ON SUBSURFACES OF SOME RIEMANN SURFACES

KIKUJI MATSUMOTO

Introduction. In the theory of meromorphic functions, it is important to

investigate the properties of covering surfaces generated by their inverse func-
tions. For this purpose, the study of properties of a non-compact region of a
Riemann surface is useful.

Recently Kuramochi has given in his paper [5] the following very interest-
ing theorem. Let R be a Riemann surface and let R, be a compact domain on
R with compact relative boundary oR,. Then

Theorem. If R belongs to Orz— O (Opp— Og resp.), then R— R, belongs
to O (O.p resp.).

Here we use the following notations.

Og: the class of Riemann surfaces which admit no Green function.

Onz(O4zp): the class of Riemann surfaces on which there exists no non-
constant single-valued bounded harmonic (analytic) function.

Omp(Oup) : the class of Riemann surfaces on which there exists no non-
constant single-valued harmonic (analytic) function with finite Dirichlet-integral.

Constantinescu-Cornea [1] have investigated this theorem in detail and
obtained several results. Kuramochi [6] has extended this theorem again.

On the other hand, the method given by Heins [2] may be expected to
contribute to the same purpose. He introduced the concept “locally of type-Bl”
using the Green functions and gave many results concerning covering properties.

We shall give, in this article, simple proofs of extended Kuramochi’s
theorems in Constantinescu-Cornea’s way and prove some properties of covering
surfaces using them and Heins’ method.

For simplicity, we shall call, in this article, a non-compact or compact
domain G on a Riemann surface R a subregion on R when its relative boundary
C with respect to R consists of at most an enumerable number of analytic non-

compact or compact curves which cluster nowhere in R. We say that G belongs
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to the class SOxp (SOxp) if there exists no non-constant single-valued bounded
(Dirichlet-bounded) harmonic function in G which vanishes continuously at every

point on C.

1. Let R, and R, be two Riemann surfaces which admit Green functions
and let /' be a conformal mapping of R; into R.. We denote by Gz, and ®g,
Green functions of R, and R, respectively. Then holds the equality

Gx(f(D) ;5 @) =N§)_‘;qn(r) Gr(D 5 7)+ us(p),

where n(7) is the multiplicity of f at » € Ry, and #,(p) is the greatest harmonic
minorant of Gz, (f(p) ; q) on Ry.

Generally, a positive harmonic function is representable uniquely by the
sum of a non-negative quasi-bounded harmonic function which is defined as the
limit of a monotone non-decreasing sequence of non-negative bounded harmonic
functions, and a non-negative singular harmonic function which is defined as a
non-negative harmonic function dominating no positive bounded harmonic func-
tion (Parreau [9]). Heins [2] proved that #,(p) is quasi-bounded except for
a set of g of capacity zero and that the quasi-bounded component of #,(p) is
either positive on R, X R, or constantly zero.

According to Heins [2], we say that f is of type-Bl if the second alternative
occurs for f.

Now, let R and R, be arbitrary Riemann surfaces, and let f be a conformal
mapping of R, into R,. We shall say that f is of type-Bl at g= R, provided
that there exists a simply connected Jordan region @ satisfying: (1) g€ 2 CR,,
(2) £74(2) % ¢ and (3) for each component 4 of f~ (), the restriction /s of f
to 4 is of type-Bl considering f. as to be a conformal mapping of 4 into £.
We shall say that f is locally of type-Bl if f is of type-Bl at each point of R..
Then, we obtain the following :

TueoreM 1. Let R, and R. be arbitrary Riemann surfaces, and let f be a
conformal mapping of Ry into R.. Then, f is locally of type-Bl if and only if,
Jor any compact subregion 2 on R. (we suppose that 2 has at least one exterior
point when R: is compact), each component of £~ (2) belongs to SOus.

