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Abstract

This paper defines descriptive, Riemann, and constructive integrals equivalent to the approximately
continuous integral of Burkill.

1980 Mathematics subject classification (Amer. Math. Soc.): 26 A 39.

1. Introduction

The simplest and most natural integral that integrates finite approximate deriva-
tives is that of Burkill, [4]. However except for an important work of Tolstov, [25],
it has not received much attention, in contrast to some fairly extensive investiga-
tions of other approximately continuous integrals; see Bullen, [3], for details and
references. In this paper several alternative definitions of this Perron integral will
be given; a descriptive integral, a totalization process, and a Riemann-like integral
that has been suggested by Henstock, [6-8].

2. The Burkill integral and its basic properties

DEFINITION 1. (a) Let/: [a, b] -» R; then M is a major function of/, M G M*,
if and only if M: [a, b] -> R and:

(i) M is approximately continuous, M E Cap;
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12 ] The Burkill integral 237

(iii) lM'ap > -oo n.e. (except on a countable set);
( iv) /M^>/a .e .
(b) m is a minor function of / , m G M# f, if and only if -m G Af_*.
(c) F is P^-integrable,/ E P*p if and only if

-oo < sup{/; t = m{b), m G M# f) = inf{/; t - M(b), M G Mf) < oo,

when the common value will be written / / / .

REMARKS. (1) In case of ambiguity we will talk about 7^-major functions on
[a, b], and so on.

(2) Clearly if / G P*p then Mf * 0 , M#t/ * 0 .

LEMMA 2. (a) / / M G Mf then M is measurable, M G l[ACG], M'ap exists,
finite, a.e.

(b) If M G Mf and m G A/# ^ //ien M — m is non-negative, increasing, continu-
ous and differentiable a.e.

(c)IfMf ¥= 0 thenf< oo a.e.
(d) / / / G P*p then f is finite a.e.

PROOF, (a) follows from results due to Ridder, [17,18], while (b) follows from a
result of Tolstov, [24], and O'Malley, [15], Sunouchi and Utagawa, [22]. (c), (d)
are easy consequences of Definition 1.

REMARKS. (1) A function is l[ACG] when [a, b] is a countable union of closed
sets on each of which it is lower absolutely continuous (see Ridder, [17-18]).

(2) The basic properties of the integral follow in the usual way; see, for
instance, Burkill, [4]. In particular i f / G P*p then the /"^-primitive, F(x) = f*f,
a < x < b, is well-defined.

THEOREM 3. (a) / / / G P*p, M G Mf, m £ M#J, F(x) = jff then M - F and
F — m are non-negative, increasing, continuous and differentiable a.e.

(b) / / / G P*p, F{x) = tffthen F G [ACG], F G Cap andF'ap = f a.e.
(c) / / / G P*p then f is measurable.
(d) IfFG Cap and (i) F^p(x) exists, finite, x$E,\E\=0, (ii) uF'ap and lF'ap are

finite n.e., then if

f{x) = F'ap(x), x£E,

= 0, xEE,
f G P*
J c - rap-
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238 P. S. Bullen [3]

(e) The P*p- and the D-integrals are compatible.
(f) / / / £ P*p[a, Pi M alla,P,a<a<P<b and if

hmff

exists, with value I say, then f G P*p[a, b] and j*f = I.
(g) Let f G P*p, F(x) = f*f then for allX,O<X<l,P perfect, there exists a

closed portion, Q, of P, having, on [a, b], closed contiguous intervals [an, bn\,
n G N, such that for all n G N there exists an En C[an, bn], and an M > 0, with
| En \> (1 - \){bn - an) and such that for all xn G En, 2n \ F(xn) - F(an)\< M
and2n\F(bn)-F(xn)\<M.

(h) D - P;p # 0 and Pa*p-D*0.

PROOF, (b) is due to Kubota, [9]; (e) is in Kubota, [10]; (f) is a result of
Grimshaw, [5]; (g) is due to Tolstov, [25]; the rest either follow easily from
Lemma 2, or other parts of Theorem 3, or can be found in these references, or in
Burkill, [4].

