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A NOTE ON QUADRATIC FIELDS IN WHICH A FIXED

PRIME NUMBER SPLITS COMPLETELY

HUMIO ICHIMURA

§ 1. Introduction

Throughout this note, p denotes a fixed prime number and / denotes

a fixed natural number prime to p.

It is easy to see and more or less known that (* } for any natural number

n, there exists an elliptic curve over Fp whose j-invariant is of degree n

over Fp and whose endomorphism ring is isomorphic to an order of an

imaginary quadratic field. In this note, we consider a more precise problem:

for any natural number n, decide whether or not there exists an elliptic

curve over Fp whose j-invarίant is of degree n over Fp and whose endo-

morphism ring is isomorphic to an order of an imaginary quadratic field

with conductor f

To state our results, we introduce some notations. For an order o

of a quadratic field K, we write (o/p) = 1 when (K/p) = 1 and the conductor

of o is prime to p, where (K/p) denotes the Legendre symbol. Let Sβ be

a prime divisor of p in Q. For an order o of a quadratic field with (o/p)

= 1, we set p0 = ψ Π o and we denote by n0 the number of elements of the

cyclic subgroup of the proper o-ideal class group generated by the proper

o-ideal class {p0}. Clearly, n0 does not depend on the choice of ψ.

Set M(p, f) — {o orders of imaginary quadratic fields with (o/p) = 1

and conductor /}. Let N(p, f) be the image of the map M(p, f) B O ~> n0

eiV.

By some results of Deuring on elliptic curves (see e.g. Lang [6]; Chap.

13, Theorem 11, 12, and Chap. 14, Theorem 1), the preceding problem is

equivalent to a problem: decide the image N(p,f).

Our results are as follows.

THEOREM 1. (i) When (pjΐ) = 1 for any odd prime divisor I of f9 and

Received March 26, 1984.
<*) \y e g i v e a simple proof in Remark 1 of § 4.
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8\f (resp. k\f) in the case p = 5 (mod 8) (resp. p = 3 (mod 4)), the com-

plement N — N(p, f) is a finite set, (ii) otherwise, N(p, f) c 2iV, and the

complement 2N — N(p, f) is a finite set.

THEOREM 2. N(p, 1) = N.

Further, for real quadratic fields, we show a fact similar to (but not

as sharp as) Theorem 1, 2.

Ankeny and Chowla [1] proved \N — N(3,1)| < oo (a special case of

Theorem 1). For a fixed natural number n, set m(p, ή) — |{o e M(p, 1);

n0 = n}\. Humbert [4] and Kuroda [5] proved that m(p, ιι)-» oo as p-> oo.

By these facts, they showed the existence of infinitely many imaginary

quadratic fields with class number divisible by a given integer. Theorem

1 is proved by using the method of [4], [1] and [5]. To prove Theorem 2,

we first calculate a number np such that n e N(p91) if n > np, with the

help of an approximation formula of Rosser and Schoenfeld [8] for τr(x),

the number of prime numbers < x. Next, we construct orders o e M(p, 1)

with nΰ = n for "small" n explicitly.

NOTATIONS. TV, Z, Q and Fp denote, respectively, the set of natural

numbers, the ring of rational integers, the field of rational numbers and

the finite field with p elements. For a field K, K denotes the algebraic

closure of K. For an element a of a quadratic field, αr and N(a) denotes

its conjugate and its norm respectively.

§ 2. Proof of Theorem 1

Let p be a fixed prime number and / a fixed natural number prime

to p. There are two possible cases.

[I] (pjl) = 1 for any odd prime divisor / of/, and 8J(f (resp. 4/f/)

in the case ] ? Ξ 5 (mod 8) (resp. p = 3 (mod 4)),

[Π] otherwise.

First, we show the following

LEMMA 1. In case [II], N(p,f) c 2ΛΓ.

Proof. The condition [II] means that (piI) = — 1 for some odd prime

divisor I of /, or 8\f and p = 5 (mod 8), or 4 |/ and p = 3 (mod4). Let o

be an order of an imaginary quadratic field with (o/p) = 1 and conductor

/. Let d be the discriminant of the imaginary quadratic field o ®z Q.

First, assume that (p/ί) = — 1 for some odd prime divisor / of / and d = 0
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(mod 4). Then, o = [1, /V3/4]. By the definition of n0, pp = (a+bfVdβ)

for some a,beZ. Taking norms of both sides, pn° = a2 — b2/2(d/4). There-

fore, if n0 is odd, (p/ί) = 1 for any odd prime divisor / of /, which is a

contradiction. So, nQ must be even. It is proved similarly in the other

cases.

Now, we prove that N — N(p, f) (resp. 27V — N(p, /)) is a finite set

in case [I] (resp. [II]). First, we deal with the case where / is odd and

satisfying the condition [I].

