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Abstract

We prove that there is an absolute constant C > 0 such that every k-vertex connected
rainbow graph R with minimum degree at least C log k has inducibility k!/(kk − k). The
same result holds if k ≥ 11, and R is a clique. This answers a question posed by Huang, that
is a generalisation of an old problem of Erdös and Sós. It remains open to determine the
minimum k for which this is true.

2020 Mathematics Subject Classification: 05C35

1. Introduction

Fix a graph F on k vertices and another graph G on n > k vertices. Write I(F, G) for the
number of k-subsets S ⊂ V(G) such that G[S] ∼= F and let

�(F, G) := I(F, G)(n
k

) .

Many foundational questions in extremal graph theory deal with estimating �(F, G) for var-
ious choices of F and G. One central question is to determine the minimum value when F is
a clique and G has a specified edge density [13, 15, 16], but there are also many fundamental
questions about the maximum value regardless of edge density. This is the direction we take
here.

Let I(F, n) be the maximum of I(F, G) over all n vertex graphs G. A standard averaging
argument implies that

ind (F, n) := I(F, n)(n
k

) ≤ I(F, n − 1)(n−1
k

) = ind (F, n − 1).

Thus, ind (F, n) is a decreasing sequence bounded below by zero, so it has a limit. Define
the inducibility of F to be

ind (F) := lim
n→∞ ind (F, n).

The iterated balanced blow-up of a graph F is a family GF(n) of graphs on n vertices
defined inductively as follows. Label V(F) with [k] := {1, . . . , k}. For n < k, the family
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GF(n) contains only the empty graph on n vertices. For n ≥ k, for any G ∈ GF(n), we have a
partition V(G) = V1 ∪ · · · ∪ Vk with the following properties:

(1) for all i, j ∈ [k],
∣∣|Vi| − |Vj|

∣∣≤ 1;

(2) for all i ∈ [k], the induced subgraph G[Vi] ∈ GF(|Vi|);
(3) for all v ∈ Vi, w ∈ Vj with i �= j, we have vw ∈ E(G) if and only if ij ∈ E(F).

In many interesting cases, the construction above achieves the inducibility of F and we
now define this formally (our definition is slightly different than that in [11]).

Definition 1·1. A graph F is a fractaliser if

ind (F) = lim
n→∞ max

G∈GF(n)
� (F, G) .

In other words, the iterated balanced blow-up of F achieves the inducibility.

The subgraph induced by every k-set comprising exactly one vertex in each Vi is
isomorphic to F. Consequently, for every G ∈ GF(n),

I(F, G) ≥
k∑

i=1

I(F, G[Vi]) +
k∏

i=1

|Vi|.

Together with a standard computation (see, e.g. [12]), this yields

ind (F) ≥ lim
n→∞ max

G∈GF(n)
� (F, G) ≥ k!

kk − k
. (1·1)

In most cases we consider, the fact that F is a fractaliser will imply further that ind (F) =
k!/(kk − k). Note that this is not always the case, for example F = Kk is a fractaliser with
ind (Kk) = 1.

The fundamental conjecture in this area, due to Pippenger and Golumbic [14], states that
for k ≥ 5, the cycle Ck is a fractaliser and satisfies ind (Ck) = k!/(kk − k). This conjecture
has been resolved for k = 5 by Balogh, Hu, Lidický, and Pfender [1] (see also [11]), but
remains open for all k ≥ 6. Král, Norin and Volec [10] showed that I(Ck, n) ≤ 2nk/kk. More
generally, Fox, Huang and Lee [6] and Yuster [17] independently proved that random graphs
are fractalisers asymptotically almost surely. Fox, Sauermann and Wei [7] further proved that
random Cayley graphs of abelian groups with small number of vertices removed are almost
surely fractalisers.

We now consider these notions on coloured and directed structures. A tournament is an
orientation of a complete graph. An edge-colouring of a graph or tournament G is a function
χ : E(G) → T where T is a set of colours; we say that G is T-coloured. A coloured graph
or tournament G is rainbow if χ is injective. Two coloured graphs (or tournaments) G and
H are isomorphic, written G ∼= H, if there exists a bijection ϕ : V(G) → V(H) such that the
colours (and orientations) of all edges are preserved under ϕ. If F is a coloured tournament
or coloured complete graph, then ind (F) is defined identically as in the graph case, but with
these altered definitions of graph isomorphism; naturally, the underlying graph G should
have the colours or orientations corresponding to F. If F is an arbitrary coloured graph, then
we can colour all missing edges with a single new colour and view F as a coloured complete
graph. Consequently, we can define fractaliser for all these structures.
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Inducibility of rainbow graphs 3

There are very few results on the inducibility of coloured, oriented or directed structures.
The first exact result which involved an iterated construction was due to Huang [8] who
determined the inducibility of the directed star. Later, in order to solve an old conjecture
of Erdös and Hajnal [5] in hypergraph Ramsey theory, the third author and Razborov [12]
proved the following result for k ≥ 4 (the case k = 3 was proven earlier by Conlon, Fox and
Sudakov [3]).

THEOREM 1·2 ([12]). All rainbow tournaments R on k ≥ 4 vertices are fractalisers. In
particular, ind(R) = k!/(kk − k).

In this paper, we consider the question addressed by Theorem 1·2 in the undirected setting.
The first conjecture in this setting is due to Erdös and Sós from the 1970s (see [5, equation
(20)]), and implies, in particular, that a rainbow triangle is not a fractaliser. Their conjecture
was proved by Balogh et. al. [2], who showed that a blow-up of a properly 3-edge-coloured
K4 (instead of a rainbow K3) achieves the inducibility of the rainbow triangle. See also [4]
for similar computations, but in terms of the number of edges of each colour instead of the
number of vertices.

Huang [9] asked whether Theorem 1·2 can be extended to the undirected setting for
cliques of size larger than three. This, in particular, would imply that the phenomenon con-
jectured by Erdös and Sós and proved in [2] (that Kk is not a fractaliser for k = 3) fails to
hold for larger k. Our first result addresses Huang’s question and proves that rainbow Kk are
fractalisers for k ≥ 11. Note that the result below applies to a specific rainbow colouring of a
clique. The corresponding problem for the collection of all rainbow colourings is discussed
in Section 5.

THEOREM 1·3. All rainbow cliques R on k ≥ 11 vertices are fractalisers. In particular,

ind(R) = k!
kk − k

.

We make the following observations regarding Theorem 1·3.

(1) Theorem 1·3 implies Theorem 1·2 for k ≥ 11, since any construction of a tournament
inducing � rainbow copies of R yields a corresponding construction of a complete
graph that induces at least � rainbow (undirected) copies of R by ignoring orientations.

(2) Similarly, if a graph G on k vertices is known to have inducibility k!/(kk − k), then the
rainbow k-clique is a fractaliser as well by the following argument. Let R be a rainbow
k-clique and let e1, e2, . . . , em ∈ E(R) such that (V(R), {e1, . . . , em}) is a rainbow copy
of G. Let c1, . . . , cm be the colours assigned to e1, . . . , em, respectively. Then any
construction of an edge-coloured graph inducing � rainbow copies of R induces at
least � copies of G by deleting all edges except those coloured by c1, . . . , cm and then
ignoring the edge colours. It follows that ind (R) ≤ ind (G) = k!/(kk − k), so R is a
fractaliser. Thus, the result of [1] that C5 is a fractaliser with ind (C5) = 5!/(55 − 5)
implies that the rainbow 5-clique is a fractaliser, and the result of [6] that random
graphs are almost surely fractalisers implies that the rainbow k-clique is a fractaliser
for large k.

(3) We believe our proof of Theorem 1·3 has been optimised and requires k ≥ 11. As [1]
showed that rainbow 5-cliques are fractalisers, and [2] showed that rainbow 3-cliques
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are not fractalisers, it remains open to determine whether rainbow k0-cliques are
fractalisers only for k0 ∈ {4, 6, 7, 8, 9, 10}.

Our proof of Theorem 1·3 follows the broad framework of the proof of Theorem 1·2 but
there are several nontrivial technical difficulties that need to be addressed in the undirected
setting. The difficulties arise due to the following reason: the role that each endpoint of an
edge plays in a rainbow copy of a tournament is determined by the colour and orientation of
the edge, but this is no longer true in the undirected setting. We overcome these obstacles by
adding some new ideas, at the expense of requiring a slightly higher value of k. For example,
our proof of Theorem 1·3 requires a bound on the colour degree of a vertex and this was not
needed in [12].

For large values of k, we prove the following more general result which shows that the
analog of Theorem 1·3 holds for much sparser graphs. The proof requires several major new
ideas.