Definition 1 is not exactly that given in Burkill, [4], and the object of the next
lemma is to show that the two definitions give equivalent integrals. Let Definition
l(a) be modified by replacing (iii) and (iv) by:

(iii)1 M'ap > -<x>;

and denote the resulting class of major functions by Mf1. Clearly Mf1 C Mf.

LEMMA 4. For all e > 0, M G Mf there exists M' G Mf1 such that

(1) M\b) <M{b) + e.

PROOF, (a) Suppose Definition l(a) is modified by replacing (iii) by:
(iii)2 lM'ap > -oo, and call the resulting class of major functions Mf2. We first

prove the lemma with 1 replaced by 2.
First suppose that the countable exceptional set in Definition l(a)(iii) is the

singleton {c}, a < c < b (the cases c = a, c = b can be discussed in a similar
way).

Let e > 0, M G Mf and let A be a set of density 1 at c on which M is
continuous; choose ax,bx so that a < a , < c < bx <b and the oscillation of M on
A fl [a,, bx] is less than e. Define w by

a(x) = sup{t: t = | M(y) - M(c) | ,y G A , \y - c\<\ x - c\}
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[41 The Burkill integral 239

and let x be an increasing, differentiable function with x(«) = 0, x(b) — e»
X'(c) = oo. Now define

M2(x) = M(x) + x(x), a<x<alt

= M(x)+X(x) + «(a t ) -a(x), a, < x < c,

= M(x)

/ 2then M2 6 M/*2 and (1) holds.
If we let A = M2 — M = x + M then the essential properties of ju, are that it is

increasing, continuous, n(a) = 0, n(b) < 2e, and on a set of h having density 1 at
the origin

M{c + h)~ M(c) + ti(c + h) - n(c) > 0.

Now suppose that the countable exceptional set in Definition l(a)(iii) is cn,
n G N, and for each cn define a AM, as A was defined above, but with e replaced
by e2"; then if M2 = M + 2B An, M G Mf2 and (1) holds.

(b) From Lemma 2(a) it follows that (iv), in the definition of Mf2, can be
replaced by

(iv)2 M'ap > / , a.e.,
without affecting the definition of the integral.

(c) From (b) given e > 0, M G Mf there exists M2 G Mf2, satisfying (iv)2, such
that (1) holds. Now let

E = {x; (M2)'ap(x) < F(x), or (M2)'ap(x) does not exist);

then | £ | = 0. If then T E Gs, E C T, \T\=0 there exists a function g: [a, b] -> R
such that (i) g E AC, (ii) g is increasing, (iii) g is differentiable, (iv) g'(x) = oo,
x G T, (v) g'(x) ¥= oo, x $ T, (vi) g(a) - 0, (vii) g(b) < e; Zahorski, [27], Tol-
stov, [26]. Now if M1 = M2 + g then M1 G Mf1 and (1) holds.

REMARKS. (1) The basic ideas for this lemma can be found in Aleksandrov, [1],
Bosanquet, [2] and Grimshaw, [5].

(2) Burkill used the class Mf2 to define his integral. It should also be remarked
that there would be no loss in generality in assuming, in Definition 1, that / is
finite, for in any case integrable functions are finite a.e. and if / , — f2 a.e. then / ,
and f2 are either both not integrable, or both integrable with the same integral.

Following Henstock, [6], a definition of Ward type can be given. Suppose
Definition l(a) is modified by replacing (iii) and (iv) by:

(iii)^ For all x, a < x < b, there exists a set Ex of density 1 at x such that
M(u) — M(v) > f(x)(u — v), u < x < v, u, v G Ex, and call the resulting class
of major functions WMf.
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As in Henstock it follows that the integral defined this way, the WP*-integral,
is equivalent to the one obtained from Definition 1 in which all the exceptional
sets (Definition l(a), (iii), (iv)) are empty, and the function / finite. Hence from
the above discussion this integral of Ward type is equivalent to the P^-integral.

