve the desired outcomes for the fund manager profit expectations as well as
satisfy the risk averse investors with regard to returns that keep the fund competitive with regard
to competitors for a tolerable level of risk dictated by the investors at initial date of investment.

The second approach assumes that the fund manager may dynamically modify any combi-
nation of their fee structures, strategies or investment practices over time and that the optimal
sequence of such decisions is then obtained by solving a stochastic optimal control problem, see
examples in Soner (2004) and Guasoni & Obtdj (2016).

We have not adopted this latter case, as we believe that the scenario-based framework aligns
more realistically with a framework that would be practically useful for industry practitioners
and investors when compared to the assumptions required to be made for the second case in the
context of the studies undertaken in this work. In the first approach, one develops a framework
based on scenario analysis valuation that prices the different fee structures in various economic
scenarios and under different fund strategy simulations which may seek to assess for each fee
structure the expected best case outcomes, the worst case outcomes and typical outcomes under
various economic scenarios. This may also include assessment of the sensitivity and stability of
the fee structures to changes in various model components.

From the fund manager perspective, such an approach would provide the fund manager with
a model-based assessment of the fee dynamic behaviour. In this context, different strategies for
the investment practice of the fund combined with various fee structures considered can then be
assessed to determine which were optimal for a given risk-return profile of the investors and fund
manager cost basis.

From the investors perspective, such a framework is also valuable as it would allow them to
compare for a given class of investment strategies characterised by the fund NAV model and a
reference benchmark, how different fee structures may impact on their profit in various economic
scenario contexts.

Furthermore, fees are not paid out every day but rather accumulate daily over some fixed
period, say annually. Then they are paid out at the end of each period. So, if a fund manager
was accumulating fees throughout the year, it is unlikely they would be altering their strategies
drastically throughout that period too often to try to maximise fees. Rather we believe that they
would explore a scenario-based approach to understanding the likely accumulation of fees over
time, based on different economic scenarios and investment strategies adopted.

If one were to adopt the second approach based on the stochastic optimal control perspective
to study the valuation of performance fees, this would require modifications to the fund NAV
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jump diffusion model. Ideally, one would adopt a class of models that incorporates a feedback
mechanism between the fund NAV and the historical dynamic of the fees accrued by the fund
manager making investment decisions. Such an approach would consequently result in a non-
linear path-dependent diffusion model, with an integrated fee functional incorporated into the
drift, volatility or jump diffusion components of the fund NAV jump diffusion model. This would
add significant complexity to the model and the problem formulation would be rewritten as a
type of optimal stochastic control problem, which we do not believe reflects the approach that
practitioners in the industry would adopt in practice. It is not the tendency of fund managers to
dynamically change their fee structures regularly over time, rather these are typically fixed apriori
and rarely get changed. A more realistic approach would be one in which the fund manager could
alternatively vary their investment strategy for a given fee structure. We have not approached this
class of solution in this manuscript, see approaches to formulate such a framework mathematically
in Soner (2004)

5.2 Risk-neutral versus actuarial valuation

In this section, we set out the mathematical framework under which we seek to study the pricing
of performance fees in fund management under the scenario-based framework described in con-
text in section 5.1. It will be based upon the fact that one may identify fees attributed to a fund
performance as a form of option type payoff. Take for example the case of a hedge fund, where
incentive plans are primarily bonus plans. In such asset management structures, fund managers
typically receive a fraction of the funds return each year in excess of the high watermark. The high
watermark for each investor is the maximum share value since the time of his or her investment in
the fund. We refer to this fraction of the funds return as a performance fee. This performance fee
can be considered as a call option on the profits associated with managing other people money,
since the fee structure gives the managers the positive fees with profits but no negative fees with
losses.

We make a few further remarks on the treatment of fee structures as a type of optional like
payoff and pricing problem formulation. Firstly, it is apparent that the fee structures act as an
incentive mechanism for fund managers to attempt to manage funds to generate greater fees.
When this activity aligns with improved PnL with managed risk profiles acceptable to investors,
then it becomes an effective mechanism. This raises a few interesting considerations. Are there
market contexts in which the fund manager can manipulate this outcome to their benefit without
a tangible outcome for investors and secondly which fee structures may be more likely for this to
occur?

We first remark on these points as follows. We first discuss the ideal setting of efficient markets.
In such markets, there should be seldom opportunities to realise an arbitrage and any short-term
or instantaneous arbitrage opportunities between an underlying asset market and derivatives such
as options written on that asset would be rapidly closed. Furthermore, traders who hold in their
portfolio positions in traded derivative contracts would seldom have sufficient capital to signif-
icantly influence or alter the price substantially in the underlying asset, simply by trading the
underlying in a manner that would benefit their option positions and generate PnL, perhaps to
the detriment of investors holding the underlying, such as the fund investors. This is because such
efficient markets would have significant liquidity in the order books to prevent significant and per-
manent price impacts to be effectively enacted to drive price in any given direction. Therefore, in
the context of this paper, it would be analogous to saying the fund managers would find it difficult
to alter the state of the markets in which they manage positions for the fund in order to generate
higher fees from particular fee mechanisms.

However, one can also argue that in practice it is certainly the case that derivative contracts can
be used to influence the underlying asset price upon which they were written or that positions in
such instruments can result in incentives for market participants to make attempts to influence the
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underlying assets price behaviour. This is regularly observed when there are large option positions
that may expire out of the money, and there is a vested interest for market participants that may
have positions expire well out of the money to incentivise shocks or changes in price momentum
and volatility of the underlying asset, through either active trading in the underlying or motivating
others to do similar actions.

This is clearly more effective in illiquid or incomplete markets more so than very liquid markets
as the amount of capital would indeed make it prohibitive for most participants in deeply liquid
efficient markets. We note that much of the paper is focussed on the actuarial pricing context of
relevance to incomplete market pricing contexts and compared to risk-neutral approach in these
settings.

Furthermore, the ability to influence the fund performance will depend on the type of fee
structure designed, some fee structures would be harder to manipulate than others as they are
referenced to a benchmark index that is not traded by the fund using the investors capital.

Hence, the natural question arises on how best to price such fee-based call options. We will
explore the application of well-known methods for complete and incomplete actuarial pricing
model frameworks in this context. We do not innovate in this regard but rather we apply these
methods in an interesting problem domain in asset management, which in and of itself is a
practically meaningful contribution.

Here we will distinguish between efficient and inefficient market valuation. This is of relevance
to the context of the study of fees in asset management since some funds are highly liquid and
possibly exchange traded and therefore more likely to be efficient in their price discovery while
other funds are much less liquid and either only traded at end of day market close or just OTC
traded.

One would typically perform valuation of a financial asset under an actuarial framework via a
“deflator” or “pricing kernel” for a measurable payoff Hy, which is given by

Ht=E|:§—THT], (21)
&
where the deflator & is concerned with achieving market-consistent valuations of assets and lia-
bilities, see detailed discussion in Bithlmann & Hansjorg (2010). In addition to using deflators, the
arbitrage-free market-consistent value can also be obtained in the mathematical finance audience
by considering the notion of risk-neutral pricing according to a change of measure. These meth-
ods involve using probabilistic expectations of discounted present values of future cash flows, but
in a world where all investors are risk-neutral. In the ideal complete market setting, the deflator
and risk-neutral settings can yield the same unique result in general; however, if one moves to
incomplete markets, this starts to differ.

5.3 Risk-neutral pricing for option-like fund performance fees

Under a risk-neutral pricing framework, one typically assumes that an investor would have the
ability to trade the fund position as often as desired in a frictionless manner and this market
participant behaviour would be reflected by the NAV of the fund and the benchmark index at
all times. The pricing of options in the risk-neutral formulation has been developed for several
decades now, based on early seminar works by Black & Scholes (1973), Merton (1973, 1976) and
Cox et al. (1979). See the review articles of Smith (1976) and Broadie & Detemple (2004). In
Merton’s aforementioned work, “ideal conditions” in the market for the underlying stock and the
option are discussed. These ideal conditions were based around the concepts of frictionless market
characteristics, see further discussion in Rogers (1998), and may not lead to practically realis-
tic frameworks upon which to price the fee structures outlined in this manuscript. As such we
will compare the classical risk-neutral option pricing framework to alternative approaches devel-
oped in the actuarial pricing literature, see coverage of such topics in the actuarial literature in
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Gerber & Shiu (1996, 1995), Embrechts (2000), Goovaerts & Laeven (2008) and a book length
treatment in Bithlmann & Hansjorg (2010) .

Consider a maturity (future time) T that the derivative on the asset price process (X¢)o<t<T
pays an amount (payoff function for the fee from one of the models My to My) denoted by
Hr, which is a 7 measurable random variable. Under the fundamental theorem of asset pric-
ing, it is implied that in a complete market with no-arbitrage opportunities a derivative’s price is
the discounted expected value of the future payoff under the unique risk-neutral measure. This
leads to the standard risk-neutral pricing formulation producing the present fair value given by a
discounted expected value

d
H; = E@[exp(—r(T - t))HT] =Ep |:exp(—r(T - t))HTd%] , (22)

where r is the risk-free interest rate and Q denotes the risk-neutral pricing measure and P
the real-world measure that characterises the observed probabilities of price dynamics, where
these are connected via the standard change of measure formula based on the Radon-Nikodym
derivative %.

This framework was relaxed and extended in works by Merton (1973) to allow for stochas-
tic interest rates and other features. Furthermore, if the asset price process follows a continuous
time stochastic jump process such as a Lévy process examples of works treating option valuation
include Duffie et al. (2000) and Sepp & Skachkov (2003).

In the pricing undertaken for the performance fee valuation in this manuscript, one already
sees from the specification of the payoff structures under fee models My to My that the payoff
functions will be less trivial and generally path-dependent; therefore, they will not admit closed
form solutions and are therefore alternatively evaluated numerically via Monte Carlo methods.

In the setting of no jump structure, Ar = A; = 0, we will be able to develop an efficient Monte
Carlo sampling strategy based on the discretisation schemes previously presented with fip and
1 being specified under the Girsanov transform drift adjustment and with the added exception
that now W, is a Qp-Brownian motion and V; is a Q;-Brownian motion representing the risk-
neutral drivers. Under the Black-Scholes model, there exists a unique probability measure Qr and
a unique probability measure Qr such that they are equivalent martingale measures. In this frame-
work, one can then use the martingale measures so that the models for the fund and benchmark
NAVs are arbitrage-free and complete.

