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A FIXED POINT THEOREM IN H-SPACE
AND RELATED RESULTS

E. TARAFDAR

The equivalence of a fixed point theorem and the Fan-Knaster-Kuratowski-
Mazurkiewicz theorem in H-space has been established. The fixed point theo-
rem is then applied to obtain a theorem on sets with H-convex sections, and also
results on minimax inequalities.

INTRODUCTION

Using the results of Horvath [68] and [7], Bardaro and Ceppitelli [2] have recently
proved a version of the Fan-Knaster-Kuratowski-Mazurkiewicz theorem {4] in H-spaces
and also given some generalisations of Fan’s well-known minimax inequalities.

In this note we have proved that their version is equivalent to a fixed point theorem
of a set valued mapping. Our result extends the result of the author (8] to the H-space
situation. This necessitates the introduction of the H-convex hull of a subset in an
H-space. Our definition of a H-KKM map is slightly different from theirs, but more in
line with the usual one in a vector space. From our fixed point theorem we have also
deduced a theorem on sets with H-convex sections which generalises a theorem of Fan
(Theorem 16, [4]), Browder [3] and the author [9]. Finally, we have shown that Bardaro
and Ceppitelli’s generalisations of Fan’s minimax inequalities can also be deduced from
our fixed point theorem.

Let X be a topological space and F(X) the family of finite nonempty subsets of
X. Let {F4} be a given family of nonempty contractible subsets of X, indexed by
A € F(X) such that Fq C Fy, whenever A C A'. The pair (X, {F4}) is called an
H-space. Given an H-space (X, {Fa}), a nonempty subset D of X is called

(i) H-convexif Fq C D for each finite subset A of D;
(ii) weakly H-convex if F4 N D is nonempty and contractible for each finite
subset A of D and
(i) compactly open (closed) if DN B is open (closed) in B for each compact
subset B of X. Also a subset K of X is called H-compact if, for every
finite subset 4 of X, there exists a compact, weakly H-convex subset D
of X suchthat KUACD.
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In this paper by a finite subset we will always mean nonempty finite subset.
Let (X, {Fa}) be an H-convex space. Then given a nonempty subset K of X,
we define the H-convex hull of K, denoted by H —co K as

H—-coK =nN{D CX:Dis H-convex and D D K}.

H —coK is H-convex. Indeed if A is a finite subset of H —co K, then for every H-
convex subset D of X with D D K, we have H —co K C D and thus A C D. Hence
as D is H-convex, F4 C D and hence F4 C H —co K. It also follows that H —co K
is the smallest H-convex subset containing K.

In what follows, we will need the following characterisation of the convex hull.

LEMMA 1. Let (X, {Fs}) be an H-space and K be a nonempty subset of X.
Then H—coK = U{H —coA: A is a finite subset of K}.

PROOF: Let A be a finite subset of K. Then H —co 4 is the smallest H-convex
subset containing A and H—co K is the smallest H-convex subset containing K. Thus
it follows that H —coA C H —co K. Hence U{H —co A: A is a finite subset of K} C
H—coK.

Next, let U{H —coA: Ais a finite subset of K} = L. Then L contains K as a
subset and we prove that L is H-convex.

Let B = {z1, 2, ..., o} be a finite subset of L. Then there are finite subsets

n
Ay, Az, ..., A, of K suchthat 2; € H-coA4;,1=1,2,...,n. Obviously 4' = |J 4;
=1

is a finite subset of K, and z; € H —coA' for1=1, 2, ..., n. Therefore, as H —co A’
is H-convex, Fg C F4t C H—coA' C L. Thus L is an H-convex subset containing
K. Hence H~coK C U{H —co A: A is a finite subset of K'}. 1]

Let {(Xa, {Fg, }): @ € I} be a family of H-spaces where I is a finite or infinite

index set. Let X = J] X, be the product space with product topology and for each
a€F
acl,let Py,: X — X, be the projection of X onto X,. For any finite subset A of