The following lemma is easily proved.

LEMMA 2. Assume f is odd. Let n be a natural number, and let x

be a rational integer, prime to 2p and satisfying the following conditions:

( i ) x2 = 4p« (mod/2),

( ϋ ) x ~~2 JL. is square free,

(iii) 0 < x <

Let o be the order the imaginary quadratic field K = Q(Vx2~zr^piι) with

conductor /. Then, (o/p) = 1 and n0 = n.

Let / = Πil? be the prime decomposition of /, and set f0 = f] ί lt.

Since / is odd and satisfies the condition [I], there exists an odd integer

x(ή) such that x(n)2 = 4pn (mod f2) and x(n)2 φ 4pn (mod Γf2) for any prime

divisor I of /. Set A(ή) = {x(ή) + 2flf2k; keZ} and B(ή) = {xe A(ή); x is
prime to p, x2 ^ 4pn (mod Γ) for any odd prime number I with l\fy and

0 < x < 2^^— Pn/2}- By Lemma 2, it suflGices to show that \B(ή)\ -> oo

as n —> co. The number of x e A(n) such that x is prime to p and 0 < x

< 2Vpn -pnj2 is at least [(1 - llpXWp^p^lftp)] -2 if p Φ 2, and
- Pn/2)lflf2] if P = 2, where [α] denotes the largest integer < α.

Let Z be an odd prime number with I \pf. Since the congruence x2 =

(mod Z2) has at most two solutions, the number of x e A(ή) such that

x2 ΞΞ Apn (mod Z2) and 0 < x < 2sl~p^ - pnT2 is at most 2{[(Vpre - Pn/2)lflf2Γ]

+ 1} if Z < 2pn/\ and is zero if Z > 2pn/2.

Therefore,

(1) |B(n)|>
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-i) ' 1 ) Λ V ~Pnμ - 3 - if P Φ 2

where the sum

0 < I < 2pn/2, and the sum 2 "

taken over all prime numbers Z prime to 2pf with

taken over all prime numbers I with

0 < I < 2pn/\

Note that Σi VI2 < log ζ(2) - 1/4 - 1/p2 (resp. log ζ(2) - 1/4) when p Φ 2

(resp. p = 2), where ζ(s) is the Riemann zeta function. Therefore, by ζ(2)

= π2/6, we see that the coefficient of V pn — pn/2 is larger than the positive

constant cjflf2, where cv is the positive constant given as follows:

p P

0.

> 11

429 0.

7

401

(Table 1)

5

0.384 0. 392 0.

2

504

On the other hand, by the prime number theorem,

i ~ \ (nl2) lo(n/2) logp

Therefore, \B(ή)\ —> oo as n-> oo. This completes the proof of Theorem 1

when / is odd and satisfies the condition [I].

It is proved similarly in the other cases.

§3. Proof of Theorem 2

Let π(x) be the number of prime numbers < x. Rosser and Schoen-

feld [8] (Theorem 2) showed

x
( 2 ) π(x)< for x > e3'2 .

log x - 3/2

By a simple calculation using (1), (2) and Table 1, we obtain

LEMMA 3. The set N(p, 1) contains all natural numbers n with n > np,

where nv is the natural number given in the following table.

P

np

P>11

10

7

12

5

16

3 2

21 26
!
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B y t h i s l e m m a , i t suffices t o c o n s t r u c t o r d e r s o e M ( p , 1) w i t h nQ—n

f o r " s m a l l " n.

LEMMA 4. The set N(p, 1) contains all natural numbers of the form

n = 2'3"5V7* with λ, μ, v, 1 > 0.

Proof. First, we prove our lemma when p Φ 3. Fix a natural number

k and set m = p\ Set Khl = Q(Vl - 4mι) and # 2 ) ί = Q(V9 - 4mO for

Z = 1, 2, 3, 5, 7. When p =̂ 3, (Kitljp) = 1 and we denote by jjM a prime

i d e a l w of 1ΓM over p (ί = 1, 2, / = 1, 2, 3, 5, 7). We show

CLAIM 1. Assume p Φ 3. 7%e icfeαZ classm of p*2 (m 2Γlί2) or ίΛαί o/

(iΛ JΓ2f2) is o/ order 2.