5.4 Actuarial incomplete market distortion pricing for option-like fund performance fees

One may question the veracity of the assumptions regarding the existence of a complete arbitrage-
free market in the context of the funds dynamics studied in this manuscript. This is especially the
case when one recalls that market completeness assumes that the trading of the fund shares has
negligible transaction costs and that the complete set of possible bets on future states of the world,
valuations of the funds NAV incorporating fee structures, can be constructed with existing assets
without friction. However, as discussed in Birge & Linetsky (2007, Chapter 12), one is sometimes
best served to recognise explicitly that in reality, markets such as those under consideration in
this manuscript are incomplete, meaning that some payoffs cannot be replicated by trading in
security markets. The classic no-arbitrage theory of valuation in a complete market, based on the
unique price of a self-financing replicating portfolio, is not adequate for non-replicable payofts
in incomplete markets. For a guide to surveys on incomplete market pricing settings in financial
mathematics contexts, see Jouini & Napp (2001), Tankov (2003, Chapter 10). There are several
ways in which market incompleteness may manifest, as discussed in Birge & Linetsky (2007),
for example, insufficiency of marketed assets relative to the class of risks that one wishes to hedge,
which may involve jumps or volatility of asset prices, or variables that are not derived from market
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prices; market frictions related to transaction costs and portfolio constraints; or ambiguity in the
appropriate model for the market prices.

In order to develop alternative approaches to pricing derivatives, when markets are incom-
plete, the actuarial literature has developed numerous solutions approaches. In this section, we
will recall some basic details of actuarial pricing methods that can be made consistent with
risk-neutral arbitrage-free efficient market pricing methods described above. These are namely
the Esscher transform approach based on early actuarial pricing methods from Swedish actuary
(Escher, 1932), and the Wang distortion measure approach based on Wang (2000). An excellent
coverage of market-consistent actuarial pricing methods is provided in Bithlmann & Hansjorg
(2010).

Numerous authors have explored aspects of actuarial approaches to option pricing that arose
after the works of Gerber & Shiu (1994, 1996), Bithlmann et al. (1996), Wang (2000), Embrechts
(2000) and Labuschagne & Offwood (2013). In the paper by Gerber & Shiu (1994), they consider
the family of dispersion measures known as the Esscher transform, that they utilise for option
pricing (as the deflator methodology equivalent of risk-neutral pricing in financial mathematics).
Under the Esscher transform, they were able to show that one may obtain an efficient technique
for valuing derivative securities if the logarithms of the prices of the underlying security come
from a particular class that follows a stochastic processes with independent and stationary incre-
ments. Therefore, under this family of dispersion measures, one may select the parameter of this
transform such that when it is applied to a security price process this would produce an equiva-
lent probability measure. This resulting equivalent probability measure for the specially selected
Esscher transform parameter (corresponding to the market price of risk) will produce a martingale
for the discounted price of any underlying security with respect to the new transformed measure.
Hence, in terms of valuation, one may calculate the value of any derivative or contingent claim
future cash flows as the expectation, with respect to the equivalent martingale measure, of the
discounted payofts.

The Esscher transform is given in Definition 6 and is also commonly known in statistics as an
“exponential tilting” and used widely in developing asymptotic series expansions for distributions
and densities.

Definition 6. (Esscher Transform or Exponential Tilting) Consider a continuous random variable
X defined with respect to a probability measure P and a non-zero constant real number h such that
Ep[ exp(hX)] exists. One can then define the Esscher transform, denoted as Ey[-], of the original
probability measure P for X in terms of an equivalent new probability measure Q ~ P (same null
sets) with the following properties:

L. Epy Eny [Pl = Epy 1,y [P
2. & '[P =£_,[P].
If the measure P that characterises random variable X admits a Radon-Nikodym derivative with

respect to a suitable measure v given by a density fx(x), then we see that the Esscher transform of the
density, denoted by E[fx(x)], will be a new density given by

exp(hx)fx (x)

12 exp(ho)fx(x)dx (23)

f(x; h) = 5h[fx(x)] =

Now, for t > 0, consider a price process (e.g. contingent claim such as a particular fee payoff
structure linked to a reference index) denoted by process (H;)¢>o on a market characterised prob-
abilistically by (2, F, (Ft)o> =T, P). One can then apply the Esscher transform change of measure
to obtain an Esscher pricing measure. The Esscher principle of pricing allows one obtain a unique
martingale measure for the pricing of future contingent claims that, for the right continuous
price process denoted (H;);>0, can be used to perform the pricing under discounting with regard
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to the new measure Q according to the expectation Hy = Eg[H;|F;] for some unique h = h* such
that the risk-neutral Esscher measure is given by

dQ _ _exp(hHy) _
dP Ep[exp(th)] ’

and the process (H;) is a Q-martingale. The resulting measure Q is the Esscher transform with
parameter h, known in actuarial science as the “risk-neutral Esscher measure.” Then, one can
select a unique parameter h* such that the process ( exp(—rt)H¢)s>0 is a martingale.

An alternative widely used actuarial pricing formulation is based on the Choquet integral and
is termed the Wang transform after the universal pricing paper for actuarial valuation presented
by Shaun Wang, see Wang (2002) and the double parameter Wang transform (Wang, 2004).
Furthermore, extensions that generalise the standard Wang transform have been developed in
Kijima & Muromachi (2008). The key to this transform is the introduction of a parameter known
as the “market price of risk,” which is utilised to obtain a “risk-adjusted” fair valuation price. It
is assumed that the market price of risk is a continuously increasing function of duration. This
pricing method can be applied to any contingent claim or payoff so long as it is co-monotone
with its underlying assets or liabilities; see an excellent review of properties of comonotonicity of
functions in economic and risk applications in Chateauneuf et al. (1997).

(24)

Definition 7. (Wang Transform) Consider a financial asset or liability, with value denoted by X,
over time horizon [0, T]. Assume X; has distribution F(x), then the Wang transformation of this
distribution is given by the “risk-adjusted distribution”

F*(x) := Wi [F(x)] = (@' (F(x)) + 1) (25)

with ®(-) representing the standard Gaussian distribution and X representing the market price of
risk that indicates the associated amount of systematic risk. Under this transform, the expected value
of E*[X] under F*(x) will correspond to the risk-adjusted actuarial fair value of the asset or liability
at time T, which can then be discounted to any time via the risk-free rate.

Remark 1. If the Wang transform is applied to a normal or lognormal distributed random
variable, then under the Wang transformation the distribution form is invariant, meaning that
the normal and lognormal distributions are retained for the transformed distribution function.
Furthermore, the Wang transform is the same as the Esscher transform in the case of a Gaussian
distribution.

The Wang transform and the Esscher transform are the only two known distortion measures
that are able to recover the risk-neutral Black-Scholes option pricing formula as a special case.

Given an underlying risk X and a function & that maps this risk to a payoft Y = h(X), that
is, a derivative or contingent payoff, then Wang provides two methods that, though they involve
different mathematical steps at each stage, will produce equivalent fair value prices; see Wang
(2002, p. 218).

1. First take the Wang transform Fj (y; 1) = W, [Fx(x)] of the underlying risk random variable
(processes) X with respect to its distribution. Then derive the distribution of the risk-adjusted
derivative or contingent payoff Fj(y; 1) as a function of Fy(x) using change of variable or
probability transforms with the relationship Y* = h(X™*) to obtain

Fy(y; 1) =Pr[Y* < y] =Pr[h(X*) <y] =Pr[X* <h™'(p)] = Fx(h ™' ). (26)
2. Alternatively, one can first derive the distribution of Fy using the relationship Y = h(x),

Fy(y) =Pr[Y < y] =Pr[h(0) < y] =Pr[X <h™' ()] = Fx(h "' (). (27)
Then apply the Wang transformation F§(y; 1) = W [Fy(y)].
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Algorithm 1. Monte Carlo Pricing

Set N - number of Monte Carlo sample paths (sample size)
Set K - number of fee accrual periods (annual fee payouts = K years)
Select: M from set of Fee structures

forie{1,...,N} do
Initialise X7, X§7, PPEY, AX{
Set T=252*K (252 business days per year)
fort € {1,...,T} do
Simulate Xf(l:) and X,(f) from models in Equation 1
(with Ap = A; = 0 for diffusion case) based on {X<F> x) }t_l

=g Mg f
via discretization in Sections 3.0.2 (or 3.0.1 for diffusion case)

Evaluate the returns F\Ry 14, IR 114, ERy 14, HW My ;, RHW My ;, HW M Ry ;

if C; = TRUE then Evaluate PPFt(MS) accrual occurs

else PPF;MS) = 0 as no accrual on this day.
end if

Evaluate adjusted fund NAV AX,

end for
end for .
Utilising the simulated sample trajectories, evaluate the annual discounted performance fees Hé'q) us-
ing either risk-neutral or distortion measure pricing frameworks via simple Monte Carlo averages of the
discounted payoff functionals.

This equivalence in relationship will hold if the transformation h is monotone.

In the continuous time setting where one considers the change of measure for a diffusion pro-
cess, there have also been studies of the associated relationships and consistency of the Wang
transform and risk-neutral arbitrage-free pricing, see discussion in Pelsser (2008, section 4). There
have been studies performed in Goovaerts & Laeven (2008) that consider the stochastic process
generalisation of the Esscher transform for pricing, termed the Esscher-Girsanov distortion mea-
sures. This is the distortion measure analog of the change of measure achieved by the Girsanov
theorem in classical risk-neutral option pricing.

5.5 Applying distortion measure pricing via Monte Carlo simulation

A performance fee can be considered as an option due to the fact that the accumulated payoft
for the manager will never go below zero (Xiao, 2006). Monte Carlo simulation is a numerical
technique used to approximate the expected values based on generating random samplings. The
method is useful in pricing an option with unavailable closed form solution.