X,weset Fqp = [] Fa, where A, = P,(A) for each a € I.
acl

Since for each a € I', F,,_ is contractible, it is easy to see that F, is contractible.
[To see this, let for each a € I, F4_, be contractible to zJ € X, through the homotopy
ha : Aa % [0, 1] — Aq, that is h, is continuous, ha(Za, 1) = z, for all z, € Ao and
ho(za, 0) = 2 for all 2, € Ay. Then the mapping h: A x [0,1] — A defined by

h{z,t) = [] ha(Za,t) is clearly a homotopy map and A4 is contractible to []Jz? € X
a€cl a
where Py(z) = zo). Moreover if A and B are two finite subsets of X with A C B,

then for each a € I, Po(A) C Py(B), that is, A, C B, and consequently Fs, C Fpg, .

Hence Fy = [| Fa, C [[ FB, = Fp. Thus (X, {Fa}) is an H-space.
ael a€l
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Now let D, be an H-convex subset of X, for each a € I; then D = [] D, is
acl

an H-convex subset of X. To see this let A be a finite subset of D. Then for each
a €I, Ay = P,(A) is afinite subset of Do and Fs, C Dy as D, is H-convex. Hence

Fa = H FAaC H D, =D.
acl a€l

Then we have proved the following:

LEMMA 2. The product of any number of H-spaces is an H-space and the prod-
uct of H-convex subsets is H-convex. 0

A set valued mapping T: X — 2% is said to be H-KKM if for each finite subset

Aof X, H-coAC | T(z).
zZEA

We should point out that in [2] T is called H-KKM if for each finite subset A of

X,FsC | T(z). Thusif T is H-KKM in our sense, then T is H-KKM in the sense
z€EA
of [2].

The following theorem is proved by Bardaro and Ceppitelli [2].
THEOREM 1. Let (X, {F4}) be an H-space and T: X — 2X an H-KKM set
valued mapping such that
(a) for ¢ € X, T(z) is compactly closed;
(b) there is a compact subset L of X and an H-compact subset K of X
such that for every weakly H-convex subset D with K C D C X, we

have

z€D

() (T(z)nD)C L.

Then
ﬂ T(z) # 0.

z€X

In what follows we prove that this theorem is equivalent to the following fixed point

theorem:

THEOREM 2. Let (X, {Fa}) be an H-space and f: X — 2X be a set-valued
mapping such that

(i) for each z € X, f(z) is non-empty and H-convex;
(ii) foreach y€ X, f~Y(y) = {z € X : y € f(2)} contains a compactly open
subset Oy of X (O, could be empty for some y);

(i) Y O,=X; and
z€X
(iv) there exists a compact subset L of X and an H-compact subset K of

X such that for every weakly H-convex subset D with K C D C X, we
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have

((o:nD)c L,

z€D
where OF denotes the complement of O, in X.
Then there is a point zo € X such that z, € f(z).

Proor: We first prove that Theorem 1 implies Theorem 2. Let the conditions
of Theorem 2 hold. For each =z € X, we set T(z) = OZ. If for each finite subset A

of X, H—coA C | T(z), then for each finite subset 4 of X, Fy C |J T(z) as
z€EA z€EA

H —co A is an H-convex subset. Thus the set-valued mapping T: X — 2X would

satisfy all the conditions of Theorem 1 and hence (] T(z) # @ which would contradict
z€X
the condition (iii). Hence there must exist at least one finite subset 4 of X such that

H-coA ¢ |J T(z), that is, there exists a point y € H—co 4 suchthat y ¢ {J T(z),
z€CA €A

that is, y € [T(z)]¢ for each z € A4, thatis, y € O, C f~!(z) for each z € A. Hence
z € f(y) for each =z € A, thatis, A C f(y). But as f(y) is H-convex, H—~co A C f(y)
which implies that y € f(y).