A different sort of variant of Definition 1 has been given by Sunouchi and
Utagawa, [22]. In Definition l(a) replace (1), (iii) and (iv) by:

SU-(i) M is measurable;
5f/-(iii) lM'ap > -oo (that is, (iii)2);

REMARK. The idea for this generalization is due to Saks, [20], who did the same
for the classical Perron integral; he showed that the apparently more general
integral was in fact equivalent to the original definition. We shall do the same in
the present situation; until then we will call the integral defined this way the
SfZ-P^-integral. In their work, Sunouchi and Utagawa assumed/to be measura-
ble but this is unnecessary as this property of integrable / can be proved
(Theorem 3(c)).

3. A Riemann definition

A Riemann definition of an integral equivalent to the Burkill integral is
suggested in Henstock, [7,8], but no details are given.

DEFINITION 1. (a) A collection, A, of closed sub-intervals of [a, b] is an
approximate full cover of [a, b], an AFC, if and only if for all x, a < x < b, there
exists a measurable set Dx, x G Dx, of density 1 at x, such that if a < x < /?,
a, j3 G Dx, then [a, ft] G A.

(b) If A is an AFC of [a, b] then a A-partition of [a, b] is a {ao,...,an;
* „ . . . , * „ } , where a = a0 < • • • < an = b, a,_, < x, < a,, a,_,, a, G Dx, 1 < / <
n.

LEMMA 2. / / A is an AFC of [a, b] and a < a < /? < b then there exists a
^-partition of [a, /?].

PROOF. This is a result of Thomson, [23].

DEFINITION 3. (a) If /: [a, b] -* rR then / is /{^-integrable, / G R*ap, if and
only if there exists / such that for all e > 0 there exists AFC, A, of [a, b], such
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that for all A-partitions {a0,... ,an; xu... ,xn) of [a, b] we have that

/ - 2/(*,•)(«,-*,•,)<«.

and t h e n / / / = / .
(b) If / : [a, b]-*R then / is Fl^-integrable, / G VR*ap, if and only if there

exists F: [a, b] -» R such that for all e > 0 there exists AFC, A, of [a, b], and a
non-decreasing <j>: [a, b] -> R, with 4>(b) - <j>(a) < e, such that for all u, v,
u < x «£ v, u, v G Dx, we have

| F(v) - F(u) -f(x)(v - u) |< *(o) - *(«),

and then ja
bf= F(b) - F(a).

REMARKS. (1) The /^-integral is an example of what Henstock, [6], calls a
Riemann complete integral, while the KK^-integral is an example of what he
calls a variational integral; see also Kubota, [13,14].

(2) The basic properties of these integrals follow in the standard manner; in
particular we can talk of the /J^-primitive, and the function F in (b) above
(unique by Theorem 5 below) is the KR^-primitive.

(3) It is also easily seen that if R* denotes Henstock's Riemann complete
integral, that is equivalent to the classical Perron integral, then R* C R*ap.

LEMMA 4. (a) / G R*p, with primitive F, if and only if for all e > 0 there exists
AFC, A, of [a, b], such that for all A-partitions {a0,... ,an; x , , . . . ,xn) of [a, b] we
have that

2 | F(a,) - F{a,_x) -/(*,)(<!,. - «,__,) | < e.

(b) There is no loss in generality if, in Definition 3(b), it is assumed that <j> G Cap.

PROOF. The proofs are similar to those for the i?*-integral; Henstock, [7; page
33,41].

THEOREM 5. / G R*ap if and only if f G VR*ap, and then the integrals are equal.

PROOF. The proof follows that in Henstock [7; page 40]; see also Kubota [14].

REMARK. If E C [a, b], | E | = 0 and if

= 0, x&E,
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then \E G R* and /a*l£ = 0: This can be used, in the usual way, to extend
Definition 3 to functions that are finite a.e.