In this section, we outline a generic Monte Carlo Pricing framework as shown in Algorithm 1
adopted to price the different fee option payoff functions. Under the Monte Carlo procedure, this
is relatively straightforward to achieve via a sequence of simulation steps of the real-world price
process for the NAV of each fund, followed by known transformations and Monte Carlo integral
approximation. We note that the algorithm is intended as a pseudo code and will outline the basic
steps one can follow to implement these frameworks.
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Table 2. Fund details used in the case studies.

Europe Research Enhanced

Fund details Index equity Income Opportunity Plus Income Opportunity
Domicile Luxembourg Luxembourg Luxembourg

Investmentregion ~ Europe  TT%inUnitedStates  82.7%in United States
Assettype ........... E.dL.“.t.y .................... Bond .................... B.o n d .............
(;urrency Euro USD USD [
Benchmark MSCI Europe Index ICE overnight ICE overnight

[ (TOtalne”ewm) USDL|BOR USDUBOR

6. Monte Carlo Actuarial Performance Fee Pricing Case Studies

In this section, we will set out the scenarios and case studies to be performed in order to assess
the behaviour of the different classes of fee fund structures and how the analysis of such fee funds,
when priced as option-like derivative payoffs are affected by the type of pricing methodology
applied. This will allow us to study the utility of different performance fee mechanisms under
each pricing framework.

To perform studies on fee performance and pricing, we need to obtain several key pieces of
data that relate to both the fund management and structure, the reference benchmark used to
assess performance of the fund and the fee structures used for fund management compensation.
Furthermore, we also need to obtain key market variables for calibration of our pricing models in
Equation (1) which includes specifications of key aspects such as discounting interest rate refer-
ences used and how we estimated NAV model parameters such as volatilities o and oy, correlation
orr, as well as other parameters appearing in Equation (1).

6.1 Case study fund selections

The case study undertaken will explore an application based on the three JP Morgan funds run
in Luxemburg which are Europe Research Enhanced Index Equity and Income Opportunity Plus
appearing in the 2017 Prospectus (J.P.Morgan Asset Management, 2017) and Income Opportunity
appearing on 2021 Prospectus (J.P.Morgan Asset Management, 2021). The details of each fund are
shown in Table 2. We note that the selection of these illustrative funds provides an anchoring for
the scenario case studies explored for various fee mechanisms, to be based in a realistic practical
framework.

According to the 2017 (J.P.Morgan Asset Management, 2017) and 2021 (J.P.Morgan Asset
Management, 2021) prospectuses, model M; is applied to Europe Research Enhanced Index
Equity (share class I) while model M is applied to Income Opportunity Plus (2017) as well as
Income Opportunity (2021).

For Europe Research Enhanced Index Equity (share class I), the fee rates are MF = 0.16%, OF =
0.19% and PF = 10%. For both Income Opportunity Plus and Income Opportunity, the values
are MF = 0.55%, OF = 0.11% and PF = 20%. The summary of fund fees together with their fee
mechanism is shown in Table 3. All Fund NAVs including MSCI Europe Index NAVs are displayed
in Figure 1.

Although model M3 is defined in the 2017 Prospectus (J.P.Morgan Asset Management, 2017),
the mechanism is not actually applied to Income Opportunity Plus, but it is applied to US oppor-
tunistic Long-Short Equity which is not included in this study as the fund and its benchmark data
is not sufficiently available to undertake a complete study. The CAP at 11.5% is indicated in the
2017 Prospectus (J.P.Morgan Asset Management, 2017) to apply to the US opportunistic Long-
Short Equity. Instead, to study model M3 in comparison with model M, we apply the same CAP
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Table 3. The selected funds together with their share class and fee structures.

Mechanism Fund Share class MF + OF + PF CAP%
My Europe Research Enhanced Index Equity I (acc) 0.19%+-0.16%+10% -
My Europe Research Enhanced Index Equity I (acc) 0.19%+-0.16%+10% -
M, Income Opportunity Plus/ Income Opportunity I (acc) 0.55%+0.11%+20% -
M3 Income Opportunity Plus/ Income Opportunity I (acc) 0.55%-+0.11%+20% 11.5%
My Income Opportunity Plus/ Income Opportunity I (acc) 0.55%+-0.11%+-20% -
Note: (acc) means the share class of interest does not pay dividends. Earned income is reinvested in the NAV (J.P.Morgan Asset Management,
2017).
(a) (b)
8 - i
& 8
2 4 8
g - 5 *
2 g
b > = /™
£ 94 E ﬂ/ww‘
8 - ﬂ/r
T T T T T T = T T T T T
2012 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017
Year Year
Europe Research Enhanced Index Equity Income Opportunity Plus
©_ @ _
g | =
T 5 ©
B 2- g =
> =
: b g
i T T T T T T T T
2014 2015 2016 2017 2014 2016 2018 2020
Year Year

MSCI Europe Index

Figure 1. Fund and benchmark NAVs.

Income Opportunity

at 11.5%, shown in Table 3, to Income Opportunity Plus and Income Opportunity. Model My is

also developed in order to analyse model M.

In this work, the period of study is set to be three years. We assume the period is sufficiently
long to accurately measure the long-term performance of a mutual fund so that the assessment
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of performance is not affected solely by the short-term fluctuations in market cycles over a single
business cycle in the equity markets.

6.2 Discounting interest rates

We assume the investor can deposit money in a secure “bank account” and earn a risk-free inter-
est rate, when not investing. In this section, we discuss the bank account yields and we will
differentiate between the Eurozone and the US investor.

For Europe Research Enhanced Index which invested in the European region, its risk-free rate
is set to equal the yield of AAA-rated Euro-area central government bonds with one-year term
to maturity and is assumed to be fixed throughout the period of our study. The rate on 25th July
2017 is —0.70% (European Central Bank, 2020). We use the rate quoted in year 2017 since the
fund with performance fee structure was available in year 2017 and the fee structure was cancelled
in the following year.

During recent years, all yields in this region are negative for various reasons related to the
current macroeconomy of the region and geopolitical factors that may have caused uncertainty in
this economic region. Negative yielding rates on fixed income products are a recent phenomenon
that would typically discourage both fund manager and investor to invest in such instruments in
cash-based bank accounts, however for large capital investments, they are seen as somewhat of a
safer option for investing even with this negative yield than keeping money in more volatile assets
such as equities or commodities. They can still offer a long-term safe haven for large amounts of
total assets that are required to be deployed for investment purposes even during high volatility
periods of the markets. Therefore, we still assume the investor and manager choose to keep riskless
assets in a bank account with risk-free rate although the risk-free rate itself is negative.

For Income Opportunity Plus and Income Opportunity which invested most in the
American region, the United States Treasury bond yield curve rates with maturity time of
one year are used as its risk-free rate and are assumed to be fix throughout three years
of our study period. The rate for Income Opportunity Plus is at 1.24% quoted on 30th
June 2017 (Daily Treasury Yield Curve Rates). We use the rate quoted in year 2017 since
the fund was available during the year, and later, it was merged with Income Opportunity
in year 2018. As for Income Opportunity, the risk-free rate is 0.09% on 1st July 2021
(Daily Treasury Yield Curve Rates). The rate quoted in year 2021 is adopted since the fund is avail-
able in J.P.Morgan Prospectus of year 2021 (J.P.Morgan Asset Management, 2021). All parameter
values of risk-free rates are summarised in Table 4.

7. Formulating Scenarios based on Estimation of the Stochastic NAV Model
Parameters

The intention is to develop a set of scenarios to study the behaviour of fund fee structures under
various pricing frameworks and to see how the fund fee structures behave in differing eco-
nomic environments, as captured by various specified scenarios for the fund NAV parameters
and corresponding reference benchmark model parameters.

In order to ensure that scenario specifications were realistic in nature, the manner in which the
scenarios were selected was based on two stages:

e statistical estimation of model parameters was performed to set a reference range on model
parameters, based on the observed historical NAV fund performance data, see Figure 1.

e model parameter estimates were then used to set a range of scenarios that allowed for testing
of fee structure performance in various realistic good and bad scenarios.

As such, it is not the intention of this section of the paper to perfectly calibrate the models to the
historical performance, but rather to obtain estimates for the model parameters for the fund and
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Table 4. Fund and fee parameter values.

Parameters/Fund Europe Research Enhanced Income Opportunity
Estimates & scenarios Index equity Income Opportunity Plus

Year 2017 2017 2021
OFGO% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 015 ,,,,,,,,,, 011 011
MFal% 019 e 055 e 055
PFGZ% 10 20 20
spot NAV X 196.77 (EUR) 111.1 (USD) 119.17 (USD)
MF% 0. . I e e e . e
Risk—ffeé ra‘teo/‘o o - ‘—0.‘70> . - 1.24 ‘ - ‘0.09> ‘
Non”Skfreerate% e 176 e 425 e 325 e
aF% (LO\VN)‘ ‘ - o v ”13.80 v - o 1.06 ‘ v v l.OGv

GF% (High)‘ : e R .18..34, S e 1.7,4 . B 1.74, —
.(.TF,.O/; (EXtreme) e e '16*“ e ,.1.0; R

Note 1: Estimated model parameters for 1f are obtained over the 3-year data history. The estimated o low and high values were
estimated based on a 1-year sliding window and the lowest historical estimate and highest historical estimates were used in the
scenarios studied.

Note 2: While the spot NAVs 196.77 (EUR) and 111.1 (USD) were the NAVs on 25 July 2017, 119.17 USD was the NAV on 11 August 2021
(Morgan).

Note 3: setting the extreme scenario volatility at 10*% was not estimated from observed historical NAVs but set up in order to study
the effect of CAP on model M3 in an extreme scenario.

reference fund NAV processes that will allow for the scenarios to be meaningfully specified based
on real data case studies. Both the diffusion and jump diffusion models were estimated based on
moment-matching frameworks as outlined below.

7.1 Estimation of the diffusion components and construction of scenarios

For the development of the stochastic models used in the NAV dynamics, we will require to esti-
mate certain model parameters. In Equation (1), ur is the annual mean return of fund, while
pur is the annual mean return of the benchmark index fund. The two parameters were cali-
brated based on the fund and benchmark data (Morgan; MSCI Europe Net EUR Historical Rates
(MIEU00000NEU)) and their values are shown in Tables 4 and 5, respectively.