THEOREM 1·4. There exists an absolute constant C > 0 such that all connected rainbow
graphs R with k vertices and minimum degree at least C log k are fractalisers and satisfy

ind(R) = k!
kk − k

.

We make the following observations regarding Theorem 1·4.

(1) Theorem 1·4 implies Theorem 1·3 for large k, since R may be viewed as a rainbow
k-clique with edges deleted. Let c1, c2, . . . , cm be the colours assigned to the deleted
edges. Any construction of a coloured complete graph inducing � rainbow copies of
the rainbow k-clique yields at least � rainbow copies of R by deleting edges coloured
c1, . . . , cm.

(2) The requirement that R is connected in the statement of Theorem 1·4 is necessary,
as disconnected rainbow graphs without isolated vertices are not fractalisers (see
Section 4).

(3) We are not able to show that our requirement on minimum degree is tight, and this
remains open.

Theorem 1·3 is proven in Section 2 and Theorem 1·4 is proven in Section 3. In Section 4,
we justify the second observation above. In Section 5, we discuss the problem of maximising
the number of rainbow cliques on k vertices in a large graph, where the colouring of the
clique is not specified.

2. Proof of Theorem 1·3
We give the proof of Theorem 1·3 in the following subsections.

2·1. Setup

Fix k ≥ 11 and T = ([k]
2

)
. Let R be a T-coloured rainbow k-clique with colouring function

χR and for concreteness, put V(R) := [k] and χR(ij) = {i, j} for all i, j ∈ [k].
Set

a := k!
kk − k

.
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Our aim is to prove that ind (R) ≤ a. To this end, fix γ > 0 and assume for contradic-
tion ind (R) = a + γ . Next choose 0 < ε < min{γ , ind (R)}/100. Let c0 be chosen so that
ind (R, n) ≤ ind (R) + ε for all n > c0. Choose M ≥ �2k!c0/ε
 such that

nk

(n)k
< 1 + ε (2·1)

and

a

(
nk−1

(k − 1)! −
(

n − 1

k − 1

))
< γ

(
n − 1

k − 1

)
−
(

n − 2

k − 2

)
(2·2)

for all n > M. This is possible since limn→∞ nk/(n)k = 1 and nk−1/(k − 1)! − (n−1
k−1

)=
O(nk−2), while γ

(n−1
k−1

)− (n−2
k−2

)= �
(
nk−1

)
as n → ∞. Suppose that n > M is given and H

is a T-coloured n-vertex graph with colouring function χH achieving I(R, n). This implies

I(R, H) = I(R, n) = ind (R, n)

(
n

k

)
,

where a + γ = ind (R) ≤ ind (R, n) ≤ ind (R) + ε = a + γ + ε.

Definition 2·1. For q ≥ 0 and t > 0, let p(q, t) be the maximum of
∏

i qi where q1 + · · · +
qt = q and each qi ≥ 0 an integer.

The AMGM inequality yields p(q, t) ≤ (q/t)t and it is easy to see that

p(q, t)p(q′, t′) ≤ p(q + q′, t + t′) (2·3)

for all q, q′ ≥ 0 and t, t′ > 0 (see Appendix).
For a vertex x in V(H) and i ∈ [k], write di(x) for the number of copies of R containing

x where x plays the role of vertex i in R. More formally, di(x) is the number of isomorphic
embeddings φ : R → H such that φ(i) = x. Let d(x) =∑

i di(x) be the number of copies of R
containing x. We will refer to this as the degree of x in H. Similarly, let d(x, y) be the number
of copies of R containing both x and y. For i ∈ [k], let Ni(x) be the set of y ∈ V(H) \ {x} for
which there is a copy of R in H containing both x and y in which x plays the role of vertex i in
R. Note that we do not have Nj(x) ∩ Nj′(x) = ∅ for j �= j′, but all edges between Nj(x) ∩ Nj′(x)

and x have the same colour {j, j′}. However, Ni(x) has a (unique) partition ∪j �=iN
j
i (x) where

Nj
i (x) comprises those y such that x, y lie in a copy of R with x playing the role of i and y

playing the role of j. Indeed, the partition is obtained based on the colour of a vertex to x.
This gives

d(x) =
k∑

i=1

di(x) ≤
k∑

i=1

∏
j �=i

|Nj
i (x)| ≤

k∑
i=1

p(|Ni(x)|, k − 1). (2·4)

We partition V(H) into V1 ∪ · · · ∪ Vk, where

Vi = {x ∈ V(H) : |Ni(x)| ≥ |Nj(x)| for all j �= i}.
If there is a tie, we break it arbitrarily. Set ni = |Vi| for all i ∈ [k].

https://doi.org/10.1017/S0305004125101692 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101692


6 EMILY CAIRNCROSS, CLAYTON MIZGERD AND DHRUV MUBAYI

2·2. Minimum degree

Here we show that a standard technique in extremal graph theory can be used to prove
that each vertex of H lies in at least the average number of copies of R (apart from a small
error term).

LEMMA 2·2. d(x) ≥ ank−1/(k − 1)! for all x ∈ V(H).

Proof. We write d = b ± c for the inequalities b − c ≤ d ≤ b + c. Denote the average degree
of H by

d(H) := k · I(R, H)

n
= ind (R, n)

(
n − 1

k − 1

)
.

We claim that for every x ∈ V(H)

d(x) = d(H) ±
(

n − 2

k − 2

)
. (2·5)

This follows from a standard application of Zykov symmetrisation. Indeed, if the degrees
of two vertices x and y differ by more than

(n−2
k−2

)
, say d(x) > d(y) + (n−2

k−2

)
, then we can

delete y and duplicate x, meaning we add a new vertex x′ with χH(x′z) = χH(xz) for all other
vertices z, and χH(xx′) can be arbitrary. This transformation increases the number of copies
of R by at least

d(x) − d(y) − d(x, y) ≥ d(x) − d(y) −
(

n − 2

k − 2

)
> 0,

contradicting the maximality I(R, H) = I(R, n). Hence all degrees lie in an interval of length
at most

(n−2
k−2

)
and (2·5) follows, since this interval must contain d(H). In particular, the

minimum degree is at least

d(H) −
(

n − 2

k − 2

)
= ind (R, n)

(
n − 1

k − 1

)
−
(

n − 2

k − 2

)
.

It follows from (2·2) that

ind (R, n)

(
n − 1

k − 1

)
−
(

n − 2

k − 2

)
≥ (a + γ )

(
n − 1

k − 1

)
−
(

n − 2

k − 2

)
> a

nk−1

(k − 1)!
for n > M, completing the proof.

2·3. Maximum colour degree

Let

α := maxx,i,j d{i,j}(x)

n
,

where the maximum is taken over all vertices x ∈ V(H) and all colours {i, j} ∈ T and d{i,j}(x)
is the number of edges in H incident with x in colour {i, j}. We upper bound this value.

LEMMA 2·3. α ≤ 0.4.
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Proof. Let x, i, j achieve this maximum, so that d{i,j}(x) = αn. Then |Nj
i (x)| ≤ αn and Ni(x)

has a partition Nj
i (x)

⋃∪��=jN�
i (x) where every copy of R containing x with x playing the

role of i has exactly one vertex in each N�
i (x) for all � ∈ [k] \ {i}. Further,

∣∣∣∣∣∣
⋃
��=j

N�
i (x)

∣∣∣∣∣∣≤ n − d{i,j}(x)

since a vertex incident to an edge coloured {i, j} cannot play the role of � �= i, j.
Consequently,

di(x) ≤ |Nj
i (x)| · p

(
n − d{i,j}(x), k − 2

)≤ α n ·
(

(1 − α)n

k − 2

)k−2

.

The same upper bound holds for dj(x). For � �∈ {i, j}, we have N�(x) ≤ n − d{i,j}(x) since x
is playing the role of �, so we cannot include an edge incident to x of colour {i, j} since the
colour must include �. Hence

d�(x) ≤ p
(
n − d{i,j}(x), k − 1

)≤
(

(1 − α)n

k − 1

)k−1

≤
(

(1 − α)n

k − 2

)k−1

.

Altogether this yields

d(x) ≤ 2 α n

(
(1 − α)n

k − 2

)k−2

+ (k − 2)

(
(1 − α)n

k − 2

)k−1

= (1 + α)

(
1 − α

k − 2

)k−2

nk−1.

Suppose for contradiction that α > 0.4. Since k ≥ 3, (1 + α)(1 − α)k−2 is a decreasing
function of α for α ∈ (0.4, 1], and d(x) ≥ ank−1/(k − 1)! by Lemma 2·2. Therefore

1

kk−1 − 1
= a

(k − 1)! ≤ d(x)

nk−1
≤ 1.4

(
0.6

k − 2

)k−2

. (2·6)

However, this fails to hold for k ≥ 11 (see Appendix), and we conclude that α ≤ 0.4 as
desired.

