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THE PERIMETER OF OPTIMAL CONVEX LATTICE POLYGONS
IN THE SENSE OF DIFFERENT METRICS

MILOS STOJAKOVIC

Classes of convex lattice polygons which have minimal Zp-perimeter with respect to
the number of their vertices are said to be optimal in the sense of the /p-metric.

It is proved that if p and q are arbitrary integers or oo, the asymptotic expression
for the /,,-perimeter of these optimal convex lattice polygons Qv{n) as a function of
the number of their vertices n is

per,(<2p(n)) = - ^ L n 3 / 2 + o(n1 + £) for arbitrary e > 0,

where
C?

JJ\x\p

and Ap is equal to the area of the planar shape \x\p + \y\p $J 1.

1. INTRODUCTION

This paper deals with some extremal problems on the integer grid. Precisely, we
shall consider some classes of optimal convex lattice polygons.

A convex lattice polygon is a polygon whose vertices are points on the integer lattice
and whose interior angles are strictly less then n radians (no three vertices are collinear).
A convex lattice polygon with n vertices is called an n-gon.

A convex lattice n-gon is said to be optimal in the sense of the lp metric if it has
minimal /p-perimeter with respect to the number of its vertices. Therefore, if a convex
lattice n-gon has this property, its /p-perimeter is equal to the minimum over all convex
lattice n-gons Q of the sum of the /p-lengths of the edges of Q, and we denote it by
Qp{n). The optimal polygon Qp{n) is not necessarily unique for every given integer n.
Moreover, the explicit construction of a polygon Qp(2k + 1), where p > 1 and 2k + 1 is
an arbitrary odd integer, is an open problem.

A classical paper of Jarnik [5] deals with Q2{n) polygons. He constructed a sequence
of such polygons in order to solve the following problem: What is the maximal number
of points from Z2 which lie on a continuous strictly convex curve 7 of length s, when
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s tends to infinity? It turned out that this number is Uj (ffin^s2!3 + 0{sx'3). The
exponent and constant in the leading term are the best possible. In [8] it is shown that

the exponent 2/3 can be decreased by imposing suitable smoothness condition on 7.

In particular, if 7 has a continuous third derivative with a sensible bound, the best

possible value of the exponent lies between 3/5 and 1/2.

Since the function f(x) = yfx defined on [0,n] is in C°°([0,n]) and the number of

integral points on the curve y = f{x) is L"^2J, obviously 1/2 is the lower bound for the

above-mentioned exponent.

In [7] it was proved that if / e C3([0,n]), | / | ^ n and /" ' / O o n [0,n], then the

number of integral points on the curve y = f(x) does not exceed c(e) • n3 / 5 + £ for every

e > 0, which gives the upper bound for the exponent.

Another class of optimal polygons is considered in [1]. The motivation for that

research comes from digital geometry. The maximal number of vertices of a convex

lattice polygon which can be inscribed into an m x m integer grid was considered. It was

shown that this number is

(47r2)2)V3 +O(m>lz- logm).

Since the number of vertices of the convex hull of the set of points is a parameter used
for estimation of the time complexity in numerous algorithms, the previous result usually
characterise the "worst case" situation on the squared integer grid of a given size.

The initial purpose of the research presented in this paper was to describe the asymp-
totic behaviour of the perimeter in the sense of the Euclidean metric, as well as the l\ and
Zoo metrics, of classes of optimal convex lattice polygons Qp(n) (where n is an arbitrary
integer). But since the theorems and the course of the proof in these cases can be gen-
eralised to an arbitrary /, metric (where q is an integer, or 00), all theorems are given in
the general case. So it will be shown that the asymptotic expression for the /,-perimeter
of /p-optimal polygons Qv{n) as a function of the number of its vertices, is

-5Ln 3 / 2 + O(nl+e) for arbitrary e > 0,
p. A3 V /

V P

where

C\= ff
and Ap is equal to the area of the planar shape \x\p + \y\p ^ 1.