Calibration of the pure diffusion models, which involved setting A; = Ap = 0, was based on a
moment-matching method of estimation of the discretised Lognormal models from Equation (3)
for the fund and benchmark NAV processes. The estimated drift and volatility parameters in
Table 4 are estimated based on the simple moment-matching approach from historical data from
NAV data.

Given Z a standard normal variable with © and o > 0 parameters. Then, the distribution of
the random variable X = e**°7 is the lognormal distribution with parameters 1 and o and the
moment-matching equations solved are given by:

2 2

won( ), 2on(1+ ). )
/1,2 2 12
'LLX+UX X

Historical volatility and correlation are also used as parameters in Equation (3) to simulate
NAVs of fund and benchmark. We estimate the annualised historical volatility rather than the
implied volatility based on the justification that options are generally priced more fairly based on
historical norms. The historical volatilities of each fund NAV, of, and each benchmark NAV, o7,
and their correlation, of, as well as tracking error oF_j, are estimated based on available NAV
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Table 5. Benchmark parameter values.

MSCI Europe Index (Benchmark of Europe Research Enhanced Index)

Spot NAV Iy 211.60 (EUR)
”,.L,vc'n/; e e e e 712 -
(v;',%('LoW)' e e e v.lé..83v.v

1% (High) 17.84
UF,% (LOW) e e e 03494 ]
ICE Overnight USD LIBOR (Benchmark of Income Opportunity Plus)

Year 2018 1.89
Year2019 e e 213 ]
|CEo\,em|ghtus|3L|BOR(Benchmarkof|ncome opportumty) s
ICE Ovefnight USD LIBOR 6/0 (Benthrﬁark) : .

Y‘earlzozbl.z»ozj e TSSOSO 0,64 -

Note: The NAV 211.60 (EUR) is the benchmark NAV on 8 August 2017 (MSCI Europe Net EUR Historical
Rates (MIEUOOOOONEU)).

data. The historical volatility period is set to be three years, and one year is assumed to consist of
252 trading days. The following steps are used to estimate oF, o1, and opr:

1. Calculate day-to-day returns DR and DR; of the fund and benchmark, respectively.

2. Calculate the standard deviation of the fund return opgp, benchmark return opgy, and their
correlation opgpy during the historical volatility period.

3. Annualise the standard deviations based on the selected number of trading days which is 252

days, that is, op = oprrv/252, 07 = oprrv/252, and oFr = oprp1(252)

For op_1, we adopt the formula below: op_; = \/oﬁ + 012 — 20F00F]

For models M and M, we provide two scenarios (low and high estimates) of volatilities and
correlations to analyse the sensitivity of fees under the different financial market conditions. For
models M3, M3, and My, one more extreme scenario is added to analyse the effect of CAP on
model M3.

The values of oF are provided in Table 4, while values for o7, oF;, and op_1 are provided in
Table 5.

7.2 Jump component parameter estimation and scenario specifications

In this section, the jump diffusion model calibration and scenario specifications are discussed.
The focus will be on the discretised version in Equation (7), and the procedure adopted for
model estimation. There are numerous approaches proposed in the literature to calibrate a
jump diffusion model, see Cont & Tankov (2004) and Schoutens et al. (2003). In this work, we
have opted to use a framework developed in Matlab version “9.12.0.1884302 (R2022a)” frame-
work  (https://www.mathworks.com/company/newsletters/articles/estimating-market-implied-
value-with-jump-diffusion-models.html) with adaption to the small time scale approximation
considered in Equation (7).

For the jump diffusion models, we have based the diffusion components of these models on
the method of moments results discussed previously. Below we will discuss how to estimate the
parameters for the jump components. Under this estimation procedure, one first segments the
return series into change point segmentations, see the optimal selections of the estimated seg-
mentation’s obtained in each time series in Figure 2. One has a choice to segment the price process
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Figure 2. Jumps detected in fund and benchmark NAVs.

according to the trend changes induced by a jump or to alternatively work with the detrended log-
returns process via a segmentation of volatility changes (std. dev.) or Root-Mean-Square error
changes. We utilised a detrending of the price process, but explored the log-returns segmenta-
tion also and found very similar results in the location of detected jumps. The number of optimal
change points detected were explored between 1 and 50 changes, and the optimal choices are
presented in the figure for each NAV data set. The criterion used for selecting optimal change
point counts was an AIC criterion on the fitted local trend models as depicted and the optimal
segmentation order was selected to minimised the AIC.

For the jump diffusion models, A > 0, A; > 0 were estimated based on the number of detected
jumps annually which produced and average annualised jump intensity for each fund esti-
mated to be: Europe Research Enhanced Ar = 0.003; Income Opportunity Ar = 0.0033; Income
Opportunity Plus Ar =0.008; and benchmark MSCI Europe Index Ap =0.012. These values
were then used to set the probability of B=1 in small time scale representation Equation (7).
Furthermore, the distribution of the jump sizes over time is plotted in the following Figure 3.
The probability of an upward move (p) was estimated to be: Europe Research Enhanced p = 0.2;
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Figure 3. Distribution of jump sizes. Top left panel: Europe Research Enhanced; Top right panel: Income Opportunity; Bottom
left panel: Income Opportunity Plus; Bottom right panel: MSCI Europe Index Benchmark.

Income Opportunity p = 0.7; Income Opportunity Plus p = 0.3; and benchmark MSCI Europe
Index p =0.5. The intensities for the jumps were estimated to be: Europe Research Enhanced
n1 = 6, Ny = 1.2; Income Opportunity n; = 1.4, ny = 3.3; Income Opportunity Plus n; = 3,1, =
1.5; and benchmark MSCI Europe Index 1 =2.2, 17, = 1.8.

One can observe from this that for some NAV processes there was a greater negative support
and for others a greater positive support in jumps, so there is no clear consensus in this case study
as to a strictly greater magnitude of downward moves and chance of downward moves in these
markets in general. We note that compared to other studies that have been undertaken in equity
markets that tend to indicate a greater support for larger negative jumps as compared to positive
jumps this is a difference for these markets under study in this work, see discussions in Kou (2007)
and (2002). We suspect such findings will highly depend on the window of time studied and assets
studied, and there is no definitive consensus that p > 0.5 in general or that the size of negative
jumps should be greater than positive jumps, that is 77_11 < n—lz for all periods and market cycles.

We now point out that the analysis performed using these estimated parameter settings pro-
duced results that were very closely aligned with those obtained from the pure diffusion setting,
due to the low chance of having any simulated jumps in the price process and the fact that when
a jump was simulated, they did not lead to a significant change in the outcomes of the findings
relative to the diffusion setting. Due to space, these results were omitted as they did not change
the perspective learnt on fee fund structure and pricing behaviour compared to those already
discovered from the diffusion model analysis.

We have therefore just focused on what we define as an extreme scenario for jump diffusion
models which represents a case where jumps were more consequential in affecting the outcomes.
This will better provide an indication of the influence of jumps in a market environment in which
jumps had greater impact. For instance, this may be consistent with time periods like those in
March 2020 at the start of the COVID-19 pandemic or consistent with those in May-June 2022
as inflation is rising and the Federal Reserve has significantly increased interest rates compared to
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historical changes, leading to either very large declines in asset prices or increases in asset prices
as was the case when stimulus support was announced after the initial COVID-19 lockdowns
occurred.

Consequently, in the scenarios developed we decided to simulate the chance of an upward or
downward move as equal in magnitude for upward or downward moves, setting p = 0.5.

8. Scenario Case Study Pricing Results

The detailed steps of the Monte Carlo simulations performed for each study are provided in
section 5.5 and Algorithm 1. Furthermore, the case study model settings are provided in section 6.
Both these pricing methods (with jump diffusion models & pure diffusion models) are studied
below in a sequence of illustrative case studies. In order to perform the simulation studies, we first
had to determine a reasonable estimate for the number of trials of Monte Carlo simulations to
run in order to obtain an accurate pricing outcome. To select the number of Monte Carlo trials,
we utilise a criterion based on setting a threshold on the coefficient of variation (CV) of the esti-
mated mean discounted performance fee of each simulation. We required that it was less than 0.2,
corresponding to an acceptable CV range consistent with those proposed in Reed et al. (2002). As
a reference, we used the findings from the case of the non-jump setup under pricing method 1,
which corresponded after rounding upwards, to be conservative, to a total of 1,000 Monte Carlo
simulations being required to satisfy this criterion for each study.

8.1 Results: Pricing method 1 (risk-neutral & no jumps)

We conduct three-year studies for the models with the selected fund. For each study, we price per-
formance fee PF%, management and advisory fee MF% (shown in square brackets), operating and
administrative fee OF% (shown in parentheses) and tracking error% (shown in angle brackets).
Furthermore, we also undertake an analysis of how the fee performance relates to profit perfor-
mance. In this regard, we provide results that determine the return on investment ROI% (shown
in curly brackets).

8.1.1 Models Mgy and M on Europe Research Enhanced Index

Under pricing method 1, Figure 4 shows an example of simulated realisations of discounted cumu-
lative performance fee for model M (left) and M (right) calculated by assuming risky interest
rate, low fund volatility, low benchmark volatility, and low correlation as specified according to
settings in section 6. Interestingly, the cumulative performance fee under model M (right) is not
monotonically increasing during the year like in case of model M (left) before being reset after
252 days as the performance fee is paid. This may be caused by the symmetric-penalised structure
of the claw-back mechanism of model M. Furthermore, the results of all scenarios for model M
are provided in Table 9 in the first set of columns, and those for model M are provided in Table 9
in the second set of columns. For both models M and M, annual MFs and OFs do not vary sig-
nificantly and are close to 0.19% and 0.16% which is consistent with what is observed in practice
for these funds. Note that, from the tables, the PFs under the same scenario of the two examples
are 5.97% and 0.79%, respectively, which is consistent with the daily cumulative fee average of the
two models coloured in blue in Figure 4.

As for PFs for Mo model, the values can vary in range 5 — 7%. The highest performance fee at
6.87% falls into the scenario of high volatility (for both fund and benchmark), but low correlation
under a negative discount rate. Nonetheless, the lowest performance fee at 5.71% falls into the
scenario of low volatility (for both fund and benchmark), but high correlation under high positive
discount rate. By assuming ceteris paribus and varying only one variable at a time: either lowering
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Figure 4. Present value of cumulative performance fee (red) of Europe Research Enhanced Index Equity simulated via pricing
method 1 together with the daily cumulative fee average (blue) plotted over 756 trading days (3 years).

correlations; increasing fund volatility; or increasing benchmark volatility, all possible individual
changes result in higher PFs.