Proof. It is evident that f is locally of type-Bl if, for any compact subre-
gion 2 on R., each component of f™'(2) belongs to SOus.
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Suppose that f is locally of type-Bl. Let £ be an arbitrary compact subre-
gion on .Rz. and let {R%} be an exhaustion of R with compact relative boundaries
oRi. As 2 is compact in R:;, there exists an integer i such that RYD Q.
(When R is compact, we take as RY a subregion on R, containing 2 and having
at least one exterior point.) Let 4 be any component of f™'(2) and let 4* be
the component of f (RY) containing 4. And we put A = min Ggi,(s ; q), where
g is an arbitrary point of R,. Consider a bounded positﬁ:aJ harmonic function
# on 4 vanishing continuously on 24, and denote by #* the subharmonic function
which is equal to # on 4 and to zero on 4" — 4. Without loss of generality,

we can suppose that sup #*<1. Then, we have
Au* < Grio,(far 5 @)

on 4% The least harmonic majorant of Ax™ on 4* is dominated by the quasi-
bounded component of the greatest harmonic minorant of ®zi,(fa« ; q). By
Theorem 16. 1 in [2], fa is of type-Bl considering fi+ as to be a conformal
mapping of 4* into R¥, and hence the quasi-bounded component of the greatest
harmonic minorant of Ggir,( fs- ; @) is identically zero in 4*. Consequently, we
can conclude that #=0 and therefore we have 4 SOyp. Thus our proof is

complete.

2. Let R be a Riemann surface which admits a Green function, let Gz(p ; q)
be the Green function on R with a pole at g= R and let p = ¢(t) be the mapping
which maps the universal covering surface R* of R onto [¢#| <1 one-to-one con-
formally. Then ®z(¢(t) ; q) has angular limit zero a.e. on [t/ =1. We denote
by & the set of all points on |#| =1 of such kind and classify & into classes by
the following equivalence relation. Let ¢, and ¢, be points of F. We say that
t, and £, belong to the same class provided that there exists a covering trans-
formation T of R® such that # = T'(¢;), where T' is the linear transformation
of |¢] <1 onto itself corresponding to 7. We call each class an ideal boundary
point and call all points of § belonging to an ideal boundary point its image.
We denote by F all ideal boundary points.

If the image M of a subset M of F is measurable on |t| =1, we say that M
is measurable and call w(p ; M, R) =w™(¢7'(p) ; M) the harmonic measure of
M with respect to R, where ™(¢ ; M) is the harmonic measure of M with respect

to [t/ <1. Let M be a set of positive measure. According to Constantinescu-
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Cornea [1], we say that M is HB(HD)-indivisible if, for any bounded (Dirichlet-
bounded) harmonic function «(p) on R, #(¢(¢)) has the same angular limit a.e.
on the image M of M. For instance, F is HB(HD)-indivisible if R belongs to
Oup — Oo(Onp — Og). 1t is known that if M is HB-indivisible, then M is HD-
indivisible.

We shall consider the class Unp(Usp) of Riemann surfaces which contain
at least one HB(HD)-indivisible set on their ideal boundaries. Heins [3] intro-
duced a class O, of Riemann surfaces, on which there exists no non-constant
single-valued Lindeloéfian meromorphic function. Here we say a conformal

mapping of a Riemann surface R; into another Riemann surface R, is Lindelsfian if
,%1]’(’) Gr(pir) <+
for p and q satisfying f(p) % q. It was proved by Heins that the relation
Onp C O C Ous
holds and that, for the class of Riemann surfaces with finite genus,

Og =Oup=0y
holds.
Let R be a Riemann surface belonging to Uxrs, let M be an HB-indivisible
set on its ideal boundary and let f be a single-valued Lindelsfian meromorphic
function. Then we have for w = f(¢(#))

>3 aw)S(t; s)=ﬂ% nlr; £){ 2 &t ; s}

f(p(8)) =10 P(s)=r

= > nlr; fIGrle(t) 5 7) < + o,

f(r)=w

and f(¢(t)) is Lindelofian on || <1. Hence, we see that f(¢(¢)) is mero-
morphic of bounded type in Nevanlinna’s sense in || <1 from Heins’ result:
A Lindelséfian meromorphic function of the unit disc is of bounded type. So
f(¢(#)) has the same angular limit a.e. on the image M of M and we can con-
clude that f is constant by the theorem of Lusin and Priwaloff [8].

Similary we can see that there exists no non-constant single-valued mero-
morphic function with finite Dirichlet-integral on any Riemann surface belonging
to Uup. Thus, we have the following relations;

OHB_OGC UHBC OL—OGC OAB_OG
Oxp = Og C Unp C Op = Oe.