2·4. The second largest neighbourhood

For a vertex x ∈ V(H), let Z(x) be the second largest set in {N1(x), . . . , Nk(x)} and define

z := zk,n = max
x∈V(H)

|Z(x)|
n

.

LEMMA 2·4. z ≤ 0.5.

Proof. Let x be such that z = |Z(x)|/n. Let ai = |Ni(x)|/n and assume by relabeling that
a1 ≥ a2 = z ≥ a3 ≥ · · · ≥ ak. Since Nj(x) ∩ Nj′(x) ∩ Nj′′(x) = ∅ for any three distinct j, j′, j′
we have

∑
ai ≤ 2. Let a3 + · · · + ak = s ≤ 2 − (a1 + z). Write s = qz + r where q ∈Z

≥0 and
0 ≤ r < z. If x ≤ y, then xk−1 + yk−1 < (x − ρ)k−1 + (y + ρ)k−1 for 0 < ρ < x by convexity
of xk−1 so successively increasing the largest ai to z and decreasing the smallest aj to 0 or r,
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we obtain

k∑
i=3

ak−1
i ≤ qzk−1 + rk−1 ≤ qzk−1 + r

z
zk−1 = s

z
zk−1 ≤ 2 − (a1 + z)

z
zk−1.

Consequently,

k∑
i=1

ak−1
i = ak−1

1 + zk−1 +
k∑

i=3

ak−1
i ≤ ak−1

1 + zk−1 + 2 − (a1 + z)

z
zk−1.

Since a1 ≥ z, taking the derivative shows that for any z, this expression is increasing with a1.
Using Lemma 2·3, we note that a1 + z ≤ 1 + α ≤ 1.4 since

|N1(x)| + |Z(x)| = |N1(x) ∪ Z(x)| + |N1(x) ∩ Z(x)| ≤ n + d{1,2}(x),

where d{1,2}(x) ≤ αn ≤ 0.4 · n. Thus a1 ≤ 1.4 − z and a1 ≤ 1, so

k∑
i=1

ak−1
i ≤ ak−1

1 + zk−1 + 2 − (a1 + z)

z
zk−1 ≤ min{1.4 − z, 1}k−1 + zk−1 + 0.6

z
zk−1.

Using (2·4) and Lemma 2·2 yields

1

kk−1 − 1
≤ d(x)

nk−1
≤

k∑
i=1

(
ai

k − 1

)k−1

≤ min{1.4 − z, 1}k−1 + zk−1 + 0.6
z zk−1

(k − 1)k−1
.

Multiplying by (k − 1)k−1 and using the fact that

(k − 1)k−1

kk−1 − 1
≥ (k − 1)k−1

kk−1
=
(

1 − 1

k

)k−1

>
1

e
(2·7)

for k > 1, we obtain

1

e
< ( min{1.4 − z, 1})k−1 + zk−1 + 0.6 · zk−2.

As z ≤ a1 and z + a1 < 1.4, we have z < 0.7. Thus, the RHS is nonincreasing with k and
we may consider only the k = 11 case. Numerical calculations show that for z ∈ [0.5, 0.7],
we have (1.4 − z)10 + z10 + 0.6z9 < 1/e, so we conclude that z < 0.5.

2·5. One large part

We now take care of the situation when one of the Vi’s is very large.

LEMMA 2·5. |Vi| ≤ (1 − 1/3k)n for all i ∈ [k].

Proof. By contradiction, w.l.o.g. suppose that |V1| > (1 − 1/3k)n. If x ∈ V1, then |N1(x)| ≥
|Ni(x)| for all i > 1 so |N2(x)| ≤ |Z(x)| ≤ zn. Using (2·4) we have

a

(
n

k

)
≤ I(R, H) =

∑
x∈V(H)

d2(x) ≤ |V1|p(zn, k − 1) + n

3k
p(n, k − 1)
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and we further see that

|V1|p(zn, k − 1) + n

3k
p(n, k − 1) <

(
zk−1 + 1

3k

)
nk

(k − 1)k−1
.

Using our lower bound on M in (2·1), we get(
(k − 1)k−1

kk − k

)
< (1 + ε)

(
zk−1 + 1

3k

)
. (2·8)

This fails to hold for k ≥ 11 (see Appendix). We conclude that |Vi| ≤ (1 − 1/3k)n for all
i ∈ [k].

2·6. Counting the copies of R in H

Here we describe the broad framework we will use to count copies of R in H. This is the
same as in [12], though there are subtle differences which arise since we are in the undirected
setting.

Call a copy f of R in H transversal if it includes exactly one vertex in Vi for all i ∈ [k].
We partition the copies of R in H as Hm ∪ Hg ∪ Hb, where Hm comprises those copies that
lie entirely inside some Vi, Hg comprises those copies that intersect every Vi whose edge
colouring coincides with the natural one given by the vertex partition (meaning the map from
R to H takes vertex i to a vertex in Vi), and Hb comprises all other copies of R (including
those transversal copies where some vertex is in an inappropriate Vi). Let hm = |Hm|, hg =
|Hg| and hb = |Hb| so that

I(R, H) = hm + hg + hb.

We will bound each of these three terms separately. First, note that

hm =
∑

j

I(R, H[Vj]) ≤
∑

j

I(R, nj). (2·9)

Next we turn to hg. Let � denote the number of k-sets that intersect each Vi but are not
counted by hg. So a k-set counted by � either does not form a copy of R, or forms a copy of
R but its edge colouring does not coincide with the natural one given by the vertex partition
V1 ∪ . . . ∪ Vk. Then

hg =
∏

i

ni − � (2·10)

and we need to bound � from below.
Note that the colour of some pair in every member of � does not align with the implicit

one given by our partition. With this in mind, let Dij be the set of pairs of vertices {vi, vj}
where vi ∈ Vi, vj ∈ Vj, i �= j such that χH(vivj) �= χR(ij) = {i, j}. Let δij = |Dij|/

(n
2

)
, D = ∪ijDij

and δ = |D|/(n2). Let us lower bound � by counting the misaligned pairs from D and then
choosing the remaining k − 2 vertices, one from each of the remaining parts V�. This gives,
for each i < j,

� ≥ |Dij|
∏
��=i,j

n� = δij

(
n

2

) ∏
��=i,j

n� = δij

(
n

2

)∏k
�=1 n�

ninj
.

https://doi.org/10.1017/S0305004125101692 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101692


10 EMILY CAIRNCROSS, CLAYTON MIZGERD AND DHRUV MUBAYI

Since
∑

ij δij
(n

2

)=∑
ij |Dij| = |D| = δ

(n
2

)
, we obtain by summing over i, j,

�

⎛
⎝ ∑

1≤i < j≤k

ninj

⎞
⎠≥ δ

(
n

2

) k∏
�=1

n�.

This with along with (2·10) gives

hg ≤
k∏

�=1

n�

(
1 − δ

(n
2

)
∑

1≤i < j≤k ninj

)
=

k∏
�=1

n�

(
1 − δ

(n
2

)
(n

2

)−∑
i

(ni
2

)
)

. (2·11)

Our next task is to upper bound hb. For a vertex x and j ∈ [k], recall that Nj(x) ⊂ V(H) is
the set of y such that x, y lie in a copy of R with x playing the role of vertex j in R. Let us
enumerate the set J of tuples (v, w, f ) where e = {v, w} ∈ D, f ∈ Hb, e ⊂ f , and v ∈ Vi, but
i /∈ χH(vw). This means that v must play the role of i′ in f for some i′ �= i, so the colours
on all k − 1 pairs (v, x) with x ∈ f contain i′; in particular v is incident to k − 2 pairs in f
whose colour does not contain i. If v ∈ Vi and w ∈ Vj, then say that (v, w, f ) is 1-sided if
|χH(vw) ∩ {i, j}| = 1 and (v, w, f ) is 2-sided if |χH(vw) ∩ {i, j}| = 0.

Let Ji be the set of i-sided tuples (i = 1, 2). We consider the weighted sum

S = 2|J1| + |J2|.
Observe that each f ∈ Hb contains at least k − 2 pairs from D. Indeed, if f is transversal, then
it must contain a miscoloured vertex which yields at least k − 2 pairs from D in f . If f is not
transversal, choose j ∈ [k] such that |f ∩ Vj| is largest. Set C := f ∩ Vj and observe that at
least |C| − 1 of the vertices in C are miscoloured. Also, note that 2 ≤ |C| ≤ k − 1 since f is
not contained in one colour class and we have assumed f is not transversal.