Regarding the returns of investment ROIs for Mo model, the values fall in range 8 — 9%. The
highest ROI at 8.72% given by the scenario of low fund volatility and low correlation, but high
benchmark volatility under either positive or negative discount rates. On the contrary, the low-
est ROI at 8.64% is given by the scenario of high fund volatility and high correlation, but low
benchmark volatility under either positive or negative discount rates. By assuming ceteris paribus
and varying only one variable at a time: either lowering fund volatility, lowering correlation, or
increasing benchmark volatility, all possible individual changes result in higher ROIs. When con-
sidering the cost of investment relative to profit (PF per ROI), we found that the relative cost
follows the PF trend, that is, highest at 79.31% when PF reaches maximum at 6.87% with ROI
8.66% and vice versa. Interestingly neither the highest PF nor the lowest one lead to the highest
ROL

This set of results therefore demonstrates that in the risk-neutral setting in which one mod-
els the NAV processes as pure diffusion models then the following takeaway considerations are
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important to the investor, regarding the impact of performance fees. Firstly, performance fees in
the range of 5-7% are very substantial in nature, compared to just a simple buy and hold strategy
which would yield around 10% returns in one simply bought an ETF on say the S&P500. In par-
ticular, by considering the plausible range of ROIs between 8 — 9%, the ratios of PF per ROI fall
between 65 — 80% which is indeed extremely high for investors. This means most of investment
profit is paid to a fund manager in terms of performance fee. Furthermore, the results show that
when the fund NAYV is increasingly uncorrelated with the reference index fund NAV performance,
this will result in greater expense to the investor over the investment horizon. This indicates that
investors would be best suited to select funds for which the reference index was suitably related and
therefore correlated with the assets comprised in the investment fund. The subsequent findings,
that increasing periods of volatility lead to higher performance fees, should only be acceptable to
investors if the fund manager is able to ensure that either funds grow sufficiently in value during
heightened volatility periods due to active management investment decisions or alternatively that
invested capital is secured against large potential draw downs in highly volatile periods, where
the investment fund manager may adopt a risk off investment attitude and therefore the higher
performance fees indicate a reward for such fund stewardship.

As for PFs and ROlIs, although the values of PFs for M; model varied from 0.8 — 0.9%, which
are drastically lower than the PFs for model M (factor of 10 times lower), the ROIs for M; model
varied from 8.4 — 8.5% which were only 3% lower than the ROIs for model M. This leads to a
huge drop in the relative cost of investment (PF per ROI) for model M, to the range 8.9 — 10.8%
(factor of 10 times lower than one for model My). The same scenario which generated the highest
PF for model My also yields both the highest PF and PF/ROI at 0.9% and 10.75%, respectively,
for model M. That also holds true in case of the lowest PF and PF/ROI at 0.76% and 8.94%
respectively.

8.1.2 Models M,, M3, and M4 on Income Opportunity Plus

An example of the movement of discounted cumulative performance fee over 3 years for model
M (left), M3 (middle), and My (right) when interest rate is high and fund volatility is extremely
high is shown in Figure 5. Similar to model M, the cumulative performance fee under models
My, M3, and My are all not monotonically increasing during each year before being reset to
zero after 252 days. This results from symmetric-penalised structure of the claw-back mechanism
which is used as the baseline mechanism of the three models. Interestingly, in Figure 7(c), the
first-year PF of model My paid at the end of the year is above 1.5% which is significantly higher
than PFs of the later two years which are clearly lower than 0.5%. This may be due to the effect
of HWM condition on the first year which may set the watermark to be too high to catch in the
following years.

In addition, Table 10 reveals the results for model M, M3, and My when applied to the
Income opportunity Plus fund, under pricing method 1. It is obvious that MFs and OFs remain
nearly stable across all scenarios around 0.55% and 0.11%, respectively, which are consistent with
the rates the company promised in the fund investor information.

By considering results under different estimated values of volatility (low and high), PFs are
varied from 0.1 — 0.3% for models M3, M3, and My. In fact, M;, M3 give exactly the same
results under these two values (low and high) volatility. My yields a bit higher PFs than M, in
all scenarios. Again, by assuming Ceteris Paribus and varying only one variable, either an increase
in fund volatility or a decrease in discount rate lead to an increase in PFs for all scenarios. Under
volatility values estimated from the NAV data, we see no effect of CAP on model M3; however,
once the volatility was increased to reach 10%, under the same scenario, PF for model M3 are
much lower than one for model M, and My.

As for ROIs and PF/ROIs for models M;, M3 and My, the ROIs and PF/ROIs varied from
1.23 — 1.24% and 12.5 — 21.2%, respectively, under these two values (low and high) volatility.
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Figure 5. Present value of cumulative % performance fees (red) of Income Opportunity Plus simulated via pricing method 1
together with the daily cumulative % fee average (blue) plotted over 756 trading days (3 years).

In fact, the ROI results of models M3-My are very close to each other (different by only
0.01 — 0.02%). Again once the volatility was increased to reach 10%, under the same scenario, by
considering the relative cost of investment (PF/ROI), it reveals that the effect of CAP does reduce
the relative cost of model M3 significantly when we compare the model relative cost against ones
for model M; and Mg.

8.1.3 Models M,, M3, and M4 on Income Opportunity

After pricing method 1 is applied, Table 10 provides the results of all scenarios for model M5,
M3, and My on Income opportunity. Clearly, MFs and OFs are quite stable across all scenar-
ios around 0.55% and 0.11%, respectively, and this is consistent with the rates indicated in the
company prospectus.

The range of PFs of all the models is from 0.4 — 0.5% under different estimated values (low
and high) of volatility. Most of PFs behaviours are very much the same as what we mentioned in
the case of Income Opportunity Plus except that now My yields a bit lower PFs than M in all
scenarios.

The ROI values and the effect of CAP on PF/ROI are quite similar to the results from Income
Opportunity Plus except for the fact that the range of the relative cost (PF/ROI) falls between
30 — 37.5 which is about twice of one on Income Opportunity Plus.
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8.2 Results: Pricing method 2 (actuarial distortion pricing & jumps)

As in the previous section, we again conduct three-year studies for the models with the selected
fund. For each study case, we price performance fee PF%, management and advisory fee MF%
(shown in square brackets), operating and administrative fee OF% (shown in parentheses), and
also provide return on investment ROI% (shown in curly brackets) under pricing method 2.
Results for these case studies are developed in the following section.

8.2.1 Models My and M on Europe Research Enhanced Index

By adopting the pricing method 2, an example of realisations of discounted cumulative perfor-
mance fee for model My (left) and M; (right), calculated by assuming risky interest rate, low
fund volatility, low benchmark volatility, and low correlation, is provided in Figure 6. Similar
to the example of model M; under pricing method 1, the cumulative performance fee shows
non-monotonically increasing behaviour during each year which is directly a result of the penalty
structure of the claw-back mechanism. The results for all scenarios are given in Table 11. For both
models My and M, annual MFs and OFs are both larger than the rates indicated in the prospec-
tus at 0.19% and 0.16%, respectively. MF values were in the range 0.22 — 0.24%, and OF values
were in the range 0.19 — 0.20% which are quite stable regardless of any changes in the scenarios
explored or fee models studied.

Under pricing method 2, the values of PFs for My model were found to be between 7% and
9%, while those for M; model were between 1.3% and 1.5%. All PFs derived from the two models
under pricing method 2 are significantly larger than ones under pricing method 1. As for model
My, the highest performance fee at 8.58% falls into the scenario of high volatility (of both fund
and benchmark), but low correlation under a negative discount rate. The lowest performance fee
is at 7.25% derived from the scenario of low volatility (for both fund and benchmark), but high
correlation under high positive discount rate. Ceteris Paribus the assumptions adopted, if we vary
only one variable which is either lowering correlation, increasing fund volatility, or increasing
benchmark volatility, all yield higher PFs. This pattern of PFs is consistent with what we found in
the results of model M, under pricing method 1.

For PFs of M; model under pricing method 2, the values of PFs varied between 1.3 — 1.5%
which was twice as large as those under pricing method 1. Under the same pricing method 2, we
found a similar pattern in the PFs, namely that M; was much lower than those obtained for M,
(7 times lower). Indeed, the behaviour of PFs of M is the same as the pattern we found in the
case of pricing method 1. Note that the highest PF is at 1.49% and the lowest was at 1.34%. Both
extremes appeared in the same scenarios as in the case of model M.

As for the ROIs of My and M; models, the ROI values are slightly varied between 17.30 —
17.33% and 17.02 — 17.04%, respectively. However, when considering the cost of investment rel-
ative to profit (PF per ROI), PF/ROI for M, model is at least five times higher than one for M
model given the same scenario.

8.2.2 Models M,, M3z, and M, on Income Opportunity Plus

Figure 7 shows an example of discounted cumulative performance fee values over 3 years
for model M, (left), M3 (middle), and My (right) under the scenario of high interest rate
and extremely high fund volatility. Similar to model M, the cumulative performance fee
under models M, M3, and My are non-monotonically increasing during each year caused by
symmetric-penalised structure of the claw-back mechanism which is used as the baseline mecha-
nism of the three models. Interestingly, in Figure 7(c), it is now clear that, in this example of one
single trajectory, the high watermark in the first year is too high to outperform in the following
years as no performance fees are accrued at all, that is, cumulative performance fee remains at
zero in the last two years. Moreover, Table 12 shows the results for model M3, M3, and My on
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Figure 6. Present value of cumulative % performance fee (red) of Europe Research Enhanced Index Equity simulated via
pricing method 2 together with the daily cumulative % fee average (blue) plotted over 756 trading days (3 years).

Income opportunity (Plus) under pricing method 2. Across all scenarios and models, MFs and
OFs remain close to 0.55% and 0.11%, respectively, the rates indicated in the 2017 prospectus.