*)
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3. We shall deal with some operations introduced by Kuramochi [4] and
Heins [2] for the sequel. Let G be a subregion on a Riemann surface R, let u
be a positive harmonic function on R and let U be a positive harmonic function
on G vanishing continuously on 9G such that there exists at least one positive
superharmonic function on R dominating U on G (we shall call such a function
U admissible). We denote by I(#) and E¢(U) the upper envelope of the non-
negative subharmonic functions on 9G dominated by # and vanishing continu-
ously on oG and the lower envelope of the positive superharmonic functions
on R dominating U on G, respectively. It is easily verified that I;(#) and E.(U)
are harmonic in G and in R respectively, and that I;(#) vanishes continuously

on 9G.

We shall state some properties of these operations as lemmas.
LemMma 1. Operations I. and E. have the property of linearity.

Proof. We shall give a proof only for ..

For any positive number a, obviously the equality
I(,-(au) = aL;(u)
holds. Let v be the same one as ». Then

L{u)+ Li{v)=u+v on G.
Hence

L)+ L)l u+v)=u+v

on G. Consider max (I:(#+v) — %, 0) on G. It is subharmonic in G, vanishes
continuously on 3G and is dominated by » on G. Hence

Ilu+v) —u=max (Io(u+2) —u, 0)< I.(v)
and
I{u+v) = L(v) = u.
Hence we have

Li{u+v) - Liv)= I(w), e Ielu+0v)<L(u)+ L),
and therefore we can conclude that
I{u+v)= L)+ I.(v).

We can prove the linearity of E; in the similar way.
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LevmMma 2. I « E; is an identity, that is, for any admissible positive Irarmonic
Junction U on G,
I.[E:(U)]1=U.

Proof. It is evident that Eg(U)= U on G and we have on G

Ex(U) z LLE(U)]1 =z U.

Hence we have
Eo\U) = Eo[I(EAU))1 2 Ed V),

and, by Lemma 1,

E;lI(Ex(U))] = EglI:(Ex(U)) - U+ U]
= Eg[I(Ec(U)) = U1+ Ex(U).
Therefore
E:lI:(E.(U))-U]l=0,

and we can infer that

IG[EG( U)] =U.

LemMA 3. Let v be a positive harmonic function on R. If there exists an
admissible positive harmonic function U on G such that v is dominated by Ec(U),

then we can find an admissible function V on G such that
v=EV).
Proof. From v < E;(U), we have
U=ILLE(U)]=LIU(E(U) = v) +v]=LIE/(U) - v]+ I:(v).
Hence we have
EolI:(0) ]+ E[I(Ec(U) = 9)] = Ec(U).
On the other hand, obviously

Ecll:{(v)]1=v and E[I{EAU)—-v)]1< EAU) —v,

and we can conclude that
v=E;[I.(v)].

Putting V= I.(v), we see that V satisfies the conditions of the lemma.

Lemma 4. Let U and U; (i=1,2,...) be admissible positive harmonic
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Sunctions on G and let uw and w; (i =1, 2, . ..) be positive harmonic functions on
R IfU= éUi exists, then
Eo(U) = 3YE(TD).
If u= gu.- exists, then

In(u) = Z}Iu(u;).
Proof. For any integer n, U ZElUi and # =2 u;. Hence we have
i= i=1

E,(U)= EG(‘Z:;Ui) = ;:EG(M)
and
Ia(u) = Io(glui) = gla(ui)-
Therefore

Eq(U)zZ;EG(U;) and Ig(u)zglg(m).
By Lemma 3, we can find a positive harmonic function V' on G vanishing con-

tinuously on 3G such that E.(U) = E;(V) = 2 E:(U;). Hence, for any integer
=1

n,

U= LIE(U)Z V = LLE V)] LIS Ea(UN] = 230

Hence we can see that U =V and therefore
Eq(U) =Es(V) = }_%E(,«(Ui).

Next we shall prove the latter equality. If we take an arbitrary point p
on R, then we can find an integer # for given positive number ¢ such that
DY uilp) <e. From Io( D) a)(p)<= D) uil p) < we have
f=n+1 i=n+l i=n+l

To(w) () — eg@lmunxm < (i}lla(ui))(pl.

Since we can take ¢ as small as we please and p is an arbitrary point on R,

we have
I(u) = EIG(%‘).
i=1

and hence
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Iow) = ;f;‘;la(w).

We shall say that a positive harmonic function % is minimal if, for any
positive harmonic function » dominated by #, there exists a constant ¢ (0<¢=1)

such that v =cu#. Then we obtain the following lemma.