If exactly |C| − 1 vertices in C are miscoloured, then every edge vw where v ∈ C is mis-
coloured and w ∈ f \ C is in D. Since |f \ C| = k − |C|, this yields at least (|C| − 1)(k − |C|) ≥
k − 2 pairs from D in f . On the other hand, if all |C| vertices in C are miscoloured, then there
is a unique vertex u ∈ f \ C that plays the role of j in f . Every edge vw where v ∈ C and
w ∈ f \ (C ∪ u) is in D, so if |C| ≤ k − 2, this yields at least |C|(k − |C| − 1) ≥ k − 2 pairs
from D in f . If |C| = k − 1, then f = C ∪ u where u plays vertex j in f but is in a different
colour class, say the colour class corresponding to colour �. There are k − 1 edges between
C and u, but only one can contain both k and �, so at least k − 2 edges from D are in f .

We conclude that each f ∈ Hb contributes at least 2(k − 2) to S since f contains at least
k − 2 pairs e = {v, w} ∈ D and if (v, w, f ) is 1-sided it contributes 2 to S while if it is 2-sided
then it contributes 2 again since both (v, w, f ) and (w, v, f ) are counted with coefficient 1.
This yields

S ≥ 2(k − 2)hb. (2·12)

On the other hand, we can bound S from above by first choosing e ∈ D and then f ∈ Hb as
follows. Call v ∈ e = {v, w} ∈ D correct in e if v ∈ Vi, and i ∈ χH(vw); if v is not correct in e
then i �∈ χH(vw) and say that v is wrong in e. The definition of D implies that every e ∈ D has
at least one wrong vertex in e (and possibly two wrong vertices). Let

Di = {{v, w} ∈ D : {v, w} contains exactly i wrong vertices} (i = 1, 2).
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The crucial observation is that

(v, w, f ) ∈ Ji =⇒ {v, w} ∈ Di (i = 1, 2). (2·13)

To bound S from above, we use (2·13) and consider first J1 and D1. We start by choosing
vw in D1 with wrong vertex v. Note that w is correct in vw since vw ∈ D1. Let v ∈ Vi, w ∈ Vj.
Then χH(vw) = {j, �} for some � �= i since v is wrong in e but w is correct in e. Thus for each
triple (v, w, f ) ∈ J1, vertex v plays the role of j in f or v plays the role of � in f ; thus the total
number of (v, w, f ) ∈ J1 for some f is at most p(|Nj(v)| − 1, k − 2) + p(|N�(v)| − 1, k − 2).
Summing over all vw ∈ D1, we get

|J1| ≤
∑

vw∈D1

p(|Nj(v)| − 1, k − 2) + p(|N�(v)| − 1, k − 2) ≤ 2|D1|p(zn, k − 2).

The bound for J2 is similar. Choose vw ∈ D2 with v ∈ Vi, w ∈ Vj. Let χH(vw) = {�1, �2}
where {�1, �2} ∩ {i, j} = ∅. Since vw is two-sided, we see that (v, w, f ) ∈ J2 exactly when
(w, v, f ) ∈ J2. Consequently,

|J2| ≤
∑

vw∈D2

p(|N�1 (v)| − 1, k − 2) + p(|N�2 (v)| − 1, k − 2)

+ p(|N�1 (w)| − 1, k − 2) + p(|N�2 (w)| − 1, k − 2)

≤ 4|D2|p(zn, k − 2).

This gives

S = 2|J1| + |J2| ≤ 4 |D| p(zn, k − 2) ≤ 4 δ

(
n

2

)(
z

k − 2

)k−2

nk−2. (2·14)

Finally, (2·12) and (2·14) give

hb ≤ S

2(k − 2)
≤ 2δ

(n
2

)
k − 2

(
z

k − 2

)k−2

nk−2. (2·15)

Using (2·9), (2·11) and (2·15) we have that

I(R, n) ≤
∑

i

I(R, ni) +
∏
�

n�

(
1 − δ

(n
2

)
(n

2

)−∑
i

(ni
2

)
)

+ 2δ
(n

2

)
k − 2

(
z

k − 2

)k−2

nk−2. (2·16)

Our final task is to upper bound the RHS.

Since δ
(n

2

)≤∑i �=j ninj =
(n

2

)−∑
i

(ni
2

)
, we have δ ∈ I

def= [
0, 1 −∑

i

(ni
2

)
/
(n

2

)]
. Viewing

(2·16) as a linear function of δ, it suffices to check the endpoints of I.

2·7. The extremal case

CLAIM 2·6. If δ = 0, then ind (R) ≤ a.

Proof. If δ = 0, then (2·16) implies that

I(R, n) ≤
k∑

i=1

I(R, ni) +
k∏

i=1

ni. (2·17)

https://doi.org/10.1017/S0305004125101692 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101692


12 EMILY CAIRNCROSS, CLAYTON MIZGERD AND DHRUV MUBAYI

Let pi := ni/n. Using maxi pi ≤ 1 − 1/3k by Lemma 2·5, convexity of xk, and k ≥ 11 we
obtain

k∑
i=1

pk
i ≤

(
1 − 1

3k

)k

+
(

1

3k

)k

≤ e−1/3 + 33−11 < 0.72. (2·18)

We begin by bounding the summation in (2·17). By relabeling if necessary, let n1 ≤ · · · ≤
n� ≤ c0 < n�+1 ≤ · · · ≤ nk where � ≥ 0. We have that

k∑
i=1

I(R, ni) ≤ �

(
c0

k

)
+

k∑
i=�+1

I(R, ni) ≤ �

(
c0

k

)
+ ( ind (R) + ε)

k∑
i=�+1

(
ni

k

)
. (2·19)

Observe that
(ni

k

)= (pin
k

)
< pk

i

(n
k

)
since pi < 1. Dividing (2·19) by

(n
k

)
yields

1(n
k

) k∑
i=1

I(R, ni) ≤ �

(c0
k

)
(n

k

) + ( ind (R) + ε)
k∑

i=�+1

pk
i . (2·20)

Suppose � ≥ 1. Using our bounds on ε and M and (2·18), we can further bound

1(n
k

) k∑
i=1

I(R, ni) ≤ �

(c0
k

)
(n

k

) + ( ind (R) + ε)
k∑

i=�+1

pk
i < 0.74 ind (R) (2·21)

and bound the product term

1(n
k

) k∏
i=1

ni ≤ 1(n
k

)c0nk−1 <
2k!c0

n
< ε.

This yields ind (R, n) ≤ 0.74 ind (R) + ε < ind (R), a contradiction. Thus � = 0, so using
(2·20) we may rewrite (2·17) as

ind (R, n) ≤ ( ind (R) + ε)
k∑

i=1

pk
i + 1(n

k

) k∏
i=1

ni. (2·22)

Isolating the product term and recalling the definition of a, as well as our lower bound
on M,

1(n
k

) k∏
i=1

ni = nk(n
k

) k∏
i=1

pi ≤ (a + ε)(kk − k)
k∏

i=1

pi.

Plugging this into (2·22) and recalling ind (R) = a + γ ,

ind (R, n) ≤ (a + ε)

(
k∑

i=1

pk
i + (kk − k)

k∏
i=1

pi

)
+ γ

k∑
i=1

pk
i ≤ (a + ε) + 0.72γ .

The first bound
∑

pk
i + (kk − k)

∏
pi ≤ 1 is well-known (see, e.g. (17) in [12]) and the

second bound comes from (2·18). This gives the contradiction

a + γ = ind (R) ≤ ind (R, n) ≤ a + 0.72γ + ε

since ε < γ/100.
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2·8. The absurd case

Now, we consider the other endpoint of I.

CLAIM 2·7. If δ = 1 −∑
i

(ni
2

)
/
(n

2

)
, then ind (R) ≤ a.

Proof. If δ = 1 −∑
i

(ni
2

)
/
(n

2

)
, then (2·16) implies that

I(R, n) ≤
k∑

i=1

I(R, ni) + 2
∑

i �=j ninj

k − 2

(
z

k − 2

)k−2

nk−2. (2·23)

We first bound the second term. Dividing by
(n

k

)
and again letting pi := ni/n, we

reorganise

2(n
k

) ·
∑

ninj

k − 2

(
z

k − 2

)k−2

nk−2 = 2 · kk − k

(k − 2)k−1
· nk

(n)k
·
⎛
⎝∑

i �=j

pipj

⎞
⎠ zk−2a.

Observe that (kk−1 − 1)/(k − 2)k−1 decreases to e2. In particular, for k ≥ 11, we have
(kk − k)/(k − 2)k−1 ≤ 7.5k. For n > M, we have nk/(n)k < 1 + ε. Finally,

∑
i �=j pipj = (1 −∑

p2
i )/2 ≤ (1 − 1/k)/2 as

∑
p2

i is minimised when pi = 1/k for all i. Thus

2(n
k

) ·
∑

ninj

k − 2

(
z

k − 2

)k−2

nk−2 ≤ 7.5(1 + ε)(k − 1)zk−2a < 0.25a

for k ≥ 11 as (k − 1)zk−2 is decreasing in k and (11 − 1)z11−2 < 10 · 2−9 < 1/50. Using this
and (2·21) in (2·23), and a < ind (R) gives

ind (R, n) ≤ 0.74 ind (R) + 0.25a < 0.99 ind (R).