This result is derived for complete classes of optimal polygons even though their
construction still remains unknown (including "Jarnik's polygons")—except in the case
where p = 1. (An exact construction of optimal Qi(n) polygons for arbitrary n is given
in [6].)
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[3] Optimal convex lattice polygons 231

The case where p = q = 2 is related to Jarnik's problem, while the case where

p = q = 1 is studied in [1].

The choice of two different metrics for polygon optimality (Zp) and measuring perime-

ter (/,) also gives some interesting results if p / q (and especially if p, q S {l ,2,oo}).

For example, if p = 1 and q = 2, we have the asymptotic expression for the Euclidean
perimeter of convex lattice n-gons which have the minimal circumscribed square. This
problem was studied in [10].

If p = 2 and q = 1 is taken, we get the solution to the problem equivalent to finding
the asymptotic expression for the size of the circumscribed square of convex lattice n-gons
with minimal Euclidian perimeter.

Other problems about convex lattice polygons were studied recently. In [4], the
minimal area of convex lattice n-gons was considered. The explicit construction of convex
lattice polygons (with n vertices) whose area is (15/784)n3+ o(n3) ((15/784) « 0.019133)
was given.

As an application of the main result of this paper (an asymptotic expression for
the Euclidean perimeter of Qp(n)), an upper bound for the area of Qp(n) is derived. If
p = 2, that upper bound is ( l /54)n 3 + O(n 5 / 2 + £ ) ((1/54) « 0.018518), which improves
the result from [4].

Some problems considering convex polygons determined by lattice points on strictly
convex curves containing the maximal number of lattice points, with respect to the length
of the curve were studied in [3].

2. PRELIMINARIES

If o and b are integers, a ± b means that the greatest, common divisor for a and b is

1. Also, we shall say that 1 ± 0.

By n(n) we shall denote the Mo'bius function, defined by

if n > 1 and n = p°* • • • p£* is the prime decomposition of n, then

/ (-1)*, i fo , = . . . = ofc = l
I 0, otherwise .

Let e = uzi ,2/ i ) , (x2i 2/2)) be an edge of a convex lattice polygon. The /p-distance
length of e is defined as

We shall denote the differences |x2 - x\\ and \y2 -y\\ by i (e) and y(e), respectively.
The slope of e is defined to be quotient of these differences y(e)/x(e).
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The perimeter in sense of the lp metric of a convex lattice polygon Q is denned by

perp(Q) = £ lp(e).
e is edge of Q

The /,-perimeter of the convex lattice polygon Qp{n) will be denoted by per?(n).

For n > 1, Uv(n) represents the partition function which counts the number of

positive solutions of the equation n = xp + yp, where x and y are relatively prime integers.

If n = 1, we define Up(l) — 1 for p = 1,2,..., oo (we take x — 1, y = 0 as a solution).

In [9], the following sequence of integers was introduced:

First, we shall consider optimal lattice polygons with np(t) (t = 1,2,...) vertices.
It was shown in [9] by explicit construction that the optimal convex lattice polygon
Qp(np(t}\ is determined uniquely. For each integer t, Qp(np(t)) is constructed as follows,
using a "greedy algorithm".

The polygon consists of four isometric arcs, whose edge slopes coincide with the set

S,(t) = f 7JpV-J ~ \ T k>

We shall denote the vertices of QP(nP{t)) in counterclockwise order by

Let e\, e2, • • • enp(t) be the edges determined by consecutive points from the previous
sequence, that is,

6l = AQAI, &2 ~ A\Ai, . • • , Crip(i) ^ "npttj-l^n,!!)'

Then, the edges ei, e2, . . . , enp(t) can be arranged into four arcs. If the angle between

the positively oriented x-axis and the edge Ai-iA{ is observed, then the south-east arc

contains only the edges whose angles belong to JO, (7r/2)J , the north-east arc contains

only the edges whose angles belong to [(7r/2),7r) , the north-west arc contains only the

edges whose angles belong to In, (3TT/2)J, and the south-west arc contains only the edges

whose angles belong to [(37r/2), 2TT).