This is proved as follows. Write 1 — 4m2 = f\dx and 9 — 4m2 = f\d2

with natural numbers fu f2 and square free integers dl9 d2. Then, dt = 1

(mod 4) and 1, (1 + V d* )/2 is an integral basis of KU2. Note that iΓtf2 ^

Q(V — 1) because dt = 1 (mod 4). Set α̂  = (1 + Vl — 4m2)/2 and α:2 —

(3 + V9 — 4τn2)/2. Then, we easily see that α̂  is an integer of iΓίj2, (αr̂ , aΐ)

= 1 and iV^i) — p2k. Hence, we may assume, without loss of generality,

that pl*l = (arj. Assume that pίϊ2 is principal. Then, since Kh2 Φ Q(V — 1),

α i = ± ((α + b^ΊΪJΐZ)2 for some α, 6 6 Z. Therefore, 1 - ± (α2 + 62d1)/2

and /j = ± α&. Hence, 1 — 4m2 = f\dx = α2(±2 — α2), from which we obtain

2m = α2 ± 1. By considering both sides modulo 4, we see that a is odd

and 2m = a2 + 1 (resp. 2m = α2 — 1) when m is odd (resp. even). Next,

assume that p2,2 is principal. Then, similarly, for some odd integer c, 2m

= c2 — 3 (resp. 2m = c2 + 3) when m is odd (resp. even). Therefore, if

both of pf52 and p2,2 are principal, c2 = a2 + 4 for some odd integers α and

c. But this is impossible because the square of an odd integer is con-

gruent to 1 modulo 8. Hence, we obtain our claim. Similarly and more

easily, we can prove

CLAIM 2(**>. Assume p Φ 3. For I = 1, 3, 5, 7, the ideal class of pk

τΛ

is of order I (ί = 1, 2).

Now, set n = 2λ3μ5vΊχ with λ, μ,v,X > 0. By the above claims, we see

that for the maximal order o of the imaginary quadratic field Q(Vl — 4pn)

<:|ί) In this section, an ideal (class) is one with respect to the maximal order of
an imaginary quadratic field.

<**> Further, we can show that for any prime number / (>7), the ideal class of p\d

is of order I for sufficiently large p.
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or that of Q(V9 — 4pn), (o/p) — 1 and n0 = n. This proves our lemma when

p ψ 3. When p = 3, we can prove our lemma similarly by considering

imaginary quadratic fields of type K'2tl = Q(Λ/25 — Am1) in place of K2)l.

LEMMA 5. Assume p is odd. Then, the set N(p, 1) contains all odd

natural numbers prime to p.

Proof. Let n be an odd natural number prime to p. Let nx be the

largest square free integer | n. Note that n\ < pn. We easily see that for

the maximal order o of the imaginary quadratic field Q(Vnl — pn), (o/p)

= 1 and n0 = n, by the following

THEOREM (Nagel [7], Satz V). Let n be an odd natural number. Let

x and z be natural numbers such that (x9z) = 1, x2 < zn, 2J(z9 and q\\x

for any prime divisor q of n. Let z = Wtqf be the prime decomposition of

z. Set K = 7 ^ ) . Then, (Kjqd = 1 and qf = (qi9 x + \/if^Γ^j is

a prime ideal of K over qt. Set a = f[ < qp. Then, the ideal class of a is

of order n.

Hence, we obtain our assertion.

By Lemmas 3, 4, 5, it remains to construct orders o e M(p, 1) with

n0 = n when (p, n) = (2,11), (2,13), (2.17), (2,19), (2, 22), (2, 23).

Using the table of Wada [9], we see, by a simple calculation, that

the maximal order of the following imaginary quadratic field K(p, n) is

an example of such an order for the above (p, ή).

(P, n)

K(p, ή)

h(p, n)

(P,n)

K(p, n)

h(p, n)

(2,11)

QW-167)

11

(2,19)

Q(V-Sll)

19

(2,13)

Q ( Λ / - 2 6 3 )

13

(2, 22)

Q(V-591)

22

(2,17)

Q ( Λ / ^ 3 8 3 )

17

(2,23)

Q ( Λ / - 6 4 7 )

25

(h(p, n) denotes the class number of ϋΓ(p, n).)

This completes the proof of Theorem 2.

https://doi.org/10.1017/S0027763000021498 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021498


FIELDS

§4. Real quadratic fields

Set M(p) (resp. M(p)+) = {o; orders of imaginary (resp. real) quadratic

fields with (o/p) = 1}. Let N(p) (resp. N(p)+) be the image of the map

d(p) (resp.

M(p) (resp. M(p)+) 9 o > π0 e TV.

By Theorem 2, Λf(p) == N. In this section, we prove the following

PROPOSITION. N(ρ)+ = TV.

First, we give a definition.

DEFINITION. Let G?(>1) be a square free integer, and let m(>ΐ) and

g be natural numbers. Let (X, Y) = (u, υ) be a rational integral solution

of the diophantine equation

( 3 ) X2 -dg2Y2 = ±4m.

We say that (u, v) is a trivial solution if m = τi2 is a square and TZ | w,

LEMMA 6. Let d ( > 1) 6e α square free integer and g a natural number.

