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In this paper we presuppose a familiarity with the terminology and the basic results of
radical theory, all of which can be found in Divinsky [2].

Andrunakievic's antisimple radical class /?^ (see [1] and [2]) is the upper radical class
determined by the class of all subdirectly irreducible rings with idempotent hearts (the heart
of a ring is the intersection of all the nonzero ideals). A ring R is in /?^ if and only if R cannot
be homomorphically mapped onto a subdirectly irreducible ring with an idempotent heart.
This radical class is a special radical class; that is, the class p$ is hereditary, contains all
nilpotent rings, and every p$ semisimple ring is isomorphic to a subdirect sum of prime P$
semisimple rings. Levitzki's locally nilpotent radical class £C (the class of all rings R such
that every finitely generated subring of R is nilpotent) is strictly contained in /?^, which is in
turn strictly contained in the Brown-McCoy radical class 'S (i.e., ££ < /}$ < <§}.

The main results of this paper are that the class /?J of all locally fi^ rings (rings such that
every finitely generated subring is in p^) is a special radical class and that JSf ^ p^ ^ Jf, where
Jf is the special radical class of all nil rings.

To prove that P\ is a radical class we require the following result about simple idempotent
rings.

PROPOSITION 1. If S is a nonzero simple idempotent ring, then there is a finitely generated
subring of S which can be homomorphically mapped onto a subdirectly irreducible ring with a
simple idempotent heart.

Proof. Let S be a nonzero simple idempotent ring. By Theorem 55 in Divinsky [2],
S$& and so, by Theorem 53 in Divinsky [2], there is an element xeS such that x* ^ 0.
Then Sx2S is a nonzero ideal of S; so S = Sx2S. Thus there are elements ru...,rk and
st, ...,sk of S such that

Let S' be the subring of 5 that is generated by the set {rlt..., rk, x, sv sk}. By
Zorn's Lemma we can choose a maximal ideal / in the set of all ideals of 5" that do not
contain x. Then S'/Iis subdirectly irreducible with heart H = (X+I)II, where Xis the ideal
of S' that is generated by x. If x2 e I, then, by (*), x e / and so, since x $ I, x2$I. Therefore
H2 # (0) and thus, since the heart of a subdirectly irreducible ring must be either a zero ring
or a simple idempotent ring (see Lemma 75 in Divinsky [2]), H is a simple idempotent ring.
This completes the proof.

An interesting conclusion which follows from this proposition is that, if there is a simple
idempotent nil ring, then there is one which is the heart of a finitely generated nil ring and so

t Most of the results in this paper appeared in the author's doctoral thesis, which was written under the
supervision of Professor N. J. Divinsky.
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is certainly countable. This seems to support the long standing conjecture that there are no
nontrivial simple idempotent nil rings.

From the proposition we may also conclude that /?£ ̂  fS^. To see this, let R be a ring
which is not in /? .̂ Then R can be homomorphically mapped onto a subdirectly irreducible
ring with idempotent heart S. The proposition states that there is a finitely generated subring
of S1 which can also be homomorphically mapped onto such a ring. This subring of S must
be a homomorphic image of some finitely generated subring of R and so R^P%, because this
finitely generated subring of R is not in /? .̂

THEOREM 1. The class fyis a radical class.

Proof. It is sufficient to establish the following:

(a) The class /?£ is homomorphically closed.
(b) If B is an ideal of a ring A and both A\B and B are in /?£, then AeP^.
(c) For any ring R, the sum of all the ideals of R that (as rings) are in /?$ is also in /?*.

Since the class /Ĵ  is homomorphically closed, it follows that p J is also homomorphically
closed.

Assume that B is an ideal of a ring A and that both AjB and B are in /?J. Let A' be a
finitely generated subring of A. Then

A'

B = A'nB

and, since A/Befe, {A'+B)IBB^. NOW A'nB £ Be/?£; so A'nBefo ^ fa. Thus both
A'/(A'nB) and A'nB are in /^; so A' eft^ (/?̂  is a radical class and is therefore closed under
extensions). Hence Aefil and so condition (b) is satisfied.