LeMMA 5. Let u be a positive minimal harmonic function on R. If I(u)

is positive, then Io(u) is also minimal on G.

Proof. Let U be a positive harmonic function on G dominated by Ip(u).
Then U vanishes continuously on 9G. We have

Eq(U) £ EglIz(%)]1< u,

and on account of the minimality of # we can find a constant ¢ (0 <¢ <1) such
that '
Ex(U) =cu.
Hence
U=I[EU)]=cl:(u).

Let HD be the class of non-negative harmonic functions, each of which is
the limiting function of a monotone non-increasing sequence of positive harmonic
functions with finite Dirichlet-integrals. We shall say that a positive harmonic
function « belonging to HD is minimal in HD if, for any positive member v of
HD dominated by #, there exists a constant ¢ (0 <c¢ < 1) such that v = cu.

Constantinescu and Cornea [1] proved that if # and » belong to HD, the
greatest harmonic minorant # A v of the superharmonic function min (%, ») and
the least harmonic majorant # V v of the subharmonic function max (%, v) also
belong to HD.

Lemma 6. Let u be a positive HD-minimal harmonic function on R, and let
G be a subregion not belonging to SOpnp. If there exists an admissible positive
harmonic function U on G having a finite Dirichlet-integral such that Eo(U)
dominates u on R, then I.(u) is also minimal in HD on G.

Proof. By Lemma 3 we can see that there exists an admissible funetion V
on G such that Eo( V') =u, because E¢(U)=u. Hence UzVand u=u NU=V
on G. Obviously # A U vanishes continuously on 2G. We see that u A U=V

because V is the upper envelope of positive subharmonic functions dominated
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by # and vanishing continuously on oG. Therefore V belongs to HD.

If W is a positive harmonic function on G belonging to HD and dominated
by V, then E;(W) also belongs to HD on R and E;(W) = cu for some constant
c (0<c<1). In fact, let {W;} be a monotone non-increasing sequence of
harmonic functions with finite Dirichlet-integrals having W as their limiting
function. Then the sequence {U A W;} also has W as their limiting function.
It is seen that Eq(UA W;)e HD and limE;(UAW;) = Es(W) = Es(V) = u.
Since # is minimal in HD on R, there exists a constant ¢ such that E;(W) = cu.

Hence we have W= I;[Es(W)]=cls(u) =cV. Thus we can conclude that
Is(#) is minimal in HD on G.

If M is a HD-indivisible set such that, for any HD-indivisible set M’ con-
taining M, the harmonic measure of M’ — M with respect to R is zero, then we
call M a maximal HD-indivisible set. Constantinescu-Cornea [1] proved that
M is HB (maximal HD)-indivisible if and only if the harmonic measure w(p ; M)
of M with respect to R is minimal (minimal in AD). For the problem when
subregions on a Riemann surface belonging to Uns or Usp belong to Unr or
Upnp, Lemmas 5 and 6 with this result give some answers.

The condition of the last lemma is equivalent to the condition “frei” given

by Constantinescu-Cornea [1].

4. According to Constantinescu and Cornea [1], we denote by Ous,(Oun,)
(1< n< =) the class of Riemann surfaces, the ideal boundary of which is null
or consists of at most # HB (maximal HD)-indivisible sets. These classes are
the same ones considered by Kuramochi [6]. In fact, as Constantinescu and
Cornea proved, Ogg,(Oup,) (1 <7 < o) coincides with the class of Riemann
surfaces on which there exist at most » number of linearly independent bounded
(Dirichlet-bounded) harmonic functions. We note that Omp, = Ous and Oupp,
= OHD-

Now, we give proofs of Kuramochi’s Theorems [5], [6].

Treorem 2. (Kuramochi) If a Riemann surface R belongs to Opp,— Og
(1=n < ) and a subregion G on R does not belong to SOug, then G belongs
to OL.

Proof. Suppose that the ideal boundary of R consists of just m (<)

number of HB-indivisible sets M; (i=1,2,..., m). Let w; (i=1,2, ..., m)
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be the harmonic measure of M; in R. Then each w; is minimal and >l w; =1.
i=1

Since G does not belong to SOgs, Icl= E'j]ll(,-(w,-) is positive. Consequently for
some 4y, Iz(w;,) is positive and minimal o‘r; G by Lemma 5.