Under the two estimated values of volatility (low and high), PFs of the three models varied from
0.5 — 1.5% whose range is quite wide compared to one obtained when applying the three models
under pricing method 1 (only between 0.1 and 0.3%). One distinct relationship between Mj, M3
is that now under the same the low or high volatility scenario, the two models do not yield the
same result any longer. Instead, model M3 gives significantly lower PFs in all scenarios (at least
two times lower). So, the effect of CAP on PFs is evidently stronger under pricing method 2. My
results in quite higher PFs than M in low and high fund volatility scenarios but not in extremely
high volatility one.

Interestingly, we found one inconsistent pattern in PFs from models M, as an increase in fund
volatility from low to high does not increase PF values, for example, 1.04-1.02% and 1.08-1.06%,
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Figure 7. Present value of cumulative % performance fee (red) of Income Opportunity Plus simulated via pricing method 2
together with the daily cumulative % fee average (blue) plotted over 756 trading days (3 years).

respectively. We believe that it is because the jump effect of NAV models dominates the effect
from increasing volatility as the difference of the volatility values from the two scenarios (low and
high) is just 0.68%.

However, the remaining scenarios generate the same pattern which is if we assume Ceteris
Paribus and vary only one variable, that is, either by increasing fund volatility or by reducing
discount rate, both cause an increase in PFs for all scenarios. The pattern in fact coincides with
the pattern found in results of the three models under pricing method 1.

Regarding ROIs and PF/ROIs for models M3, M3 and My, the ROIs and PF/ROIs fall in the
ranges 7.7 — 8.8% and 6.8 — 20.5%, respectively, under these two values (low and high) volatility.
Under the same scenario, the ROI results for models M; and My are very close to each other
(different by only 0.02 — 0.03%) while, for model M3, the ROI value is mildly lower (about 1%)
than the ROIs for models M, and My4. When the volatility is extreme at 10%, by considering the
relative cost of investment (PF/ROI) under the same scenario, the CAP condition is quite effective
resulting in a huge drop of the relative cost for model M3.

8.2.3 Models M,, Ms, and M, on Income Opportunity

Under pricing method 2, the results of all scenarios for model M,, M3, and My on Income
Opportunity are displayed in Table 12. In all scenarios, MFs and OFs are a bit higher than but still
close to 0.55% and 0.11%, respectively.
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Table 6. Sensitivity summary of performance fees for Europe Research Enhanced Index Equity. Table shows % amount
of fee change and direction as well as the average Elasticity of the Performance Fees.

Model Discount rate oF o) oF OF—|
(Method) (351.43% 1) (32.90% 1) (6.00% 1) (1.85% 1) (—5.17% |)
M (Pricing method 1) (— 3 74% l,) (6.03% ) (4 15% T) (—4.58% |) (—4. 58% ¢)
M (Pricingmethod 1) (—3.42% |) ' (5.99% 1) (383%1)  (—439% ) (—4.39% )
My (Pricing method 2) (—3. 89% ) (5 28% 1) (3. 59% ) (—4.01% |) (— 4 Ol% 1)
.Ml (Pncmg methOd 2) R ..( 364% ) R (2.72% ).. . ..(2 10% ) . (;2...2..1%..¢.) R .( 221% L).
.Average cor e 001 e ”d'_15 T 057 e 205 (A, 073 !
Table 7. Sensitivity summary of performance fees for Income Opportunity Plus and Income Opportunity.
Income Opportunity Plus Income Opportunity
Model (Method) Discount rate oF oF Discount rate oF oF
(242.74% 1) (64.15% 1) (843.40% 1)  (3,511.11% 1) (64.15% 1) (843.40% 1)
M (Pricing method 1) (=3.41% ) (49.77%) (444.37%) (—4.49% |) (15.77%) (164.41%)
M (Pncmgmethod 1) - v( 3 41% “v. - (49 o T)” . v.(340 o5 T) . ,.( . 49% i . (1577%“ . (9598%“
4 (Pricing method 1) (—3.47%{) (58.02%1)  (286.59% 1)  (—4.28% ) (19.47% 1) (134.29% 1)
'M'z (Pricingmethod2)  (~4.07% )  (-156%|) (39.46%1)  (—461%()  (-235%) (2523%1)
M; (Pricingmethod ) (—4.25% ) (534%1)  (4033%1)  (—455% )  (089%1)  (1L43%1)
M, (Pricingmethod 2)  (—4.14% |)  (3.67%1)  (24.73%1)  (—4.54%)  (0.04%1)  (14.33%1)
Average EPF 0.02 0.33 0.001 0.11

Under low and high estimated volatility, PFs of all the models fall in the range 0.7 — 1.7%, a bit
higher than one for Income Opportunity Plus. However, most of the patterns of PFs are very much
the same as what we mentioned in the case of Income Opportunity Plus, under pricing method 2,
except that now PFs of model My are lower than ones of model M in all scenarios, not just only
in extreme fund volatility case.

Moreover, the ROI values and the effect of CAP on PF/ROI are quite similar to the results from
Income Opportunity Plus.

9. Discussion

In this section, we analyse the results obtained from the different case studies to assess the util-
ity of the different fee structures in various economic scenarios under different stochastic model
assumptions and pricing frameworks. We note the following details about the study results for
these funds. The correlation between the Europe Research Enhanced Index Equity with its bench-
mark is quite high at nearly 90% while its annualised tracking error is only 8 — 10% (consistent
with the high correlation). The volatility of the Income Opportunity Plus is quite low (1 — 2%)
reflecting the fact that it is a bond-type fund while Europe Research Enhanced Index Equity and
its benchmark volatilities are in a similar range, around 13 — 18%. The range of variation, which
we have considered for sensitivity analysis, may be not wide enough to explore all the possible
scenarios, but this range reflects the actual range of uncertainty in the parameters.

Ceteris Paribus, varying one-by-one, each component of the model parameters to produce
various different market scenarios, we studied the movements of the fee values as % change, sum-
marised in Tables 6 and 7. Moreover, to measure the effect of each parameter on PF values, we
define the Elasticity of PF (EPF) to a change in parameter values as below:

%change in PF value

EPF = : (29)
%change in parameter value
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9.1 Performance fee sensitivity analysis for the Europe Research Enhanced Index Fund

As demonstrated in Table 6, for both models M and model M, under the two pricing methods,
as discount rates increase, the PFs decrease. One can understand this effect in the following sense,
when lowering discount rates, then the present value of the cash flow is higher resulting in the
observed behaviour for the PFs.

Furthermore, one can observe from this analysis that PFs move in the same direction as both
the fund and the benchmark volatility movements but in opposite direction to the correlation
movements between the fund NAV and the reference benchmark funds NAV. Indeed, as we
increase either fund or benchmark NAV volatilities, tracking error also increases as a result. Since
PF follow the movement of tracking error; therefore, the PF moves in the same direction as both
types of volatility.

In fact, the payoft of PF for model M is a spread option and, according to Pohjanpalo (2013),
as we increase tracking error, the price of the spread option increases. The explanation is that a
larger variation in tracking error increases the chance that the payoff becomes positive and thus
the performance fee increases. In case of model M, the claw-back condition and symmetric-
penalised structure mildly reduce the positive relation between tracking error and PF.

Regarding the correlation parameter between the fund NAV and the reference benchmark fund
NAYV stochastic processes, it is clear given the diffusion and Lévy process model structures utilised,
it is natural to observe that the fund and benchmark returns tend to move in the same direction
as we increase their correlation positively. Consequently, their excess returns will diminish, thus
decreasing the payoft for performance fees. This result is consistent with Pohjanpalo (2013).

Clearly, under the two models, PF is most sensitive to the change in correlation between the
fund NAV and the benchmark NAV for the case study of the European Research Enhanced Index.
The justification for this conclusion is based on the fact that a small 2% change in correlation
causes almost 5% change in magnitude for PF. This is consistent with the highest EPF at 2.05
which means a change in PF value is about two times the change in the correlation value. On the
contrary, PF is the least sensitive to a change in discount rate as its EPF is only 0.01. We argue this
type of analysis is directly useful for investors to be aware of to see which drivers or factors in the
fund structure and performance fee structuring are most likely to increase their paid out fees each
financial year.

9.2 Performance fee sensitivity analysis for Income Opportunity Plus and Income Opportunity
Funds

We undertook a similar analysis, as just discussed, on the other two funds under study, the Income
Opportunity Plus and Income Opportunity. Again, the PF decreases as one increase discount rate.

Since both the Income Opportunity Plus and Income Opportunity Funds used the LIBOR rates
as their benchmark, the excess returns depend directly on or. Under pricing method 1, as of
increases, PFs of both funds increase in all the three models M;, M3, and My. Interestingly,
under pricing method 2, PFs of the two funds are higher in M3 and My models, but lower in
M, model. We believe that this inconsistent pattern is caused by the dominance of jump effect of
prices over the small increase of fund volatility or. However, when we raise or even further (up
843.40%), the positive-correlation trend reappears.

Indeed, PFs under both funds are more sensitive to fund volatility than discount rate at aver-
age EPF of 0.33 against 0.02 for Income Opportunity Plus and 0.11 against 0.001 for Income
Opportunity, respectively.

9.3 Pricing method variation

In this section, we study the effect of the pricing method applied to value the performance fees,
from a risk-neutral pricing framework, versus an actuarial distortion pricing framework. The
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Table 8. Descriptive statistics of PFs for Europe Research Enhanced Index under risk-neutral pricing (Pricing method 1)
versus actuarial distortion pricing (Pricing method 2).