Let R be a ring and let / be the sum of all the /? J ideals of R. If R' is a finitely generated
subring of/, then R' is contained in the sum of finitely many jSj ideals. So in order to establish
(c) it is sufficient to show that a finite sum of /?£ ideals is again a /?J ideal. Let / t and I2 be
0$ ideals of R. Then

h ' / , n / 2 '

so (Ii+h)ll2^Pl by (a)- Hence, by (b), 71+/2ej5j. The extension to any finite sum of
ideals is obvious.

From (a), (b) and (c) it follows that any homomorphic image of a /?£ ring is a /?£ ring,
that every ring R contains a unique maximal /? J ideal Pl(R), and that jS J(i?/J?5(R)) = (0). There-
fore /? J is a radical class.

Since a nilpotent ring cannot be homomorphically mapped onto a ring with a nontrivial
idempotent heart, S£ ^ fa and of course /?£ contains all nilpotent rings. The radical class
Pi is hereditary; in fact, subrings of rings in /?$ are in /?*. Thus the following theorem implies
that /?£ is a special radical class.

THEOREM 2. A ring R is /?$ semisimple if and only if R is a subdirect sum of prime /?$
semisimple rings.
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Proof. Since subdirect sums of semisimple rings are semisimple, one direction is clear.
Conversely, let R be a /?$ semisimple ring. It is sufficient to prove that for each non-

zero xeR there is an ideal I(x) of R such that x$I(x) and R/I(x) is a prime /?£ semisimple
ring.

Let x be a nonzero element of R and let .Y be the ideal of R that is generated by x. Since
X$fi*, there is a finitely generated subring R' £ X and an ideal/' of/?' such that R'jl' contains
the nonzero simple idempotent heart S'H'.

Let Z be the set of all ideals /of R such that R'nJ £ / ' . Clearly the union of an ascending
chain of ideals in Z is in Z; so by Zorn's Lemma we may choose I(x) maximal in Z.

First we shall prove that R/I(x) is /?£ semisimple. Let L/I(x) be a nonzero ideal of
R/I(x). Now

R'nL+I(x)^ R'nL
l(x) = R'nl(x)

and (R'nL)l(R'nI(x)) can be homomorphically mapped onto (R'nL+/')//', since I(x)eZ.
The ideal Z, properly contains /(x); so /?'nL $ / ' . Thus R'nL + I' is an ideal of /?' that
properly contains / ' . Since S /I' is a simple ring, S" £ R'nL + I' and SO S'jl'^
(R'nL+r)II'. It follows that (R'nL+I')ir is subdirectly irreducible with idempotent
heart S'/I'. Thus (R'nL+I')II' is not in #> and, since jS£ g /^, ( U ' n I + 7 ' ) / / ' W Therefore
(R'nL+I(x))II(x) and hence L//(x) is not in /Jj. It follows that R/I(x) is /?* semisimple.

Now we shall prove that R/I(x) is a prime ring. Suppose that L and / / are two ideals of
R that properly contain I(x). As above, the maximality of I(x) implies that R'nL + I' 2 5 '
and R'nH+I' 2 S'. If L # £ I(x) we must have that

- - f-Y <=
T ~ 7J ~
T \7J ~ T ~ T •

This implies that S' £ R'nl(x)+I' £ / ' , which is a contradiction. Thus HL^I(x); so
RII(x) is a prime ring.

Therefore R/I(x) is a prime /?£ semisimple ring and, since R' $ I(x), x$I(x).
It follows from the theorem that, for any ring R, /?£(/?) can be represented as an inter-

section of prime ideals Px (aeA) such that R/Pa is $\ semisimple for each aeA. For those
rings R such that #//?£(#) is a generalized right Goldie ring (see [5]), Michler's Theorem 1 in
[5] implies that /?£(#) can be represented as the intersection of all the maximal /?£ subrings of
R. Michler's Theorem may be similarly applied to the radical class fi^nJf which is discussed
below.

For rings R satisfying the ascending chain condition on right annihilators it is well-known
that 2(R) = J/~(R). In the following proposition we shall prove that tf^filg ^nJT g Jf,
so that for rings satisfying the ascending chain condition on right annihilators all four of these
radicals are equal.