The vertex Ao is chosen to be one of the vertices, having the minimal y-coordinate,
which has the minimal x-coordinate (the "lowest left" point), and then the vertex Anp(t)/4

will be the one of the vertices having the maximal x-coordinate, which has the minimal
y-coordinate (the "lowest outermost right" point). For convenience and without loss of
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[5] Optimal convex lattice polygons 233

generality, let us assume AQ — (0,0). Since the slope of the edge e* is equal to y(ei)/z(e,)
it follows that the vertices of the south-east arc of the polygon Qp(np(t)j are:

A, = ( z ( e i ) , y(ei)) ,

A2 = ( x ( d ) + x(e2),

y{e2) + ... +y(en

The slopes belonging to the south-east arc have to be arranged in increasing order

and

The remaining three arcs are obtained by the rotations by (7r/2),7r and (3TT/2) ra-

dians around the point (0,y(ei) + y(e2) + ... + y(eTlp(t)/4)V

It was proved in [9] that polygon constructed in this way is the unique convex lattice
polygon with np(t) vertices whose Zp-perimeter is minimal.

Thus, we have a sequence of integers representing the numbers of vertices of optimal
convex lattice polygons (in sense of the lp metric) that can be explicitly constructed.

The following theorem gives the asymptotic expression for np(i).

THEOREM 1 . [9] The function np(t) can be estimated by

where Ap equals the area of the planar shape \x\p + \y\p ^ 1.

A similar method is used to construct Qp(2k), where 2k is an even integer.

For every even integer 2k, there exists an integer t such that n(t - 1) ^ 2k < n(t).

The polygon Qp(2k) is constructed by adding edges to Qp(n(t — 1)J. More precisely,

(2k - n(t - l ) ) /2 edges of length f/t are added to the south-east arc of Qp(n(t - 1)V

and (2k - n(t - l ) ) /2 edges with the same slopes are added to the north-west arc of

Qp(n(t - 1)V that is, for each edge e added to the south-east arc, there is an edge e' added

to the north-west arc such that y(e')/x(e')—y(e)/x(e) {x(e) L y{e) and x(e') J. y(e') are

satisfied). Now it is easy to check that the 2/c-gon obtained by this construction is optimal

in sense of the lp metric.
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The explicit construction of Qp(2k + 1), where 2k + 1 is an arbitrary odd integer, is

an open problem for all p > 1.

Each polygon Qp(n) has no more than 4 edges with the same slope, and this gives

the following lower bound for the /p-perimeter of Qp(n). If np(t - 1) ^ n < np(t), then

(n - np(t - 1)) ̂  + 4 £ ^ Up(i) < perp(n)

Since this lower bound is established in a "greedy" manner, it will be called the
greedy lower bound, and denoted by glbp(n).

3. THE /,-PERIMETER OF Qp{n)

Let P{v) be the number of lattice points (a, 6, c) different from the origin satisfying
o l i , which belong to the 3-dimensional body

D(v) = | ( i , y , z) \y\i • ^) ̂  J,
and let T(v) be the number of lattice points (a,b,c) different from the origin, which
belong to D(v) (a _L b not required), where v is any positive number.

Now we consider the case v — t. The condition \x\p + \y\p ^ t implies that |x| ^ tI/p

and \y\ ^ tl/p. That means that the area of D(t) is O(t2/p). Therefore, we have that the
/,-perimeter of the optimal convex lattice polygon QP[nv{t)) is equal to P(t) within an

error, that is,

(1) per,(np(t))=P(t) +

The following lemma gives an asymptotic expression for T(v), for arbitrary integers

P. <7-

LEMMA 1. The following asymptotic equality holds: .

T{v)=C;tllpv2lp + O({vt)xlp),

where
tf\x\* + \y\idxdy.

PROOF: From the definition of T(v), we have

T(v) = volume (-D(u)) + C
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[7] Optimal convex lattice polygons 235

Thus,

T(v)= (

Uvt)1

f/\x\'+ \y\« dxdy + OUvt)1/p)
V V '

Now we can derive an asymptotic expression for the Z,-perimeter of the optimal
lattice polygons QP\nP(t)J, for arbitrary choice of p and q.