Let A be an A F C of [a, b], IT — {ao,...,an; xx,...,xn) a A-partition of [a, b\;

following Pfeffer, [16], we will write

ns

S(f;a,b;«)= 2/(*,•)(«,• ~ a , - i ) .
/ = i

uS(f; a, b; A) = sup5(/; a, b; 77),

uS(f; a, b) = inf uS(f; a, b; A),
A

with analogous definitions of lS(f\ a, b; A) and lS(f; a, b).

THEOREM 6. / G R*ap if and only if-00 < lS(f; a, b) = uS(f; a, b) < 00.

PROOF. The proof follows that in Pfeffer, [16].

We can now show that the P*p- and StA-P^-integrals are equivalent, and are
equivalent to the /^-integral.

LEMMA 7. If A = inf{r; t = M(b), M G SU-Mf*} then A > uS(f; a, b).

PROOF. Let us assume A < uS(f; a, b), when there exists M G SU-M* such
that A/(fc)<wS(/; a,b).

Given e > 0, x, a < x < b, set Ex of density 1 at x such that if u, v G Ex then

M(v) - M(u) > (f(x) - e)(v - u).

This defines an AFC, A, of [a, b]; let w = {ao,...,an; x,...,xn) be a A-parti-

tion of [a, b] and consider
n

S(f, a, b; n) = 2 /(*,-)(*,• " «,->) < M(b) + e(b - u);
1 = 1

or

uS(f;a,b)< M(b).

COROLLARY 8. 5^/-^* C .R* .̂

PROOF. Immediate from Lemma 7 and Theorem 6.

LEMMA 9. ra*^ C Pa*p.
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PROOF. L e t / G VR*ap, F,<t> as given in Definition 3(b), <t> E Cap, by Lemma

4(b); consider

M = F-V <S>, m = F —<>.

Then M G WMf, m G WM#J and so / G WP*p and hence / G P*p.

COROLLARY 10. (a) P*p = SUPa*p. (b) R*ap = Pa*p.

PROOF. Immediate from Corollary 8, Lemma 9 and Theorem 5.

REMARK. The above method can be used to given an alternative proof of Sak's
result for the classical Perron integral.

4. A descriptive definition

DEFINITION 1. (a) F G AC*p on a closed set £ , F G AC*p(E), if and only if (i)
F G AC(E), (ii) for all X, 0 < X < 1, there exists, on each closed contiguous
interval of E, [an, bn], a set £x , and an Mx > 0, | £ x |> (1 - X){bn - an) such
that for all xn G £B\ 2 n e ^ | F(xn) - F(an) |< MA, and 2 n e ^ | F(bn) - F(xn)\<
M\

(b) FG [ACG*p\ on [a, b] if and only if [a, b] = U n e A ,£ n , £„ closed and
FGAQp(En),nEN.

REMARK. It follows from Solomon's lemma, [1], that Definition l(b) can be
rephrased as:

F G [ACG*p] on [a, b] if and only if for all X, 0 < A < 1, P perfect,
there exists a closed portion Q of P, having on [a, b] closed contiguous
intervals [an, bn], n G N, such that for all n G N there exists £n

x C
K , U Mx > 0, | £„* | > (1 - \X6B - an) and such that for all xn E Ex,

n) ~ F(an) |< M x and 2 n 6 ; v | F(fon) - F(X J

We will first obtain some alternative forms of Definition l(a). Let us define for
F:[a, b] ^ R a n d , 4 G [a, b]

u(F; A) = sup{t; t =\F(x) - F(y)\ ,x,yEA).
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LEMMA 2. / / £ is a bounded closed set, with extremities a, b, a < b, and closed
contiguous intervals in [a, b], [an, bn], n > 1, then if £„ C [an, bn], an, bn G En,
n^\,E0 = EU Un^En,

U(F; Eo) ^ V(F; E) + 2 ^ <o(F; En),

where V(F; E) is the variation of F on E.

(This is a slight generalization of a result in Saks, [1; page 231].)