This contradiction completes the proof of the claim and the theorem.

3. Proof of Theorem 1·4
We give the proof of Theorem 1·4 in the following subsections.

3·1. Setup

Fix k and R = ([k], E) a rainbow coloured graph with minimum degree at least η(k − 1)
where η > C log k/(k − 1). We may assume that k is sufficiently large by making C suffi-
ciently large so that the theorem is vacuous for small k. In particular, we will assume k ≥ 11
so that we may use the same bounds as the previous section. It is notationally convenient
to set T = E ∪ {∅} and view R as a T-coloured complete graph ([k],

([k]
2

)
) with colouring

function χR defined as follows:

χR(ij) =
{

{i, j} ij ∈ E

∅ ij �∈ E.

Our goal is to prove that ind (R) ≤ a. To this end, fix γ > 0 and assume for contradiction
ind (R) = a + γ . Next choose ε, c0, M as in Section 2.1.
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Suppose that n > M is given and H is a T-coloured n-vertex graph with colouring function
χH achieving I(R, n). This implies

I(R, H) = I(R, n) = ind (R, n)

(
n

k

)
,

where a + γ = ind (R) ≤ ind (R, n) ≤ ind (R) + ε = a + γ + ε.
Let di(x), d(x), d(x, y), d{i,j}(x), Ni(x), and Nj

i (x) be defined as in Section 2. Note that we
do not have that all vertices in Nj(x) ∩ Nj′(x) for j �= j′ have the same colour to x as it may
be the case that χH(xy) = ∅ and χH(xy′) = {j, j′} for distinct y, y′ ∈ Nj(x) ∩ Nj′(x). We also do

not have that ∪j �=iN
j
i (x) is a partition of Ni(x) as it may be the case that y ∈ Nj

i (x) ∩ Nj′
i (x)

for some j �= j′ satisfying χR(ij) = χR(ij′) = ∅ and y ∈ V(H) satisfying χH(xy) = ∅. Thus we
must develop new techniques to prove a version of (2·4) from Section 2.1 to obtain bounds
on di(x). This is the content of Section 3.2.

As in Section 2.1, we partition V(H) into V1 ∪ · · · ∪ Vk, ni = |Vi|, where

Vi = {x ∈ V(H) : |Ni(x)| ≥ |Nj(x)| for all j �= i}.
If there is a tie, we break it arbitrarily.

3·2. Partitioning argument

Let the distance between two vertices v and w in a graph G, denoted distG (v, w), be the
number of edges in the shortest path between v and w in G. In our setting, a path cannot use
an edge e with χ(e) = ∅. Then, define

εG(v) := max
w∈V(G)

distG (v, w),

the eccentricity of v in G. Note that the diameter diam (G) = maxv∈V(G) εG(v). For conve-
nience, let ε(i) := εR(i) for all i ∈ [k].

Let B (x) be x in H. For r ∈N, let kr(i) be the number of vertices in R at distance r from i.
Recall that d{i,j}(x) is the number of edges in H incident with x in colour {i, j}
LEMMA 3·1. Let i, j ∈ [k] with {i, j} ∈ T and x ∈ V(H). Then

(a) di(x) ≤
( |B(x)|

k1(i)

)k1(i) ( n − |B(x)|
k − k1(i) − 1

)k−k1(i)−1

(b) di(x) ≤
( |Ni(x)|

k − 1

)k−1

(c) di(x) ≤ d{i,j}(x) ·
(

n − d{i,j}(x)

k − 2

)k−2

.

Further, the number of copies of R in H containing vertices x, y ∈ V(H) such that x ∈ V(H)
plays the role of vertex i ∈ [k] in R is at most( |Ni(x)|

k − 2

)k−2

.

Proof. We start by proving the three upper bounds on di(x). To count the number of copies
of R in H where x plays the role of i, we will recursively partition Ni(x). First, we pick

https://doi.org/10.1017/S0305004125101692 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101692


Inducibility of rainbow graphs 15

k1(i) vertices from B(x) ∩ Ni(x) ⊂ V(H) to play the role of the vertices adjacent to i in R.
Notice that we may partition B(x) ∩ Ni(x) into k1(i) parts based on the colour of each vertex
to x as it uniquely determines its possible role in a copy of R. Set B1 := B(x) ∩ Ni(x). We
now recursively define Br for all r ∈ [ε(i)]. Let 2 ≤ r ≤ ε(i), let m := k1(i) + · · · + kr−1(i),
and suppose that we have chosen y1, y2, . . . , ym ∈ V(H) to play the roles of all vertices at
distance r − 1 or less from i in R, where y1, . . . , ykr−1(i) play the roles of vertices at distance
exactly r − 1 from i. Then

Br := Br(x, B1, B2, . . . , Br−1, y1, . . . , ykr−1(i))

= Ni(x) ∩ (B(y1) ∪ · · · ∪ B(ykr−1(i))
) \ (x ∪ B1 ∪ · · · ∪ Br−1) .

Here, Br is the set of vertices in H that can play the role of vertices at distance r from i in R,
given that we have already selected all vertices at distance at most r − 1 from i.

Note that by definition, Br ∩ B� = ∅ for all r, � ∈ [ε(i)] and
⋃

Br ⊆ Ni(x). For the
remainder of the proof, we write kr := kr(i) for all r ∈ [ε(i)] for convenience.

Each vertex v ∈ Br has an edge to at least one of y1, . . . , ykr−1 . The colour of this edge
uniquely determines the role that v may play in a copy of R, so this allows us to uniquely
partition Br into kr parts. We note that it may be the case that v cannot legally play any role,
but that only decreases the number of possible copies of R, so we may assume that this does
not occur. Let Pr := P(Br, kr) be the set of tuples �y ∈ Bkr

r with one vertex from each part of
Br, so

|Pr| ≤ p(|Br|, kr).

This gives

di(x) ≤
∑

�y1∈P1

· · ·
∑

�yε(i)−1∈Pε(i)−1

p(|Bε(i)|, kε(i))

≤
∑

�y1∈P1

· · ·
∑

�yε(i)−1∈Pε(i)−1

p

⎛
⎝|Ni(x)| −

ε(i)−1∑
r=1

|Br|, kε(i)

⎞
⎠ .

Using (2·3) from Section 2.1 we see that

∑
�yε(i)−1∈Pε(i)−1

p

⎛
⎝|Ni(x)| −

ε(i)−1∑
r=1

|Br|, kε(i)

⎞
⎠

≤ p
(|Bε(i)−1|, kε(i)−1

) · p

⎛
⎝|Ni(x)| −

ε(i)−1∑
r=1

|Br|, kε(i)

⎞
⎠

≤ p

⎛
⎝|Ni(x)| −

ε(i)−2∑
r=1

|Br|, kε(i)−1(i) + kε(i)

⎞
⎠ .
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Using
∑ε(i)

r=1 kr = k − 1, we obtain

di(x) ≤
∑

�y1∈P1

· · ·
∑

�yε(i)−2∈Pε(i)−2

p

⎛
⎝|Ni(x)| −

ε(i)−2∑
r=1

|Br|, kε(i)−1 + kε(i)

⎞
⎠

=
∑

�y1∈P1

· · ·
∑

�yε(i)−2∈Pε(i)−2

p

⎛
⎝|Ni(x)| −

ε(i)−2∑
r=1

|Br|, (k − 1) −
ε(i)−2∑

r=1

kr

⎞
⎠ .

Continuing this process, we obtain, for each 1 ≤ � ≤ ε(i) − 1,

di(x) ≤
∑

�y1∈P1

· · ·
∑

�y�∈P�

p

(
|Ni(x)| −

�∑
r=1

|Br|, (k − 1) −
�∑

r=1

kr

)
.

When � = 1 this becomes

di(x) ≤
∑

�y1∈P1

p (|Ni(x)| − |B1|, k − 1 − k1)

≤ p(|B1|, k1) · p (|Ni(x)| − |B1|, k − k1 − 1) . (3·1)

As |B(x)| ≥ |B1| and n − |B(x)| ≥ |Ni(x)| − |B1| for all i ∈ [k] by definition,

p(|B1|, k1) · p (|Ni(x)| − |B1|, k − k1 − 1) ≤
( |B(x)|

k1

)k1
(

n − |B(x)|
k − k1 − 1

)k−k1−1

,

so (a) holds. Alternatively, (2·3) also yields

p(|B(x)|, k1) · p (|Ni(x)| − |B(x)|, k − k1 − 1) ≤ p(|Ni(x)|, k − 1) ≤
( |Ni(x)|

k − 1

)k−1

,

so (b) holds.
For (c), let j ∈ [k] such that ij ∈ E. We bound di(x) as before, but we choose the vertex y

that plays role j separately. We see that

|P1| ≤ d{i,j}(x) · p(|B1| − d{i,j}(x), k1 − 1).