Three unsolved questions concerning the class /?£ are:

(1) Does the $\ radical of a ring R contain all the one-sided 0$ ideals of /??
(2)Is^*
(3) ISJP
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In Proposition 2 we shall prove that (2) is equivalent to the question of the existence of a
nontrivial simple idempotent nil ring. On the other hand, if the answer to (3) is in the
affirmative, it should be possible to show this by example without becoming involved in the
idempotent nil ring problem. We are able to show that the related class of rings j ! ^ n / does
strictly contain S£. This class of rings is a special radical class; indeed, it is straightforward
to verify that the intersection of any collection of (special) radical classes is a (special) radical
class.

In the following proposition we collect some results about the relationships between the
special radicals ££, /?J, P^nuV and J/".

PROPOSITION 2.

(a) se^fil^p^jrg jr.
(b) The following are equivalent:

(0 $^jr<jrt

(ii) p\ < Jr.
(iii) There is a nontrivial simple idempotent nil ring.

(c) <g <

Proof, (a) We have already seen that if ^ /? J ^ P^,. In order to establish (a) it is sufficient
to prove that J?£ ̂  JT.

Let ReP^ and xeR. Then the subring <x> that is generated by x is in P^. Now
P^< <3 and a commutative ring is in <§ if and only if it is in the Jacobson radical class J (see
Divinsky [2, Lemma 89]). It follows that (x}eJ.

In [3] Goldman proves that, if R is a commutative Hilbert ring (A ring R is a Hilbert
ring if and only if J(R) = Jf{R) for all homomorphic images R of/?), then so is the polynomial
ring R[X]. Clearly the ring Z of integers is a Hilbert ring; so Goldman's theorem implies
that Z [A'] is a Hilbert ring. Now one easily sees that the ideal of Z [X] that is generated by
X is also a Hilbert ring. The ring <*> is a homomorphic image of this ideal; so / « x » =
Jr((x~)). Since <x>e/, (x)eJf.

We have shown that, if Refi% and xeR, then <x>6^T. Thus ReJf and so $% ^ Jf.
(b) The proof is cyclic. Since P\ ^ P^r\JT it is clear that (i) implies (ii). Assume that

P\ < J/~. Then there exists a ring Re Jf such that R £/?$; so some homomorphic image of a
finitely generated subring of R contains a nontrivial heart which is a simple idempotent nil
ring. Finally to see that (iii) implies (i) we need only notice that any nontrivial simple
idempotent nil ring is in Jf but not in P^nJ/".

(c) Let R be any infinite dimensional, finitely generated nil algebra over a finite field F.
Such rings were shown to exist by Golod and Shafarevitch [4]. Notice that R is finitely
generated as a ring.

Suppose that Ia(aeA) is an ascending chain of ideals of R and that R/Ia is infinite
dimensional over F for all aeA. Let / = \J{Ia: aeA}. If R/I is finite dimensional over F,
then RN £ / for some positive integer N (since the nil radical of a finite dimensional algebra
is nilpotent). However, since R is a finitely generated ring, RN is a finitely generated ring; so
RN £ If for some pe A. This contradicts the infinite dimensionality of R/Ipl so R/I must be
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infinite dimensional over F. Thus we may choose, by Zorn's Lemma, an ideal / of R which is
maximal in the set of all ideals J of R such that R/J is infinite dimensional over F.

No proper homomorphic image of Rjl can be subdirectly irreducible with an idempotent
heart, because all such homomorphic images are finite dimensional over F and hence nilpotent.
Suppose that Rjl itself is subdirectly irreducible with heart SI I. Then RN £ S for some positive
integer N because R/S is a finite dimensional nil ring. If S/I is idempotent, then (S//)2 =
(S//)N £ (RII)N £ S/I; so (R/I)N = S/I. But then S/I is a finitely generated idempotent nil
ring. This contradicts Nakayama's Lemma; so S/I is not idempotent. It follows that
R/Ie ft^ruV. However, since Rjl is infinite dimensional over F and R/I is finitely generated
as a ring, R\I$<£.

Added in proof. Yu. M. Ryabukhin has also obtained Proposition 1 for simple idempotent
nil rings in his paper " Concerning the problem of the existence of simple nil rings ", Sib.
Matem. Zh. 10 (1969), 950-956 (English translation: Siberian Math. J. 10 (1969), 698-702).
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