Set K = Q(<s/Ίϊ). £e£ ε = (l/2)(s + tg^~d) be a nontrivial unit of the order

of K with conductor g such that ε > 1 and N(ε) = — 1 (resp. 2V(e) = 1).

For a natural number m(> 1), if the diophantine equation (3) has a non-

trivial solution, an inequality m > sjf (resp. m>(s — 2)1 f) holds.

When m is not a square and g — 1, this lemma was proved in Ankeny,

Chowla anά Hasse [2] and Hasse [3]. The proof of the general case goes

through similarly and we shall not give the proof.

Now, we shall prove our proposition. Let n be a natural number.

We see easily that p2n + 4 is not a square. Let K = Q(/p2n T~4). First,

we deal with the case p Φ 2. Write p2n + 4 = g2d with a natural number

g and a square free integer d. Let o be the order of K with conductor

g. We claim that (o/p) = 1 and n0 = n. We easily see that (o/p) = 1, o =

[1, (1 + Vp2n +~4)/2] and ε = (l/2)(pn + Vp^" + 4) is a nontrivial unit of o

with N(ε) = — 1. Set or = 1 - ε. Then, α e o , N(a) = ~pn and (α, a!) = 1.

Therefore, K = (α) or p^ = (a'), hence by the definition of n0, n0 \ n. On

the other hand, tf° = (α + 6(1 + VFMΓ4)/2) for some α, 6 6 Z. Taking

norms of both sides, we obtain ±4pW o = (2a + bf - b\p2n + 4) = (2a + bf

— dg2b2. Since (p0, pi) = 1, (X, Y) = (2α + &, 6) is a nontrivial solution of
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the diophantine equation X2 — dg2Y2 = ±4pn°. Therefore, by Lemma 6

and the fact that ε is a unit of o with N(e) = — 1, we get pn° >pn, i.e.

n0 > n. Hence nΰ = n, which proves our claim. Next, we deal with the

case p = 2. Assume n > 3 and set m = n — 2 ( > 1). Then, p2n + 4 = Ag2d

for an odd natural number g and a square free integer d with d = 1

(mod 8). We claim that for the order o of /Γ with conductor £, (o/2) = 1

and τι0 = m. Since £ is odd and ( I Ξ I (mod 8), (o/p) = 1. Set α =

(l/2)(2n"1 + 1 + Λ/2271"2 + 1). Then, a e o, iV(αr) = 2m and (<*, af) = 1. There-

fore, ϊC = (α) or p™ = (of), hence ra01 m. Then, similarly to the case p Φ2,

we see that n0 = m by Lemma 6 and the fact that ε = (l/2)(2* + 2\/22n-2 + 1)

is a unit of o with iV(ε) = — 1.

This completes the proof of our proposition.

Remark 1. The fact that N(p) = N is also proved as follows. Let ra

be a natural number. Set K = Q(Vl - 4p~). Write 1 - 4pπ = g2d for a

natural number g and a square free integer d. Then, by Lemma 2, (o/p)

= 1 and n0 = n, for the order o of K with conductor g.

Remark 2. We have seen that the maps d(p), 9(p)+ are surjective.

For any neN, the inverse image d{p)~1{n) is a finite set, but d(p)i\ri) is

an infinite set. This is shown as follows.

The imaginary quadratic case: Obvious.

The real quadratic case: (The notations being as in the proof of Pro-

position.) First, we deal with the case p Φ 2. Let (l/2)(s + tgV d) be a

nontrivial unit of o with s, t > 0. Let ox be the order of K with conductor

(((Pn — 2)ί + s)/2)g. Then, we easily see that (ojp) = 1 and nΰχ — n. Since

there are infinitely many units of o, there exist infinitely many o/s with

(ojp) = 1 and n01 = n. It is proved similarly when p = 2.

Remark 3. Set M(p, 1)+ = {o; maximal orders of real quadratic fields

with (o/p) = 1}. Let N(p, 1)+ be the image of the map d(p, 1)+: M(p, 1)+

9 o -> 7i0 e N. We see that n = 1, 2 e iV(p, 1)+ and the inverse images

5(p, l) ;^!), 3(p, 1);J(2) are infinite sets by considering the following real

quadratic fields:

n = 1; 2Γ = Q(Vx2 + 4p) where x is a rational integer prime to 2p.

(Fields of this type were considered in Yamamoto [10].)

n = 2 K = Q(Vq(q — 4p)) where g is a prime number such that q >

4p, (-1/9)= 1 and (/>/?)= - 1 .

In view of this, we can raise questions: (1) for any neN(p, 1)+, is
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the inverse image d(p,ϊ)z\n) an infinite set! (2) does N(p,ϊ)+ coincide
with ΛΓ?
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