Europe Research Enhanced
Index Income Opportunity Plus Income Opportunity

Min  Max Ave. Std.Dev. Min Max Ave. Std.Dev. Min Max Ave. Std.Dev.
Model (Method) % % % % % % % % % % % %
M, (Pricing Method 1)
"M (Pricing Method 2)
M (Pricing Method 1)

571 6.87 6.33 0.31 N.A. NA. NA N.A. N.A. NA  NA N.A.
N A A
T T e
M; (Pricing Method2) 134 149 142 004 NA NA NA NA  NA NA NA NA
M, (Pricing Method 1) N.A.  N.A.  N.A. N.A. 0.16 0.88 0.42 0.34 0.37 1.02 0.60 0.31
T it
M (PricingMethod 1) NA. NA. NA  NA 016 071 036 026 037 075 05 017
M (PricingMethod2) N.A. NA. NA.  NA 053 077 062 011 066 077 070 004
M, (Pricing Method 1)  N.A.  N.A.  N.A. N.A. 021 0.82 045 0.28 0.35 0.85 0.54 0.23
o S SO

descriptive statistics summary of the PFs is shown in Table 8. All descriptive statistics point out
that PFs calculated under the actuarial distortion pricing method 2 are higher than ones under
pricing method 1. We believe, one driver of this discrepancy is the presence of the jump process
components in the NAV models for the investment fund and the reference benchmark funds used
under pricing method 2. The jump effect on the NAV simulation leads to higher excess returns as
the gap between fund and benchmark NAVs tend to be larger than one under pricing method 1,
where the NAV processes for the investment fund and reference benchmark fund are each pure
diffusion processes. However, the standard deviation of PFs under pricing method 2 is lower.

9.4 Analysis of fee model variations: Mg, My, Ma, M3z and M,

Having discussed the behaviour of the PF to various economic scenarios and pricing methods, we
next move to a more detailed comparison between the different fee structures.

9.4.1 Model M versus model M;

In this section, we compare fee structures based on payoff performance fees versus the claw-back
mechanisms. From PF values shown in Tables 9-11, and descriptive statistics shown in Table 8,
both sets of results provide evidence to show that PFs from the M; model are much lower than
those observed from M model. One could argue that this is due to the effect of the claw-back
condition on PF since a poor performance needs to recover before the payoff starts accruing.
Another factor that reduces the PF is the symmetric-penalised structure as the accumulated payoff
can be reduced due to under-performance. These two factors together cause the measurable and
significant gap between the PFs from the two models and from an investors perspective, it would
be optimal where possible to opt for funds that utilise M over those with M.

9.4.2 Model M versus model M3

In this section, we compare fee structures based on high watermark mechanisms versus the High
Watermark with Cap mechanisms. In Table 10 under pricing method 1, when we increased volatil-
ity from low to high volatility, there was found to be no measurable difference in the percentage
change of PF values between M; and M3 models. We hypothesise that this happens because the
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Table 9. % fees for Europe Research Enhanced Index Equity equipped with model M, and M generated by pricing
method 1. No brackets: priced performance fee PF%,; [-] brackets: priced management and advisory fee MF%; (-) brackets:
priced operating and administrative fee OF%; and < - > brackets: priced tracking error%, {-}: return on investment ROI%.

Model Mg Model M;
Discount Rate % Discount Rate %
1.76 —0.70 1.76 —0.70
Correlation % Correlation %
Fund Benchmark 84.94 86.51 84.94 86.51 84.94 86.51 84.94 86.51

Volatility%  Volatility % (Low) (High) (Low) (High) (Low) (High) (Low) (High)

8% des 59T 5 6x 53 0l 0% o0® o7
(ow)  Mow o] 20 2y [o2y o2 [oan o2 (022l
o e o) @1 ey 01 01 1

{8.70} {8.69} {8.70} {8.69} {8.45} {8.46} {8.46} {8.46}
<8.90> <8.48> <8.90> <8.48> <8.90> <8.48> <8.90> <8.48>

178 63 610 660 63 083 080 08 083
Wigh) 020 [o20] o1  [o21]  [o2 o2  [022]  [022)
(0.17) (0.17) (0.17) (0.17) (0.18) (0.18) (0.18) (0.18)

{8.72} {8.71} {8.72} {8.71} {8.46} {8.46} {8.46} {8.46}
<9.51> <9.10> <9.51> <9.10> <9.51> <9.10> <9.51> <9.10>
18.34 16.83 6.50 6.18 6.75 6.42 0.86 0.82 0.89 0.84

(High  (low)  [020]  [0.20]  [020]  [0.21]  [021]  [021]  [0.22]  [022]
oA ol iy el e ) )

{8.65} {8.64} {8.65} {8.64} {8.39} {8.39} {8.39} {8.39}
<9.76> <9.25> <9.76> <9.25> <9.76> <9.25> <9.76> <9.25>

» 1}7.84 ‘ » 6.»611 ‘ ‘6‘28 - 6.87» » 6.53 - 0.87 ‘ » 0.83 - 0.90 ‘ ‘O.>86 »
((High) (0201 (0200 [020) [021 | [021 [0.21 [0221 0221
(©in @19 @i 01 e o e1n (018  (018)

{8.66} {8.65} {8.66} {8.65} {8.39} {8.40} {8.39} {8.40}
<9.94> <9.41> <9.94> <9.41> <9.94> <9.41> <9.94> <9.41>

CAP condition does not take effect since oF is too low to cause cumulative excess returns above
CAP level.

However, once we further increased the value of the volatility of the fund, taking under one
economic scenario, or to 10% just to test the stability of this hypothesis. We found that the PF for
M model does rise higher than the one for the M3 model, and it was evident that indeed the
CAP condition did reduce the PF.

Under pricing method 2, from Table 12, PF values of M3 model are all lower than those of M
model. By including jumps in the stochastic models for the fund and benchmark fund NAV simu-
lations, the gap between fund and benchmark NAVs is potentially larger. This results in excess
returns above CAP, consequently, with the CAP condition it results in model M3 PFs being
significantly reduced.

The descriptive statistics of the two models under the two pricing methods also reveal that CAP
condition is more preferable to investors, who seek to reduce their fees under pricing method 2
since the condition can reduce the PE on average, by half (e.g. from 1.19 to 0.62% for Income
Opportunity Plus).
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Table 10. % fees for Income Opportunity (Plus) equipped with model M, M3, and M, generated by pricing method 1.
No brackets: priced performance fee PF%j; [-] brackets: priced management and advisory fee MF%; and (-) brackets: priced
operating and administrative fee OF%, {-}: return on investment ROI%.

Income Opportunity Plus

Model M,

Model M3

Model My

Fund Volatility%

Fund Volatility%

Fund Volatility%

Discount 1.06 1.74 10 1.06 1.74 10 1.06 1.74 10
rate% (Low) (High) (Extreme) (Low) (High) (Extreme) (Low) (High) (Extreme)
4.25 0.16 0.23 0.85 0.16 0.23 0.68 0.17 0.25 1.19
(0.11) (0.10) (0.10) (0.11) (0.10) (0.10) (0.11) (0.10) (0.10)
{1.23} {1.23} {1.15} {1.23} {1.23} {1.05} {1.23} {1.23} {1.18}
Jfoay a0 e e o (edy) 04D 01D e
{1.23} {1.23} {1.15} {1.23} {1.23} {1.05} {1.24} {1.23} {1.18}
Income Opportunity
Model M, Model M3 Model My
Fund Volatility% Fund Volatility% Fund Volatility%
Discount 1.06 1.74 10 1.06 1.74 10 1.06 1.74 10
rate% (Low) (High) (Extreme) (Low) (High) (Extreme) (Low) (High) (Extreme)
3.25 0.37 0.43 0.98 0.37 0.43 0.72 0.38 0.44 1.34
{1.23} {1.22} {1.14} {1.23} {1.22} {0.98} {1.23} {1.22} {1.17}
[29.95|  ||34.86]] 185.40]| 129.95]  ||34.86] [73.51]| 131.03  |I35.71]  [114.27|
0.09 0.39 0.45 1.02 0.39 0.45 0.75 0.40 0.46 1.39
[0.55] [0.55] [0.54] [0.55] [0.55] [0.54] [0.55] [0.55] [0.54]
(0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)
{1.23} {1.22} {1.14} {1.23} {1.22} {0.98} {1.23} {1.23} {1.17}
13135 [136.47] 188.95| 131.35]  [136.47]| 176.61 I32.46]  [37.31]  [|118.88]

9.4.3 Model M, versus model M,

In this section, we compare fee structures based on high watermark mechanisms versus the repli-
cate high watermark mechanisms. From the results shown in Tables 10 and 12, the two pricing
methods display the same pattern, which is PFs of M4 model are higher than ones of M; model
in all scenarios for Income Opportunity but higher only in the extreme volatility case for Income
Opportunity Plus. Interestingly, although the high watermark of the M4 model is set higher than
that of the M3, model, in some scenarios, the PF for the M, model is higher than the PF for the
M, model. This may be caused by the symmetric-penalised structure. Since the accumulating
payoff can increase or decrease the PF depending on the performance, by setting a higher water-
mark, PF is accrued less often in My and sometimes it skips the negative (daily) accruing payoft
so that the accumulated payoffs are not reduced. Therefore, PF for the M4 model are higher than
those for the M, model in some scenarios.
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Table 11. % fees for Europe Research Enhanced Index Equity equipped with model M, and M generated by pricing
method 2. No brackets: priced performance fee PF%,; [-] brackets: priced management and advisory fee MF%; (-) brackets:
priced operating and administrative fee OF%; and < - > brackets: priced tracking error%, {-}: return on investment ROI%.

Model Mg Model M;
Discount Rate % Discount Rate %
1.76 —0.70 1.76 —0.70
Correlation % Correlation %
Fund Benchmark 84.94 86.51 84.94 86.51 84.94 86.51 84.94 86.51

Volatility%  Volatility % (Low) (High) (Low) (High) (Low) (High) (Low) (High)

13.80 16.83 7.54 7.25 7.84 7.54 1.36 1.34 1.42 1.39
(Low) (Low) [0.22] [0.22] [0.23] [0.23] [0.23] [0.23] [0.24] [0.24]

B LA .(0119.)‘ . .‘ . .‘(6.'19) 019) o0 (b.zo)' om0 .‘ . .(0'20) ‘(0120.)'..