THEOREM 2 . The lq-perimeter of the optimal convex lattice polygons Qp(np(t))
can be expressed as

PROOF: Obviously, the following equalities hold:

In the proof we shall use Lemma 1, as well as the two following well-known equalities
(see [2]):

^ , , / 1, 1 = 1

C(2) ^

(where C denotes the Riemann zeta function).
Also, we shall use the inequality

We have

1=1

2^ MWI Z^ J

n=l \m=l
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VP

n

On the other hand, from (1) we have that the /,-perimeter of the optimal convex
lattice polygon Qp(np(t)) is equal to P(t) + O\t2lp\ and the theorem is proved. D

In order to derive the asymptotic expression for the Z,-perimeter of Qv{n) for an
arbitrary integer n, we need the following lemma.

LEMMA 2 . If t is an integer such that

n(t- 1) < 2Jfc + l <n{t),

then the number of the edges of the polygon Qv{2k + 1) longer then tfi is bounded above
by O(i1/p+£), for arbitrary e > 0.

PROOF: Let 7 be the number of edges of Qp(2k + 1) longer then {/I. We shall prove
that the assumption 7 S> t1/p+€ leads to a contradiction.

So, assume that 7 » tl/p+e, for some e > 0. Since 2k + 1 - np(t - 1) < np(t) -
np(t — 1) and np(t) — np(t — 1) = O[t}lp\ we can determine the integer (3 such that

t-i t-i

(2* + 1 - n(i - 1)) + 4 Y. uvis) < 7 < (2* + 1 - n(t - 1)) + 4 £ t/p(s).
s=t-/3 s=l-/3-l

Using the last inequality and Theorem 1 we derive the asymptotic expression for 7.

Therefore, since 7 » t1 / p + £ , we have that /? » f

A lower bound for the /p-perimeter of the convex lattice polygon Qp(2k + 1) can be

derived if the following substitutions are made in glbp(2A; + 1):
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[9] Optimal convex lattice polygons 237

- 4 • U(t - 1) summands equal to y/t—\ are replaced by \/i\
- 4 • U(t - 2) summands equal to \/t - 2 are replaced by \/i;

- 4 • U(t - p) summands equal to \/t - P are replaced by \/i.

We have
t

perJ2k + 1) ^ glb_(2/c + 1) + 4 V

First, we shall prove the following asymptotic equation.

(2) 4 t (* " «)tfp« = ^ Z 3 ^ +

In the proof, Stieltjes integration is used.

4 £ (t-s)Up(s)= f (t-s)d(np(s))
s=t-0 Ji~&

t ft
= (i - s)rip(s) - / np(s) ds

t-^ Jt-0

= 6-^P(t- P)2/p {t1+2/p - (t - P)l+2/p)

Now, using (2) we have

=4
t - s

dsDEMO
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_ \2AP

Since 0 2> tl 1 /p+E, we can finally obtain the asymptotic lower bound for the lp-
perimeter of the convex lattice polygon Qp(2k + 1),

19 A
perp(2k + 1) » glbp(2A; + 1) + t±^.t

2/j>+e.

But on the other hand, the way of constructing the polygon Qp(2k + 2) implies that

perp(2fc + 1) < glbp(2fc + 1) + t1" = glbp(2A; + 2) = perp(2^ + 2).

The last two inequalities give a contradiction.

Therefore, we have that 7 = C>(i1/p+£). D

THEOREM 3 . If t is an integer such that np(t - 1) ^ n < np(t), then the asymp-
totic expression for the lq-perimeter of the optimal convex lattice polygon Qp(n) as a
function oft, is

PROOF: First, assume that n is an even integer (n = 2k).

From the construction of Qp{2k) it follows that

perq(np{t - 1)) ^ pe

From Theorem 2 we have that

The error estimate OU2lp+€\ in the last equation is obviously not the best possible in
this case (that n is an even integer), but it is satisfactory since it equals the best possible
error in the next case.

