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VOLUME INEQUALITIES USING SECTIONS OF CONVEX SETS

PAUL R. SCOTT

We give a general result for the lower bound of the volume of a compact convex
set K in Ed in terms of the volumes of orthogonal sections of K.

1. INTRODUCTION

Let if be a compact convex body in Ed, and let "H = {Hi,...,Hd} be a family
of d pairwise orthogonal hyperplanes in Ed. If S is an r-dimensional body in Ed, we
use | 5 | to denote the r-dimensional volume oi S. In [2], Meyer gives a lower bound
for the volume \K\ of K in terms of the volumes of the sections Ki = K D Hi of K.
He shows:

LEMMA 1 .

1 = 1

Equality occurs for example when K is a cross polytope (generalised octahedron).

Let U = Dj^nHj (1 < i ^ d), and for each i define Y{ = K D /,•. The following
result is a weak version of Theorem 4 of [3]:

LEMMA 2 .

It is easy to see (and we shall show) that equality occurs here for example when
K is a cross polytope.

The purpose of this note is to show that Lemmas 1 and 2 are special cases of a

wider family of such inequalities involving the volumes of orthogonal sections.

By suitable choice of coordinate system, we may assume that for each i, the hy-
perplane Hi of 7i has equation Xi — 0. For 1 ^ r < d, let Vtl«,...tr (1 ^ 11 < <2 < • • •
< td ^ d) denote the r-dimensional subspace, occurring as the intersection of the dis-
tinct hyperplanes Htl,..., Htr , and let 5i1<2...tr = K H Vtxt7...tT > the section of K by
^ii3...<r • These are the only types of section that will be considered. We shall prove:
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394 P.R. Scott [2]

THEOREM 1 . For d^2,

d-r-l

cyclic

where the first product is the product of the d terms obtained bom the given term by
cyclically permuting the subscripts 1 ,2 , . . . , d. Equality occurs for example when K is
a cross polytope.

THEOREM 2 . For d ^ 2,

llKl]"-1 > {r\)dY[\Stlt2...tT\dtf).
d-r-l

where the first product is taken over the (r) terms obtained by choosing 1 ^ <i < <2 <
. . . < tT ^ d. Equality occurs for example when K is a cross polytope.

We observe that Lemmas 1 and 2 are special cases of Theorems 1 and 2, with
r = d — 1 and r — \ respectively.

2. PROOF OF THEOREM 1

The proof will rely on Steiner symmetrisation, so we shall need:

LEMMA 3 . Let S be a section of the convex body K formed by the intersection
of K with some subset ofH, and suppose that S, K map to S', K' respectively under
Steiner symmetrisation about the hyperplane Hj : Xj — 0. TAen

(a) \K'\ = \K\;
(b) \S'\ = \S\ if S lies in a hyperplane perpendicular to HJ;
(c) \S'\ ^ \S\ otherwise.

The properties are well-known and simple to prove (see for example [1]).

We now symmetrise K about each of the hyperplanes Hi,...,Hd in turn to obtain
the symmetral K*. Suppose that section S maps to S* under this symmetrisation.
According to Lemma 3,

\K'\ = |tf-|, \S*\ > \S\.

It will thus be sufficient to establish our results for symmetrised bodies, and henceforth
we assume that K is symmetric about each hyperplane of ~H.

Let Q denote the closed positive orthant {(xi,... ,x<i) : z,- > 0, 1 < i ^ d}. Set
k = K fl Q, yi = Yi n Q, stl...«, = Stl ...t, C\ Q. By the symmetry of K we have

https://doi.org/10.1017/S0004972700029233 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029233


[3] Volume inequalities 395

\K\ = 2d\k\, \Yi\ = 2\yi\, and \Stl...«J = 2r|«tl...«,!• Thus to obtain inequality (1), it
will be enough to show

(d V—-1

(2) [diifcn"-1 > (r\)d n i-I,...r|.(niwi)
cyclic \«=1 '

We progressively build up a [d — r — l)-fold pyramid with basis «i2...r by taking

Pr+l = COnV {«12...rUyP+l},

Pr+2 = conv {pr+i Uyr+2},

P = Pd-i = conv {pd-2 U yd-i},

at each step choosing a segment j/j to increase the dimension by 1. The resulting
pyramid p lies in the hyperplane Hd. Now for any point M in k, the cone Cd —

conv {M,p} with vertex M and basis p is contained in k. Cyclically permuting the
numbers 1,2, . . . ,d gives rise to d such cones, all with vertex M. Since for each j the
basis of the cone Cj lies in the coordinate hyperplane Hj, the intersection C< D Cj of
distinct cones C j , Cj itself lies in a hyperplane — the hyperplane determined by M

and the (d - 2)-space H{ D Hj . It follows that for all i ^ j we have \d D C,-| = 0.
Thus, for any point Af = ( z j , . . . , xj) in k we have

cyclic

using the same cyclic notation on the subscripts as before.
Because M is an arbitrary point of Jb, it follows that k is contained in the simplex

L:

cyclic

Since the volume of L is given by (1/d!) times the product of the axial intercepts,

^cyclic

Substituting |Jfe| < \L\ and simplifying gives

( d . d-r-i

f

This establishes (2), and Theorem 1 follows. Equality is obtained when k coincides
with the simplex L; this occurs for example when K is a cross polytope.
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3. PROOF OF THEOREM 2

It is dear that the argument used in proving Theorem 1 is not restricted to sections
whose subscripts are cyclic permutations of (1,2, . . . , r ) . Let T denote the set of
(unordered) r-tuples obtained by cyclically permuting the elements of (1,2,. . . ,d).
Thus

r = {( l ,2 , . . . , r ) , (2 ,3 , . . . , r + l ) , . . . , (d , l ,2 r - 1)}.

Geometrically, we can think of each of these r-tuples as a set of r connected vertices
of a regular d-gon. It follows that the group of automorphisms of T is the dihedral group
Dd, having order Id. Now the symmetric group Sd of order d\ can be partitioned into
the d\/{2d) left cosets of Dd. Mapping the set T using the permutations of Sd gives
rise to d\/{2d) sets of r-tuples, (call these d-sets say). In the listing of these sets the
total number of r-tuples derived from T is d\/(2d) x d. All possible r-tuples appear,
and by symmetry, all appear the same number of times. Since there are (r) possible
distinct r-tuples, each appears (l/2)d!(j[) times.

Collecting together the sections with r-tuple subscripts lying in each of the above
d-sets, and using the argument of the proof of Theorem 1 on each such collection, we
obtain d\/(2d) inequalities of the form (1), except that in each inequahty the subscripts
for the sections 5 form the r-tuples of a <f-set. Multiplying these inequalities together,
and taking the 2d/(<f!)-th power gives:

where the first product is taken over the (j|) terms obtained by selecting 1 ^ t\ <
ti < • • • < tr ^ d. Equality is given for example when if is a cross poly tope, as for
Theorem 1 .

4. FINAL REMARKS

We conclude by observing that further (more complicated!) inequalities can be
obtained using this method. Thus in expression (3), in the cyclic summation, the rep-
resentative term contains the volume of the section «i2...r multiplied by |yr+i|,-,|yd|,
and Xd- By fixing Si2...d and permuting the suffixes r + l,...,d, we obtain d — r terms
which can be used to contribute towards a suitable sum for estimating the volume of
K. This leads to an inequality in the situation where the space Ed occurs as a direct
sum of the vector subspaces Vtlt2...tr which determine the sections Stltt...tr •
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