We map the universal covering surface G® of G onto |t| < 1, and denote
the mapping function by p = ¢(¢). Let M be the set on |£] = 1 such that I(wi,) o9
has angular limit 1 a.e. on it and 0 a.e. on (|#| =1) — M. Then M is of measure
positive and on account of the minimulity of Io(w;,), M is an HB-indivisible set.
Hence the region G belongs to Uus and by the relation (™) we can see that
G € O;. Thus the proof is complete.

Kuroda [7] introduced a class O%s of Riemann surfaces, on every subregion
of which there exists no non-constant single-valued bounded analytic function
with a real part vanishing continuously on its relative boundary. He proved
that each Riemann surface belonging to O%z has Iversen property and gave the
relation

Onp C O%s C Oup

and for the class of Riemann surfaces with finite genus,
O¢ = Onp C Okp S Ous.

The subregion G of Theorem 2 obviously does not belong to O%s, because
there exist non-constant single-valued meromorphic functions on G not having
Iversen property. Hence we have

0:% 0.

Further, Ogp is not a subclass of O in virtue of T6ki's example [10] and we

obtain

0% Qup.

Tueorem 3. (Kuramochi) JIf a Riemann surface R belongs to Ognp,— O¢
(1= n =< x) and a subregion G on R does not belong to SOup, then G belongs
to O,u).

Proof. Suppose that the ideal boundary of R consists of just m (< n)
number of maximal HD-indivisible sets M; (¢=1,2,..., m). Let w; (=1, 2,
., m) be the harmonic measure of M; with respect to R. Then w; belongs

to HD and is minimal in HD (cf. [1]). Since G does not belong to SOup and
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since SOxp = SOxnpp, there exists a positive bounded harmonic function U having
a finite Dirichlet-integral and vanishing continuously on 9G. By Dirichlet princi-

ple we see that E;(U) has also a finite Dirichlet-integral and Es(U) = ga;w;.

L g.(v) = E(-L-0)

iy Ay
= wi,. Hence by Lemma 6, we can conclude that I;(w;,) is minimal in HD on G.

Since E;(U) is positive, for some i, «;, is positive and

We map the universal covering surface G* of G onto |#| <1 by ¢ and
denote by M the set on |¢| =1 such that I;(w;,) o ¢ has angular limit 1 a.e. on
M and 0 a.e. on (lt|=1) — M. 1t is seen that M is of positive measure and is
maximal HD-indivisible because of the HD-minimality of Iy(w;,) (cf.[1]). Hence
G € Ugp and by the relation (*) we can see that GE O4p. Thus our theorem
is proved.

5. In this section we shall state some results which are deduced from
Theorems 1 and 2.

TueoreM 4. If a Riemann surface R belongs to Ogg, (1< n < ), then any

non-constant single-valued meromorphic function f on R is locally of type-Bl.

Proof. Let £ be an arbitrary subregion on the w-plane having at least one
exterior point. Then all components of /™ '(2) belong to SOxs by Theorem 2.
Thus we can see that f is locally of type-Bl by Theorem 1.

CoroLLArRY. Let R be a Riemann surfuce belonging to Ogmp, (1S n < ™),
and let @ be the covering surface of the w-plane generated by a mon-constant
single-valued meromorphic function f on R. Then every connected piece On of @
on any disc 4 in the w-plane covers each point of 4 the same number of times

except for at most an Fs-set of capacity zero.

Proof. This corollary is immediate from Theorem 4 and Theorem 21.2

in [2].

THEOREM 5. Let R be a Riemann surface belonging to Opp, (1= n < o)
and let G be a subregion on R not belonging to SOus. Then the cluster set of
any non-constant single-valued meromorphic function f on G at the ideal boundary
of G is the whole w-plane, and the range of values of f contains all values of
the w-plane except for at most an Fs-set of capacity zero.

Proof. Without loss of generality, we may suppose that f is analytic on
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9G. By Theorem 2, G belongs to O, and f is not Lindelofian. Heins proved in
[3] that if, for some p, € G, (2 7(7)Ga(po, 7) < + oo for a set of w of positive
fr)=w

capacity, then f is Lindelséfian on G. Hence f takes each value infinitely often

except for an Fs-set of capacity zero.