This combined with (3·1) and (2·3) gives

di(x) ≤
∑

�y1∈P1

p (|Ni(x)| − |B1|, k − k1 − 1)

≤ d{i,j}(x) · p(|B1| − d{i,j}(x), k1 − 1) · p (|Ni(x)| − |B1|, k − k1 − 1)

≤ d{i,j}(x) · p(n − d{i,j}(x), k − 2)

≤ d{i,j}(x) ·
(

n − d{i,j}(x)

k − 2

)k−2

.

It remains to prove the last sentence of the lemma. We proceed as before except that, for
� ∈ [ε(i)] such that y ∈ B�, we require that y is chosen. This means that instead of choosing
k�(i) vertices from B�, we only need to choose k�(i) − 1 vertices from B� as we have already
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chosen y. Following the same procedure as before, we see that

di(x) ≤
∑

�y1∈P1

· · ·
∑

�y�∈P�

p (|B�|, k� − 1) · p

(
|Ni(x)| −

�+1∑
r=1

|Br|, (k − 1) −
�+1∑
r=1

kr

)

≤
∑

�y1∈P1

· · ·
∑

�y�∈P�

p

(
|Ni(x)| −

�∑
r=1

|Br|, (k − 2) −
�∑

r=1

kr

)

...

≤
∑

�y1∈P1

p (|Ni(x)| − |B1|, k − 2 − k1)

≤ p(|B1|, k1) · p(|Ni(x)| − |B1|, k − 2 − k1)

≤ p(|Ni(x)|, k − 2)

≤
( |Ni(x)|

k − 2

)k−2

.

This completes the proof.

3·3. Minimum degree

As in Section 2.2, we wish to show that each vertex of H lies in approximately the average
number of copies of R.

LEMMA 3·2. d(x) ≥ ank−1/(k − 1)! for all x ∈ V(H).

This follows from an identical Zykov symmetrisation argument as used in the proof
of Lemma 2·2. Note that we have assumed the same inequalities for M as we did in
Section 2.1.

3·4. Maximum colour and non-edge degrees

The following two claims are used in the proof of Lemma 3·5 to bound the size of the
second largest neighborhood.

Let

α := maxx,i,j d{i,j}(x)

n

where the maximum is taken over all vertices x ∈ V(H) and all colours {i, j} ∈ T . We upper
bound this value.

CLAIM 3·3. α < η/4.

Proof. Let x achieve this maximum, so that d{i,j}(x) = αn for some {i, j} ∈ T . By Lemma
3·1(c) and α ≤ 1, we get

max{di(x), dj(x)} ≤ αn

(
(1 − α)n

k − 2

)k−2

≤ nk−1
(

1 − α

k − 2

)k−2

.

For any other vertex � �= i, j, we have |N�(x)| ≤ (1 − α)n, since � is adjacent to no edges
of colour {i, j} in R. Thus by Lemma 3·1(b), we get
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d�(x) ≤
( |N�(x)|

k − 1

)k−1

≤
(

(1 − α)n

k − 1

)k−1

≤ nk−1
(

1 − α

k − 2

)k−2

.

The last inequality comes as decreasing the denominator increases the fraction, and the base
is less than 1, so decreasing the exponent increases the result. Summing over all indices in
[k] and using Lemma 3·2, we get

1

kk−1 − 1
= a

(k − 1)! ≤ d(x)

nk−1
≤ k

(
1 − α

k − 2

)k−2

.

Rearranging yields

1

k
· (k − 2)k−2

kk−1 − 1
≤ (1 − α)k−2.

We see that

(k − 2)k−2

kk−1 − 1
≥ (k − 2)k−2

kk−1
= 1

k

(
1 − 2

k

)k−2

>
1

e2k
,

so

1

e2k2
< (1 − α)k−2 ≤ exp ( − (k − 2)α).

Assume for contradiction that α ≥ η/4 > C log k/(4(k − 1)). Then

1

e2k2
< k−C(1−1/(k−1))/4 < k−0.9C/4,

since k ≥ 11. For C > 10, this gives a contradiction for sufficiently large k.
Let

β := maxx d∅(x)

n
,

where the maximum is taken over all vertices x ∈ V(H) and d∅(x) is the number of edges in
H incident with x in colour ∅ (non-edges). Note that we may assume that R has at least one
non-edge, since otherwise the proof from Section 2 suffices. Thus we may also assume that
H has at least one non-edge, so β > 0. We upper bound β.

CLAIM 3·4. β < 1 − η/2.

Proof. Assume for contradiction that β ≥ 1 − η/2. Let x achieve this maximum so that
d∅(x) = βn. This implies that B(x) = (1 − β)n. For any i ∈ V(R), Lemma 3·1(a) gives

di(x) ≤
(

B(x)

k1(i)

)k1(i) ( n − B(x)

k − k1(i) − 1

)k−k1(i)−1

=
(

(1 − β)n

k1(i)

)k1(i) (
βn

k − k1(i) − 1

)k−k1(i)−1

= nk−1 1

k1(i)k1(i)
(1 − β)k1(i)βk−k1(i)−1

(
1

k − 1 − k1(i)

)k−1−k1(i)

.

For this section, we take the convention 00 = 1 to handle the case that k1(i) = k − 1.
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Let q = k1(i)/(k − 1) ∈ (0, 1]. Then

di(x) ≤
(

n

k − 1

)k−1 ( (1 − β)qβ1−q

qq(1 − q)1−q

)k−1

. (3·2)

We will first bound the term

(1 − β)qβ1−q

qq(1 − q)1−q
. (3·3)

Regarding (3·3) as a function of β, we see that the derivative

∂

∂β

(
(1 − β)qβ1−q

qq(1 − q)1−q

)
= (1 − β)q−1β−q

qq(1 − q)1−q
((1 − q) − β)

is negative for β > 1 − q since the fraction is nonnegative. Recall that k1(i) = degR (i) ≥
η(k − 1) by assumption, so q > η. We have also assumed for contradiction that β ≥ 1 −
η/2 > 1 − η > 1 − q. Thus decreasing β to 1 − η/2 will only increase (3·3), i.e.

(1 − β)qβ1−q

qq(1 − q)1−q
≤ (η/2)q(1 − η/2)1−q

qq(1 − q)1−q
. (3·4)

We now have a function purely of q. Taking the derivative, we get

∂

∂q

(
(η/2)q(1 − η/2)1−q

qq(1 − q)1−q

)
= 1

2
(1 − q)q−1q−q(2 − η)1−qηq log

(
η(1 − q)

q(2 − η)

)
,

where all terms are positive except the logarithm, which is negative for q > η/2. Thus (3·4)
is decreasing with q for q > η/2, so we may take the further upper bound

(1 − β)qβ1−q

qq(1 − q)1−q
≤ (η/2)η(1 − η/2)1−η

ηη(1 − η)1−η
= 2−η

(
1 + η

2(1 − η)

)1−η

,

where 2−η
(

1 + η
2(1−η)

)1−η ≤ exp ( − (log 2 − 1/2)η).

We now have an appropriate upper bound. Substituting into (3·2) and recalling that
η > C log k/k, we see that

di(x) ≤
(

n

k − 1

)k−1

exp ( − (log 2 − 1/2)(k − 1)η) <

(
n

k − 1

)k−1

k−C(log 2−1/2).

Using Lemma 3·2, we get

1

kk−1 − 1
= a

(k − 1)! ≤ d(x)

nk−1
≤ k

(
1

k − 1

)k−1

k−C(log 2−1/2).

Rearranging terms and using the standard inequality (2·7) yields

1

ek
≤ k−C(log 2−1/2).

For C > 1/(log 2 − 1/2) ≈ 5.18, this yields a contradiction for sufficiently large k.
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3·5. The second largest neighborhood

For a vertex x ∈ V(H), let Z(x) be the second largest set in {N1(x), . . . , Nk(x)} and define

z := zk,n = max
x∈V(H)

|Z(x)|
n

.

LEMMA 3·5. z < 1 − η/8.