LEMMA 3. If f & Cap[a, b] then for all X, 0 < A < 1, there exists Ex C [a, b],
a,b G Ex such that | £ X | > ( 1 - X)(b - a) and « (F ; Ex) < oo.

PROOF. Given e > 0 , x G [a, b], X, 0 < X < 1, there exists S > 0, Ex C
]x - 8, x + S[ such that if 0 < h < S, | Ex n [x - h, x + h] | > 2(1 - X)h and if
M < x < v, u, v G £x , then | F(v) — F(u) | < e.

The set of such Ex, a *£ x < fc, defines an AFC, A, of [a, b]; let
{a0, . . .,ap; jt,,.. .,-Xp} be a A-partition of [a, 6]: and define

EX = U £„.
A : = l

Then |£X|>(1 - X)(6 - a) and if «, u G £x, « G [am_,, am], u e[an_,,aB],
say,

| F ( 0 ) - / t i i ) | < "2 I ^ J - ^ f l * - , ) !

+ \F(am)-F(u)\+\F(v)-F(an^,)\<ep,

which is sufficient to prove the lemma.

THEOREM 4. F G AC*p(E) if and only //(a) F G /4C(F), (b)/or allX,0<X< 1,
wtt, o« eac/i closed contiguous interval [an, bn] of E, a set Ex, an, bn G f ,̂

n e ^ w ( F ; £n
A) < oo.

PROOF. Let FGAC*p(E), £ x = Ex U {aB, fcn}, where £n
A are the sets of

Definition l(a)(ii); let xn,yn G Ex, n G TV. Then

|*U) - ^(^) \<\FM ~ Ha.) | + i n j j - F(bH) | +|F(aJ - F(bn)\ ;
since F G ̂ C(£), 2 n e w | F (aJ - F(bn) |< oo and the result follows from Defini-

tion l(a)(ii). The converse is immediate.
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THEOREM 5. F E AC*p(E) if and only if for all e > 0 there exists 5 > 0 such that
for all a, < 0, < • • • < 0p, points of E, if 2£=1(j8* - ak) < 8 then for all X,
0 < X < 1, there exists £* C [a,, j8J, a,, pk G £*, | £ x |> (1 - X)(& - a,),

£=]u(F; E£) < e.

PROOF, (i) Let F G J 4 Q , ( £ ) ; then F e ^ C ( £ ) and so given e > 0, there exists
8 > 0 such that for all a, < 0, < • • • < 0p, points of E, if 2£ = 1 (& - aA) < 8
then 2^=1V(i;'; £n[afc, j8^]) < e. Further, by Theorem 4, and with its notation,
there exists n0 such that "Zn>nu(F; E%) < e.

Let 80 = min{8; bn — an, n < n0} and let a, < /?, < • • • < f}p, points of E, be
such that 2jf=1j8fc - a t < So. Define

£^ = £ n [ a , , ^ ] u U E*

where

clearly if n EAft, then n > «0. By Lemma 2,

<o(F; 4 ) <F(F; £„[«„&])+ 2

Hence

(ii) To prove the converse first note that the condition given implies that
F E AC(E). Using the notation of Definition l(a)(ii) let No be such that if n > n0

then 2,n>n<J(bn - an) < 8: then from the condition given E* C [an, 6n], aB, fen G
£ n \ | £n

x | > (1 - X)(bn - an) and 2n>noco(F; £*) < e.
If n < n0 divide each [an, fen] into a finite number of intervals each of length

less than 8, and we easily see that there exists E* C [an, bn], \ E^ \ > (1 — \)(bn —
an) and w(F; F,n

x) < oo. From this it follows that F G AC*p(E).