Now, assume that n is an odd integer (n— 2k + 1).

First we shall prove that the lengths of the edges of the polygon Qp(2k + 1) are
bounded above. If we assume that there is an edge of Qp(2k + 1) longer (in the sense of
the /p metric) than 2f/i, then we have

perp(2A: + 1) > glbp(2A; + 1) + <ft = g\bp(2k + 2) = perp(2fc + 2),

which is a contradiction.

Thus, there is no edge of Qp(2k + 1) longer then 2-tft. We can derive an upper
bound for the length of an edge of Qp(2k +1) in the sense of the lq metric: lp(e) =

sl\z(e)\P + \y(e)\" ^ 2<ft so |z|p ^ 2H, and \y\* ^ 2H and hence

\-<Tt.
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[11] Optimal convex lattice polygons 239

Finally, we have

per,(Qp(n(t))) - per,(<2p(2fc + 1))| < max ^2^2 • Vt • y, </2 • <ft • (n(t) - (2k + 1)))

and
per,(2fc + 1) = per,(n(«)) + O(t2'^) = ^ ^ " + O ( i 2 ^ ) . Q

Now we can give the asymptotic expression for the ^-perimeter of all the optimal
n-gons as a function of n.

THEOREM 4 . The lq-perimeter of the optimal convex lattice polygon Qp(n) ex-
pressed as a function of the number of its vertices n, is

) 3 +
V P

for arbitrary e > 0, and p,q € {1,2,..., oo}.

PROOF: For every integer n, there is an integer t such that

From the last inequality and Theorem 1 we have that the asymptotic expression for n is

n = ^

Since t — O(np^, we obtain the asymptotic expression for t as a function of n:

From Theorem 3 we have that

Thus, by eliminating the variable t in the expression representing per^n) we have
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where i — ep/2. D

The next corollary is an application of the result presented in Theorem 4 giving the

asymptotic upper bound for the area of the optimal convex lattice polygons Qv{n).

COROLLARY 1 . The following asymptotic inequality holds:

where

Bp =

and P{Q) denotes the area of the planar shape Q.

PROOF: It is known that of all planar shapes with fixed perimeter the circle has
the greatest area. Since we have an asymptotic expression for the Euclidean perimeter
of Qp{n) as a function of n (Theorem 4, q = 2) the statement of the theorem follows
directly. 0

In the case that p - 2 we have B2 = 1/54 « 0.018518. In the case that p € {1, oo}
we have

—)— w 0.019161 .1 °° 864
NOTE. If we define

D{v) = Ux,y,z) \y\v. l

then using a slight modification of the proofs of Lemma 1 and Theorem 2, we get that

the asymptotic expression for the /,-perimeter of the optimal convex lattice polygon

(P= oo) is

where

Also, in the case that q = oo the proof gives the following coefficient

C p ° ° = / / mzx{\x\,\y\}dxdy.

In both previous cases we have

C«, = lim C' = lim / / d\x\«+ \y\«dxdy,

Cp°° = lim C« = lim / / ^l\x\" + \y\"dxdy.
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In the case that p — q = oo, we have

Coo
oo -

If we denote the coefficient [C^TTJ/(J6A^) in the leading term from Theorem 4 by

K%, we have the following exact values:

*i = 12\/3 4vT
4

3>/3'

Finally, we give some approximate values of K%:

P

1
2
3
5
oo

1

0.6046
0.61421
0.62269
0.63129
0.64127

2

0.4907
0.4824
0.48359
0.4863
0.4907

3

0.46957
0.456
0.45488
0.45564
0.45813

5

0.45902
0.44207
0.43931
0.43857
0.43951

oo

0.45345
0.43431
0.43033
0.42835
0.42752

The decrease of the coefficient value in a row (from left to right) represents the
decrease of the lq metric as q increases. The coefficient value in a column q is the least
for p = q (diagonal value), because in that case the perimeter is measured by the same
metric that is used for optimality.
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