Proof. Let x ∈ V(H) such that z = |Z(x)|/n. Suppose x ∈ Vi and Z(x) = Nj(x) for distinct
i, j ∈ [k]. Then we want to bound |Ni(x) ∩ Z(x)|. Suppose y ∈ Ni(x) ∩ Z(x). If xy ∈ E, then i ∈
χH(xy) and j ∈ χH(xy), so χH(xy) = {i, j}. Thus |N1(x) ∩ Z(x)| ≤ d{i,j}(x) + d∅(x). It follows
that

|Ni(x)| + |Z(x)| = |Ni(x) ∪ Z(x)| + |Ni(x) ∩ Z(x)| ≤ n + d{i,j}(x) + d∅(x),

where d{i,j}(x) ≤ αn and d∅(x) ≤ βn. Thus, |Ni(x)| + |Z(x)| < (2 − η/4)n by Claims 3·3 and
3·4 Since |Z(x)| ≤ |Ni(x)|, this gives z < 1 − η/8.

3·6. One large part

We now take care of the situation when one of the Vi’s is very large.

LEMMA 3·6. |Vi| ≤ (1 − 1/3k)n for all i ∈ [k].

Proof. By contradiction, w.l.o.g. suppose that |V1| > (1 − 1/3k)n. If x ∈ V1, then |N1(x)| ≥
|Ni(x)| for all i > 1 so |N2(x)| ≤ |Z(x)| ≤ zn. Applying Lemma 3·1(b) to d2(x) gives

a

(
n

k

)
≤ I(R, H) =

∑
x∈V(H)

d2(x) ≤ |V1|
(

zn

k − 1

)k−1

+ n

3k

(
n

k − 1

)k−1

and we further see that

|V1|
(

zn

k − 1

)k−1

+ n

3k

(
n

k − 1

)k−1

≤
(

zk−1 + 1

3k

)
nk

(k − 1)k−1
.

Rearranging and using Mk/(M)k < 1.01 as assumed in (2·1), we get

(k − 1)k−1

kk − k
≤ 1.01

(
zk−1 + 1

3k

)
.

Using the standard inequality (2·7) and then Lemma 3·5 gives(
1

1.01e
− 1

3

)
1

k
< zk−1 <

(
1 − η

8

)k−1 ≤ exp (− C log k/8) = k−C/8.

For any C > 8 this fails to hold for sufficiently large k.

3·7. Counting the copies of R in H

The way we count copies of R in H is very similar to the previous section and to [12].
While we do not have as much information in this case, without a focus on optimising for
small k, we allow ourselves to be less strict with the counting arguments.
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Call a copy f of R in H transversal if it includes exactly one vertex in Vi for all i ∈ [k].
We partition the copies of R in H as Hm ∪ Hg ∪ Hb where Hm comprises those copies that
lie entirely inside some Vi, Hg comprises those copies that intersect every Vi whose edge
colouring coincides with the natural one given by the vertex partition (meaning the map from
R to H takes vertex i to a vertex in Vi), and Hb comprises all other copies of R (including
those transversal copies where some vertex is in an inappropriate Vi). Thus a transversal
copy f is in Hb if and only if the unique map φ : [k] → f with φ(i) ∈ Vi for all i is not a graph
isomorphism from R → H[f ]. Let hm = |Hm|, hg = |Hg| and hb = |Hb| so that

I(R, H) = hm + hg + hb.

We will bound each of these three terms separately. As in Section 2.6, let D be the set of
all pairs {v, w} such that v ∈ Vi, w ∈ Vj, and χH(vw) �= χR(ij) where i �= j. Let δ := |D|/(n2).
The identical reasoning as in Section 2.6 gives the first two bounds

hm =
k∑

j=1

I(R, H[Vj]) ≤
k∑

j=1

I(R, nj) (3·5)

and

hg ≤
k∏

�=1

n�

(
1 − δ

(n
2

)
∑

1≤i < j≤k ninj

)
=

k∏
�=1

n�

(
1 − δ

(n
2

)
(n

2

)−∑
i

(ni
2

)
)

. (3·6)

Our next task is to upper bound hb. This argument must be carried out differently. For
a vertex x ∈ V(H) and j ∈ [k], recall that Nj(x) ⊂ V(H) is the set of y such that x, y lie in a
copy of R with x playing the role of vertex j in R. Let us enumerate the set J of ordered pairs
(e, f ) where e ∈ D, f ∈ Hb, and e ⊂ f . To simplify the argument and notation, we count pairs
instead of triples as in Section 2.

We must show that each f ∈ Hb contains an edge in D. If f is transversal, then as we have
noted, the natural map is not a graph isomorphism. Thus there is some incorrectly coloured
edge which is in D. If f is not transversal, there is some i ∈ [k] such that |f ∩ Vi| ≥ 2. Note
that f /∈ Hm, so |f ∩ Vi| < k. As R is connected, there exist v ∈ Vi, u ∈ Vj for some j �= i such
that vu is an edge in f . Since |f ∩ Vi| ≥ 2, choose also w ∈ f ∩ Vi with w �= v. If χR(ij) = ∅
then vu ∈ D. If χR(ij) = {i, j}, then as χH(vu) = χH(wu) = {i, j} would contradict that f is a
copy of R in H, we must have that uv or uw in D. This gives us that

hb ≤ |J|.

To bound |J| from above, we start by choosing some bad edge vw ∈ D. Let f ⊂ V(H) such
that (vw, f ) ∈ J. Either v ∈ Vi does not play the role of i or w ∈ Vj does not play the role
of j in f . Then f ⊂ N�(v) ∪ {v} for some � �= i or f ⊂ N�(w) ∪ {w} for some � �= j. We have
|N�(v)|, |N�(w)| ≤ zn by the definition of z and the partition V1 ∪ · · · ∪ Vk = V(H). By the
final statement of Lemma 3·1,

|J| ≤
∑

vw∈D

⎛
⎝∑

��=i

( |N�(v)|
k − 2

)k−2

+
∑
��=j

( |N�(w)|
k − 2

)k−2
⎞
⎠≤ 2|D|(k − 1)

(
zn

k − 2

)k−2

.
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Thus, recalling that δ := |D|/(n2), we obtain

hb ≤ 2δ(k − 1)

(
n

2

)(
zn

k − 2

)k−2

. (3·7)

Using (3·5), (3·6), and (3·7) we obtain

I(R, n) ≤
∑

i

I(R, ni) +
∏
�

n�

(
1 − δ

(n
2

)
(n

2

)−∑
i

(ni
2

)
)

+ 2δ(k − 1)

(
n

2

)(
zn

k − 2

)k−2

. (3·8)

Our final task is to upper bound the RHS.

As in Section 3.7, we see that δ ∈ I
def= [

0, 1 −∑
i

(ni
2

)
/
(n

2

)]
. Viewing (3·8) as a linear

function of δ, it again suffices to check the endpoints of I.

3·8. The extremal case

CLAIM 3·7. If δ = 0, then ind (R) ≤ a.

Proof. If δ = 0, then (3·8) implies that

I(R, n) ≤
k∑

i=1

I(R, ni) +
k∏

i=1

ni.

This is the same equation as (2·17), and we have all the same assumptions. The same
argument as in Section 2.7 derives a contradiction.

3·9. The absurd case

Now, we consider the other endpoint of I.

CLAIM 3·8. If δ = 1 −∑
i

(ni
2

)
/
(n

2

)
, then ind (R) ≤ a.

Proof. If δ = 1 −∑
i

(ni
2

)
/
(n

2

)
, then (3·8) implies that

I(R, n) ≤
k∑

i=1

I(R, ni) + 2(k − 1)
∑
i �=j

ninj

(
z

k − 2

)k−2

nk−2. (3·9)

This is similar to (2·23) with an extra factor of approximately k2 in the second term. We can
bound the first sum using the same techniques as in Section 2.7, giving (2·23):

1(n
k

) k∑
i=1

I(R, ni) ≤ �

(c0
k

)
(n

k

) + (ind (R) + ε)
k∑

i=�+1

pk
i < 0.74 ind (R). (3·10)

We now bound the second term. Dividing by
(n

k

)
, we reorganize

2(n
k

) (k − 1)

⎛
⎝∑

i �=j

ninj

⎞
⎠( z

k − 2

)k−2

nk−2 = 2(k − 1)(kk − k)nk

(k − 2)k−2(n)k

⎛
⎝∑

i �=j

pipj

⎞
⎠ zk−2a.
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We first relax (k − 1)(kk − k) < kk+1. Observe that kk−2/(k − 2)k−2 ≤ e2. Thus this first
quotient is at most e2k3. For n > M, we have nk/(n)k < 1 + ε ≤ 1.01. Finally,

∑
i �=j pipj =

(1 −∑
p2

i )/2 ≤ (1 − 1/k)/2 ≤ 1/2 as
∑

p2
i is minimised when pi = 1/k for all i. Thus

2(n
k

) (k − 1)

⎛
⎝∑

i �=j

ninj

⎞
⎠( z

k − 2

)k−2

nk−2 ≤ 2e2k3 · 1.01 · 1

2
· zk−2a = 1.01e2k3zk−2a.