Next we prove that Theorem 2 implies Theorem 1. Assume that the conditions of

Theorem 1 hold. If possible, suppose that (] T(z) = 0. Then we can define a set-
z€X

valued mapping g: X — 2% by g(y) = {z € X :y ¢ T(z)}. Clearly g(y) is a nonempty
subset of X for each y € Y. Also for each z € X, g7(z) = (T(z))° = O, ,say
which is open subset of X. Let f: X — 2% be the set-valued mapping defined by
f(y) = H —cog(y) for each y € X. Thus for each y € X, f(y) is an H-convex subset
of X with g(y) C f(y), and for each z € X, f~!(z) D g7!(z) = O,. Moreover,

N T(z) = 0 implies |J O, = X. Finally, [} (O:iND) = (} (T(z)ND) C L.
z€X zeX z€D z€D
Hence the mapping f satisfies the conditions of the Theorem 2. Thus there exists a

point zo € X such that z, € f(z¢) = H —cog(zy), that is, there is by Lemma 1 a
finite subset A = {z1, =2, ..., o} of g(zo) such that zo € H —coA C f(z¢). But

n
z; € g(z0),1=1,2,...,n = 2o ¢ T(2i),1=1,2,...,n, that is, zo0 ¢ U T(z:),
i=1

that is, H — coA ¢ |J T(z) which contradicts that T' is H-K.K.M. This proves our
zZEA

assertion. 0
Our next theorem generalises a theorem of Fan (Theorem 16, [4]), Browder [3] and

the author [9].

THEOREM 3. Let X,, X,,..., X, be n > 2 H-spaces and let X = [] X;.
j=1

Let {A4;}}-, and {B;}}_, be two families of subsets of X having the following
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properties:

(a) Let X; = [] X: and let Z; denote a generic element of X;. For each
i#;
j=1,2,...,n and for each point Z; € f,-, the set
B;(z;) = {z; € X;: [zj, T;] € B;} is nonempty and the set
A;(Z;) = {zj € Xj: [z;, T;] € A;} contains the H-convex hull of B;(Z;).
(b) Foreachj=1,2,...,n and for each point z; € Xj, the set
Bj(z;) = {zj € X;: [z;, 3;] € B;} is compactly open in X;.

(c) There exists an H-compact subset Xo of X suchthat [\ Of is compact
z€Xop

where O, = () {Bj(z;) X X;} and z; is the projection of z into X; for
i=1

eachj=1,2,...,n.
Then () Aj £0.
j=1

PROOF: We define two set-valued mappings f: X — 2% and ¢g: X — 2% by

n n
f(z) = [] H—coBj(Z;) and g(z) = [ B(Z;) for each z = [z;, Z;] € X where z; and
j=1 i=1
Z; are respectively the projections of z into X; and X j. Clearly for z € X, by Lemma
2 f(z) is H-convex, and by (a) g(z) # 0 and f(z) D g(z). Foreach y € X, we consider
the set g7(y) = {z € X:y € g(z)}. Nowz € g7 (y) ® vy = (¥1,¥2y .-+, Yn) €

g9(z) = [I Bj(Z;) & y; € Bj(Z;) for each j = 1,2,...,n & Z; € Bj(y;) for each
j=1

n
7=1,2,...,n. Thus foreach y € X, g7 '(y) = N {Bj(y;) x X;} = Oy, which is
j=1

compactly open. To show this it would suffice that Bj;(y;) x X; is compactly open.
Let K be a compact subset of X. Let Pj(K) = K; and Pj(K) = K; where P;
and P; are respectively the projections of X onto )?,- and X;. Then I?j and K;

are compact subsets of X; and X; respectively and (B;(y;) x X;) N (I?, X K,-) =
(B,-(y,')ﬂ I?,) x K;. This shows that (Bj(y;) x X;) is open in K; x K; by virtue
of (b). Now since K; x K; C K, it follows that Bj(y;) x X; is open in K. Now

since g(z) C f(z) for each z € z, it follows that for each y € X, f~!(y) contains a

compactly open subset g~!(y) = O, . Furthermore |J O, = X. [Forlet z € X. Since
yeEX
g(z) # 0, g(z) contains a point y € X. Thus z € g~*(y) = O, ]. Finally by (e) there
exists an H-compact subset Xy of X such that (| Of = L is compact. Clearly with
z€Xo
this pair (Xo, L) the condition (iv) of Theorem 2 is satisfied. Thus by Theorem 2 there
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exists a point z € X such that