{17.31} {17.30} {17.31} {17.30} {17.03} {17.03} {17.03} {17.03}
<8.90> <8.48> <8.90> <8.48> <8.90> <8.48> <8.90> <8.48>

1784 796 768 828 799 14l 133 146 143
v (High) v ,[0',22]_ ‘ _[0'22] ‘ .[0'231 v ,[0'23]. ‘ [0.‘23]‘ ,[0'23]. ‘ [0.24] ‘ .[0',241
(0.19) (0.19) (0.19) (0.19) (0.20) (0.20) (0.20) (0.20)

Qrssy  ursa urssp (s 4ros) | {703} 4r0s)  {17.04p

<9.51> <9.10>‘ <9.51> <9.10> <9.51> <9.10> <9.51> <9.10>
(High) (Low) [0.22] [0.22] [0.23] [0.23] [0.23] [0.23] [0.24] [0.24]
- (019 (019 (019 (019 (0200 (0200  (020)  (0.20)

{17.32} {17.31} {17.32} {17.31} {17.02} {17.03} {17.02} {17.03}
<9.76> <9.25> <9.76> <9.25> <9.76> <9.25> <9.76> <9.25>
17.84 8.24 7.88 8.58 8.20 1.43 1.40 1.45

Hgh  [022)  [022]  [023  [023)  [023)  [023]  [o24]  [024]

019 (019 (19 (019 (020  (020)

{17.33} {17.31} {17.33} {17.31} {17.02} {17.02}
<9.94> <9.41> <9.94> <9.41> <9.94> <9.41> <9.94>

10. Conclusions

This paper provides two different contributions, the first is a methodological framework to facil-
itate the pricing of various fund fee structures used in investment wealth management that will
work in incomplete market settings combined with flexible jump diffusion models for the fund
NAV and benchmark NAV processes. This includes the formulation of distortion pricing frame-
works for pricing fee structures expressed as a form of path-dependent option and a Monte Carlo
pricing framework which is developed to facilitate accurate approximations of such pricing frame-
works. Such a framework then provides investors and fund managers the ability to study various
economic scenarios of relevance. Providing them a framework in which they can assess the valua-
tion of various fee structures in order to either determine the value proposition of the investment
or in the case of wealth management professionals, to assess the expected remuneration returns for
various market conditions, or to assess the competitiveness of various fund fee structures relative
to comparable wealth management products from competitors.

The second set of contribution involves the development of various detailed case studies to
assess pricing of different fund fee structures selected as they are widely used in industry prac-
tice under a variety of different economic conditions. In these case studies, we studied a range
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Table 12. % fees for Income Opportunity (Plus) equipped with model M, M3, and M, generated by pricing method 2.
No brackets: priced performance fee PF%j; [-] brackets: priced management and advisory fee MF%; and (-) brackets: priced
operating and administrative fee OF%, {-}: return on investment ROI%.

Income Opportunity Plus

Model M, Model M3 Model My
Fund Volatility% Fund Volatility% Fund Volatility%
Discount 1.06 1.74 10 1.06 1.74 10 1.06 1.74 10
rate% (Low) (High) (Extreme) (Low) (High) (Extreme) (Low) (High) (Extreme)
4.25 1.04 1.02 1.44 0.53 0.55 0.74 1.65 1.72 2.65
(0.12) (0.12) (0.12) (0.11) (0.11) (0.11) (0.12) (0.12) (0.11)
{8.78} {8.77} {8.77} {7.69} {7.72} {7.52} {8.81} {8.81} {8.84}
(0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)
(878 {878 {8770 {769} {773} {752} {881} {881}  {8.85}

Income Opportunity

Model M, Model M3 Model My
Fund Volatility% Fund Volatility% Fund Volatility%
Discount 1.06 1.74 10 1.06 1.74 10 1.06 1.74 10

rate% (Low) (High) (Extreme) (Low) (High) (Extreme) (Low) (High) (Extreme)

3.25 127 1.24 1.60 0.66 0.66 0.73 1.94 2.00 2.88
e ksl sl s bl sl bl oss s
i

{8.77} {8.77} {8.76} (756}  {7.61} {7.33} {8.81} {8.81} {8.84}

14500 14170 1821 871l 18731 110.02]  [22.07] 2273 [32.60]]
1
el bel el el bel el mel  wel el

(0.12) (0.12) (0.12) 0.12)  (0.12) (0.12) (0.12) (0.12) (0.12)

Ty {8710 (876} {1.56)  {1.61} {733}  {8.81} {8.81} {8.84}
2 e o

of different features including how consequential it is to price such fee structures under either a
Lévy process or a homogeneous diffusion model for the fund and benchmark NAV processes in
an incomplete market pricing framework versus the risk-neutral complete market pricing frame-
work. This is relevant as most practitioners approximate the analysis of such fee structures under a
simple homogeneous diffusion setting and utilise a risk-neutral setting, when in fact the majority
of such funds are not traded assets in a complete market setting and the fund NAV and benchmark
NAV dynamics often follow a realised process more aligned with a Lévy jump diffusive model.
Therefore, having an understanding of the degree to which such actuarial pricing approaches
may represent measurable differences to the misspecified complete market pricing framework
is relevant when viewed on a representative framework based on real fund management product
examples.

The results demonstrate the following key takeaway messages. The first is that there is a mea-
surable difference observed when comparing two aspects: the homogeneous diffusion model with
risk-neutral pricing method 1 versus the jump diffusion model under actuarial pricing method 2.
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We advocate that practitioners consider adopting in particular the actuarial distortion pricing
framework in these fee fund applications in practice, to avoid the impact of the model and pric-
ing misspecfication or risk associated with applying simplified approximations that may distort
the decision-making process regarding how to design a suitable fee structure or whether a fee
structure adopted by a fund is competitive for attracting investments.

Secondly, there were five industry approaches to fee structuring studied, denoted by model
indexes: M, for a reference standard daily accrual fee mechanism; M for a claw-back mecha-
nism; M, for a high watermark mechanism; M3 for a capped high watermark mechanism; My
for a replicate high watermark mechanism. For a concise statement of recommendations, one
would suggest that the actuarial pricing framework tends to produce equivalent or lower sensitiv-
ities in the accrued performance fees over all tested scenarios. Furthermore, the most pronounced
differences between the risk-neutral and actuarial pricing methods of each fee structure occurred
where substantial differences were observed between these methods for M,, M3 and My. There
are two perspectives to consider from these results, firstly the fund managers should consider
to adopt fee structures My or M in favour of the more complex fee structures associated with
My, M3, and My perhaps with increased accumulation rates or less arduous claw-back threshold
conditions in order to satisfy sufficient remuneration conditions to compensate for management
expenses. Typically, the latter fee structures will result in a substantial increase in sensitivity of
the fee revenue generated that is significantly more sensitive to different market conditions than
the first two fee structures. Furthermore, this is exacerbated by the use of a misspecified pricing
framework compared to the actuarial pricing framework that is more appropriate for use in an
incomplete market setting. From the perspective of the investor, they should be cautious to either
explore or request information on pricing methodology adopted in assessing fee structures pro-
posed in a fund. We acknowledge that this is not always feasible to obtain from a fund manager
and in such cases, a risk averse investor who seeks stability in performance versus costs, they would
be best suited to seek out funds using the simpler fee structures of My or M;.

Thirdly, it can be observed that with regard to fee structures M, and M, the model com-
ponent that generated the greatest sensitivity in fee structure was the correlation between the
index and benchmark funds. All other sensitivities to model parameters produced average elas-
ticity which were less than one and in many cases substantially less than one, indicating these are
not of concern with regard to generating volatility in the performance fees accumulated over time.
Consequently, these results show that investors who are investing in an index tracking fund with
a benchmark fund that is historically highly correlated with the managed fund will likely be sig-
nificantly exposed to incommensurate increase in fees for a small increase in correlation. As such,
the fee mechanisms My and M) are best suited to settings in which the benchmark is not likely
to be strongly correlated with the fund NAV process.

Fourthly, with regard to performance versus fees paid, the following general findings were
observed. It was found that under fee structures My and M; it was not always the case that the
highest ROI and lowest ROI were consistent with highest performance and lowest performance
fees, respectively. Indicating that return on capital from an investors perspective is not solely influ-
enced by the fee mechanism and incentives such fee structure may produce for fund managers
when determining what levels of risk to take with clients’ invested capital. Another finding of
significance was that under My and M; the ratios of PF per ROI transferred a large portion of
the investment profit to the fund manager in terms of performance fees rather than to the ini-
tial investor who bears the investment risk. There was a significant difference in the PF per ROI
observed for My and M; when comparing pricing method 1 and method 2. In particular, it was
seen that under pricing method 1 with the non-Jump model the transfer of profit to fees for the
fund manager was an order of magnitude lower under fee structure M; when compared to M,
for very similar ROIs, indicating that the core driver of this loss of profit for the investor was
primarily driven by the fee structure. Similar findings were observed in pricing method 2, where
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fee structure M, was again far worse for the investor than fee structure M, though the differ-
ence between them was less pronounced compared to that observed under pricing method 1, for
the same scenarios. In conclusion, it was observed that independent of the pricing method, the
relative cost of investments could vary significantly depending on the fee structuring.

With regard to the fee structures M,, M3, and My it was found that the ratios of PF per ROI
could be significantly affected by the volatility regime of the investment assets. In particular, the
greater the risk taken on by the investors by investing in highly volatile market conditions, the
disproportionately smaller their return on capital was compared to the increase in fees generated
for fund managers during these higher risk market scenarios. In the most volatile market scenar-
ios, it was found that once again there was a disproportionate amount of investment profit being
distributed to the fund managers relative to profits and risks taken on by investors. However, in
the case of M3 the CAP mechanism does reduce the amount of profit generated being distributed
to the fund manager through fees significantly, compared to the fee mechanisms of M, and Mj.

The following remaining additional conclusions may also be observed from the studies under-
taken. The studies demonstrate that since MF, OF remain stable, the total fee is mainly affected
by the performance fees. The price of the performance fee depends on both how much percent-
age is charged and the charging mechanism. The claw-back condition and symmetric structure of
performance fee mildly reduce the positive relationship between tracking error and performance
fee with the claw-back mechanism. This would prevent the manager from taking more risks to
increase the performance fee. The performance fee moves in the same direction with fund and
benchmark volatility as well as tracking error but opposite to the movement of correlation and dis-
count rate. The performance fee is most sensitive to correlation between fund and benchmark in
the case of Europe Research Enhanced Index and to fund volatility in case of Income Opportunity
Plus and Income Opportunity. On the contrary, discount rates affect the performance fee least for
all three funds. In addition, a CAP might not reduce the performance fee if the performance does
not exceed the setup CAP condition and setting the high watermark to be even higher might not
guarantee lower performance fee due to symmetric-penalised structure.
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