By Lemma 3·5, we know that zk−2 ≤ (1 − η/8)k−2, and we further see that

(
1 − η

8

)k−2 ≤ exp

(
− (k − 2)η

8

)
≤ exp

(
−C

8

(
1 − 1

k − 1

)
log k

)
< k−0.9C/8.

We again used k ≥ 11 here. Thus for C > 24/0.9 ≈ 26.67 and k ≥ 11, we have
1.01e2k3zk−2a < 0.25a. Recalling that a < ind (R), plugging this and (3·10) into (3·9) gives

ind (R, n) ≤ 0.74 ind (R) + 0.25 a < 0.99 ind (R).

This contradiction completes the proof of the claim and the theorem.

4. Disconnected rainbow graphs

In this section, we show that rainbow graphs with multiple connected components are not
fractalisers.

Let R = (V , E) be a rainbow graph with k vertices and � > 1 connected components. Let
R = R1 ∪ · · · ∪ R� be the connected components of size c1, . . . , c� respectively. Assume also
ci ≥ 2 for all i (no isolated vertices). We will show that R is not a fractaliser.

We begin by upper bounding the number of copies I(R, Gn) for Gn ∈ GR(n) an iterated bal-
anced blow-up. Then for any i ∈ [�], by the same argument as for computing the inducibility
of the iterated balanced blow-up (see e.g. [14]),

I(Ri, Gn) =
(n

k

)ci + k
( n

k2

)ci + k2
( n

k3

)ci + · · · = (1 + o(1))
nci

kci − k
.

Any S ⊂ V(Gn) with Gn[S] ∼= R has a unique partition S = S1 ∪ · · · ∪ S� where Gn[Si] ∼=
Ri. Thus we can upper bound

I(R, Gn) ≤
�∏

i=1

I(Ri, Gn) = (1 + o(1))nk
�∏

i=1

1

kci − k
. (4·1)

However, consider instead the family of graphs H(n) consisting of separate iterated bal-
anced blow-ups of each part. Formally, H ∈H(n) if |V(H)| = n and we have a partition
V(H) = V1 ∪ · · · ∪ V� with the following properties:

(1) for all i ∈ [�],
∣∣|Vi| − ci

k n
∣∣≤ 1;

(2) for all i ∈ [�], the induced subgraph G[Vi] ∈ GRi(|Vi|);
(3) for all v ∈ Vi, w ∈ Vj with i �= j, we have vw /∈ E(H).

In H(n), there are no edges between any copy of Ri and any copy of Rj for distinct i, j.
Since R is rainbow, copies of each component Ri exist only in Vi. Then for Hn ∈H(n), we

https://doi.org/10.1017/S0305004125101692 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101692


24 EMILY CAIRNCROSS, CLAYTON MIZGERD AND DHRUV MUBAYI

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

16

Fig. 1. A 15-edge-colouring of K16.

have that I(R, Hn) =∏
i I(Ri, Hn[Vi]), so

I(R, Hn) =
�∏

i=1

(1 + o(1))
ci!

cci
i − ci

( ci
k n

ci

)
= (1 + o(1))nk

�∏
i=1

1

kci − k( k
ci

)ci−1
. (4·2)

Comparing (4·1) with (4·2), we subtract larger numbers in the denominator of (4·2), so
the family of graphs H(n) induces asymptotically more copies than the family GR(n). Thus
R is not a fractaliser. Since R was generic, disconnected rainbow graphs without isolated
vertices are not fractalisers.

5. Concluding remark

We now address the problem of maximising the number of rainbow cliques on k vertices
(without fixing a specific rainbow colouring). In other words, for Gn the set of

(k
2

)
-edge-

coloured Kn, let

γk := lim
n→∞

maxG∈Gn |{S ⊂ V(G) : |S| = k and G[S] is rainbow}|(n
k

) . (5·1)

We note that γk ≥ k!/(kk − k).
The result of [2] shows that γ3 > 3!/(33 − 3) = 1/4. We show that γ6 > 6!/(66 − 6).

Notice that a rainbow K6 has
(6

2

)= 15 colours. Consider the 15-edge-colouring of K16 dis-
played in Figure 1 and note that each colour class is a perfect matching. Letting the set of
colours be {1, 2, . . . , 15}, the adjacency matrix for this graph is shown below, where the i,
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jth entry is the colour assigned to the edge ij.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Of the 8008 subgraphs on 6 vertices, 448 of them are rainbow. Thus, the density of a
rainbow K6 in this graph is 448/8008 = 8/143 ≈ 0.056. Considering the iterated balanced
blow-up of this construction, we see that

γ6 ≥ lim
n→∞

448
( n

16

)6 + 16

(
448

(
n

162

)6 + 16

(
448

(
n

163

)6 + 16 (· · · )
))

(n
6

)
= 448 · 720 ·

(
1

166
+ 1

1611
+ 1

1616
+ · · ·

)

= 322560 · 1

166
·

∞∑
i=0

(
1

165

)i

= 1344

69905
≈ 0.0192.

This is larger than 6!/(66 − 6) ≈ 0.0154. It remains open to determine whether
γk = k!/(kk − k) for k = 4, 5 and k > 6.

A. Appendix

Proof of (2·3). Let q, q′ ≥ 0 and t, t′ > 0. Recall that p(q, t) is the maximum of
∏

i qi where
q1 + · · · + qt = q and each qi ≥ 0 is an integer. Let q1, . . . , qt integers such that p(q, t) =∏t

i=1 qi and q′
1, . . . , q′

t′ integers such that p(q′, t′) =∏t′
i=1 q′

i. Then,

q1 + · · · + qt + q′
1 + · · · + q′

t′ = q + q′.
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Thus, the fact that p(q + q′, t + t′) is a maximum gives that

p(q + q′, t + t′) ≥
t∏

i=1

qi

t′∏
i=1

q′
i = p(q, t)p(q′, t′)

as desired.

Proof of (2·6). We will show that

1

kk−1 − 1
> 1.4

(
0.6

k − 2

)k−2

for all k ≥ 11. This is true for k = 11. By (2·7) and the fact that k ≥ 11,

1

kk−1 − 1
≥ 1

e(k − 1)k−1
.

We will prove that

1

e(k − 1)k−1
> 1.4

(
0.6

k − 2

)k−2

for k ≥ 12 by induction on k. For k = 12, plugging in certifies that this is true. By the
inductive hypothesis, assume that

1

e(k − 2)k−2
> 1.4

(
0.6

k − 3

)k−3

. (A·1)

We see that

(k − 2)k−2

(k − 1)k−1
>

0.6(k − 3)k−3

(k − 2)k−2
, or equivalently f (k) := (k − 2)2k−4

(k − 1)k−1(k − 3)k−3
> 0.6 (A·2)

since

f (11) ≈ 0.89 > 0.6

and

d

dk
f (k) = − (k − 2)2k−4

(k − 1)k−1(k − 3)k−3
· ln

(
(k − 1)(k − 3)

(k − 2)2

)
≥ 0

since (k − 2)2 > (k − 1)(k − 3). Then, by (A·1) and (A·2), we see that

1

e(k − 1)k−1
= 1

e(k − 2)k−2
· (k − 2)k−2

(k − 1)k−1

> 1.4

(
0.6

k − 3

)k−3

· 0.6(k − 3)k−3

(k − 2)k−2
= 1.4

(
0.6

k − 2

)k−2

.

Proof of (2·8). We will show that

1

1 + ε
· (k − 1)k−1

kk − k
− 1

3k
≥ zk−1
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for all k ≥ 11. Recalling that ε < γ/100 and γ ≤ 1, we obtain

1

1 + ε
· (k − 1)k−1

kk − k
≥ 100

101
· (k − 1)k−1

kk − k
.

Plugging in k = 11, we see that

100

101
· (k − 1)k−1

kk − k
− 1

3k
≥ zk−1.

By (2·7) and the fact that k ≥ 11,

100

101
· (k − 1)k−1

kk − k
≥ 100

101
· 1

ek
.

So, it suffices to show that

100

101
· 1

ek
− 1

3k
≥ zk−1

for all k ≥ 12. We do so by induction on k. For k = 12, it can be verified directly. For the
induction step, assume that k ≥ 13 and

100

101
· 1

e(k − 1)
− 1

3(k − 1)
≥ zk−2.

Using Lemma 2·4, we have (k − 1)/k ≥ 12/13 > 0.5 > z and this yields

100

101
· 1

ek
− 1

3k
=
(

100

101
· 1

e(k − 1)
− 1

3(k − 1)

)
k − 1

k
≥ zk−2 · z = zk−1,

completing the proof.
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