“z € f(z) = [[ H-co B(z;) ¢ [] 4(3))
j=1 j=1
by (a), that is, z; € Aj(Z;) for j = 1,2,...,n, that is [z;, Z;] € A; for j =

1,2,...,n. Thus z € ) 4;. 0
i=1

REMARK. The theorem dual, in the sense of [11], to the above theorem can similarly
be stated and proved.
Bardaro and Ceppitelli [2] proved some generalisations of Fan’s minimax inequal-

ities in Riesz space. We prove a variant of one of these (Theorem 3, [2]) by means of
our Theorem 2.

Let (E, C) be a Riesz space, where C' is the positive cone, provided with a linear,
order compatible topology (for example, see [5]) and C, the interior of C is assumed
to be nonempty.

THEOREM 4. Let (X, {Fa}) be an H-space and f,g: X x X — (E, C) two
functions such that with a given A € E the following conditions hold:

(a) g(z,v¥) < f(z,y) forall z,y € X;
(b) f(z,z) ¢ A+C forall z e X;
() forevery ye X, theset {z€ X: f(z,y) E X+ é’} is H-convex;

(d) forevery z € X, theset {ye X:g(z,y) € X + 5’} is compactly open;
(e) there exists an H-compact subset Xy of X such that {y € X:g(z,y) ¢

o
A+ C, for eachz € Xo} is a compact subset of X .

Then the set S = {y: g(z,y) ¢ A+ C forall z € X} is a nonempty compactly closed
subset of X .

ProOF: Foreach z € X, let F(z)={ye X: f(z,y) ¢ A+ 5’} and G(z) = {y €

X:g9(z,y) ¢ 2+ (OJ} Then by (d), for each =z € X, G(z) is compactly closed. It is

clear that § = [ G(z) and S is compactly closed. So we need to show that S # 0.
z€X

If possible, let S = 0. Then for each y € X, theset h(y) = {z € X:y ¢ G(z)} =
{zeX:g(z,y)€E X+ &} is non-empty. Hence for each y € X, the set

k(y):{zeX:f(z,y)ez\-l-&}j)h(y):{zGX:g(z,y)€A+&}.

The last inclusion follows from the inclusion G(z)° C F(z)° which in turn follows from

(b). [To see this let y ¢ G(z), that is, g(z, y) € A + C. Then thereisa neighbourhood
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V of O in F such that g(z, y)+V C A+EJ’. Now g(z,y) < f(z, y) = A < g(z, y)+v <

f(z,y) +v for each v € V. Thus f(z,y)+V C z\-{-é,that is y ¢ F(z)]. Now for
each z € X,

h'l(z)z{yEX:zéh(y)}:{yGX:g(z,y)G/\+5'}=0=,

say, is compactly open by (d). Thus for the set-valued mapping k: X — 2%, k(y) is
nonempty and H-convex (by (c)) and for each z € X, k~!(z) contains a compactly
open subset O, = h~!(z). [That h=!(z) C k~!(z) follows from the fact that h(z) C

k(z)]. Also |J A7 (z) = | O, = X. [To see this let y € X. Since h(y) # 0, we
z€X z€X
can assume z € h(y). Then y € h~!(z) = O, ). Finally

€)= N 0i=[) (F'@) = [N lveX:9(z,9) ¢ A+ C} =1L,
z2€Xg z€Xg z€Xg
say, is compact. Thus the pair (L, X,) satisfies the condition (iv) of Theorem 2 for the
mapping k. Hence this mapping k: X — 2% fulfils all the conditions of Theorem 2

and, therefore, there is a point z¢ € X such that 2o € k(z), that is, f(zo, o) € A+C
which contradicts (b). Thus we have proved the theorem.

REMARKS. In the same way we can deduce the Theorem 4 and Corollary 1 of [2] from
our Theorem 2. The Theorem 4 here includes a theorem of Allen [1] and also of Tarafdar
[10].
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