6. Here we shall be concerned with the subsurfaces on Riemann surfaces
of the class Oup,.

THEOREM 6. Let f be a non-constant single-valued meromorphic function
on a Riemann surface R. If there exist a point wo, n—1 (n < ) number of
subregions ¢; and a sequence of Jordan regzons 2; of the w-plane such that c¢; N c;
=¢ for ix], we&E U Ci, 2: D 2ivy and ﬂ 2; = wy, and that, for each i, at least
one component 3; of f e and one component 4; of YL do not belong to
SOup, then R does mot belong to Oup,."

To prove this theorem, we give the following:

TueoreM 7. Let R be a Riemann surface. Then R does not belong to Ogpsp,
(Onp, 7esp.) (n< ) if there exist n+1 subregions Gi (i=0,1,2,...,n)
disjoint from each other on R such that G; & SOugs for all ¢ (Go< SOup and
Gi& SOnp for i=1, 2, ..., n resp.).

Proof. Suppose that R belongs to Ogsz,(Omp,). Then the boundary of R
consists of just m (<) number of HB (maximal HD)-indivisible sets Mz
(=1,2,...,m). Since G & SOup(SOup) (i=1,2, ..., n), we can find for
each 7% 0 in the same way as in the proofs of Theorems 2 and 3 a harmonic
measure wr(p) = w(p ; M) of My such that I;(wz) > 0. Furthermore we can
see that Iy(we) =0 for =0, ..., 7—1,¢+1,..., n. In fact, for 7 = j,

Eg; In(wr) + Eg, Io(wr) < wr,
and from the minimality of wr and the fact that sup Ig,(we) =1
G
Ec; Is(wr) = or.

Hence we have Eg,Io,(we) =0 and Is(wr) = Is; Eg,Io(0r) =0. Thus we can see

that, for any we, Is(wr) =0 and I (1) = I(,v,,(k}_‘_, wr) = 23 Is,(wp) = 0. This contra-
=1 k=1

dicts the condition: G, SOgg, which proves the theorem.

o The auther proved only the case #n=1 and the extension of the present form is due.
to Kuroda.
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Proof of Theorem 6. By Theorem 1, f is not locally of type-Bl, so by
Theorem 17.1 in [2] the set of points w in any closed neighbourhood of w,,
at which f is not of type -Bl, is of positive capacity. Let w; = w, be such a

-1
point, satisfying w: € U ¢i, then for some 7, 2; does not contain w, and

2iN (‘\=ch;) =¢. Choosing a positive number p satisfying that (Q,'U(HC;))
N (w—w| <p)=¢, we can find among components of f '(|lw—wi| <p), a
component 4, not belonging to SOxs and satisfying 4o N 4;=¢ and 4o N d; = ¢.
By Theorem 7, R does not belong to Oup,.

TueoreM 8. Let R be a Riemann surface belonging to Oup, (1=n= «),
let @ be the covering surface of the w-plane generated by a non-constant single-
valued meromorphic function f on R, and let ®, be a connected piece of O on
lw—wol <p. If the area of 0, is finite, then the restriction f, of f to the com-
ponent 4, of f ' lw—wol < p) corresponding to @, is of type-Bl of 4,. Hence
0, covers each point of |w—wol < p the same number of times except for at

most a closed set of capacity zero, and O, is finitely sheeted.

Proof. Suppose that f, is not of type-Bl. Then, by Theorem 1, there
exists a positive number p, < p such that a component 4, of /™ '(Jw —ws| < po)
exists and does not belong to SOur. Let » be the harmonic measure of |w — w!
=g, with respect to the ring domain (po < |w — wol < o), and let o™ be the
superharmonic function such that o™ is equal to w on py < |w—ws| < p and to
1 on |w—wo<p. Put A=max]|gradw®|. Then A is finite and D(w* o f)
< A’D(f,) = A’ x (the area of @,) < 4+ . Hence, by Dirichlet principle, the
greatest harmonic minorant # of w*°f of 4, has a finite Dirichlet-integral.
Since 4,, does not belong to SOps, there exists a positive bounded harmonic
function #, such that =0 on 94,, and sup %, =1. Denote by %, the subhar-
monic function such that #;" = %, on 4,, and % =0 on 4, — 4,,, then u <v* o f,,
0 < Eus < w™ o f because of superharmonicity of o™ of, and we can conclude
that 0 < Eu; <u and 4, does not belong to SOnp. This contradicts Theorem 3.
Thus our theorem is established.

It is evident that this theorem implies Kuramochi’s result (Theorem 12 in

[61).
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