DEFINITION 6. Let £ be a closed set, with closed contiguous integrals [an, bn],
n G N; let x G E', Ex a set of unit density at x such that there exists e > 0 with
an, bn G Fj if [an, bn] C ]x — \e, x + JE[, say if n E Nx for short; we will write
for F: [a, b] -» R, a, fc the extremities of £ ,

sup

THEOREM 7. / / F G AC*p(E) then (a) F G / 1 C ( £ ) , (b) for all x G £ ' ,
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PROOF. It suffices to prove (b). Since F G AC*p(E), by Theorem 4, for all X,
0 < X < 1, there exists nx such that

y u(F' FM < —

Let ex = minn^nx(bn - an), NxX - {n; [an, bn] C ]x - ^ex, x + ^ex[) when
2 n E ^ x - w ( F , Fn

x) < 1/2X; put F x = UXeA, x F x . Now define £ ° = U n > 1 F .y 2 ,
eo = suPn=»ieiA,> w h e n E° c U ~ K ' x + ^eo[; let Nx = {«; [an, bn] C
]x - ^£0, x + \eo[) and finally F x = £ ° U £ D ]x - ^e0, x + %eo[.

Then Fx has density 1 at x and if xn, yn E Ex n [an, Z>n], « G iV ,̂

yJI= 2 2 |F(XJ-F(^)|<I,

which completes the proof.

THEOREM 8. If E is a closed set with extremities a, b, a < b, F: [a, b] -* R and if
(a) F G Ca;,[a, b], (b) F G ,4C(£), (c) for all x E £ ' , 2n£Nan,ap(F) < oo,

PROOF. If x E E' consider Ex D [an, 6n], n G Nx, then for all X, 0 < X < 1,
there exists E* C [fl|1, bn\, an, bn G £n

x, such that | E* \> (1 - A)(fcn - fl(I) and
clearly u(F; E*) < un ap(F). The family of ]x — %e, x + JE[ covers E' and so a
finite sub-family of these intervals also covers E'. Hence there exists a finite set of
integers No such that 2n>Nga(F; £ x ) < oo; since f £ Cap[a, b], the intervals
[an, bn], n G No, can be handled using Lemma 3.

DEFINITION 9. If £ is a closed set with extremities a, b, F: [a, b] -> R, then F is
lAC*p on E, F G lAC*p{E) if and only if for all e > 0 there exists 8 > 0 such that
for all a, < 0, < • • • < $p, points of £ , if 2£ = 1 ( /^ - a^) < 8, then for all X,
0 < X < 1, there exists E% C [a t , 0k], ak, fik G £t

x, | E$ | > (1 -
such that for all x^ G £^, 1 < k < />,

2|

REMARKS. (1) An analogous definition can be made for F G uAc*p(E) and,
from Theorem 5, F G AC*p(E) if and only if F G AC*p(E) n lAC*p(E).

(2) Further, as in Definition l(b), we can now define the classes u[ACG* ] and
t[ACG*ap].
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THEOREM 10. / / F: [a, b]^R, F £ Cap[a, b], lF'ap > -oo n.e. then F £
l[ACG*ap).

PROOF. Ridder, [19], proves under these conditions that F £ l[ACG\, the rest
follows from Tolstov's proof of Theorem 1.3(g), Tolstov, [25].

REMARK. The basic lemma in Tolstov, [25], can be used to shorten Ridder's
result since it shows that certain sets in Ridder's proof are closed.

COROLLARY 12. / / F: [a, b] -> R, F £ Cap[a, b], -oo < lF'ap < uF'ap < oo, n.e.
then F £ [ACG^].

We can now define a descriptive integral that will be equivalent to the
/^-integral.

DEFINITION 13. / / / : [a, b] -» R then f £ D*p, f is D*p-integrable, if and only if
there exists F £ Cap[a, b], F £ [ACG%\ andF'ap = fa.e.; then fa*f = F{x) - F(a).

REMARK. The basic properties of the class of approximately continuous -[ACG]
functions, of which the approximately continuous -[ACG*p] functions is a
sub-class, Ridder, [18,19], Kubota, [9], show that this definition is meaningful.

THEOREM 14. / / / £ P*p then f £ D*p, with integrals equal.

PROOF. This follows from Theorems 1.3(b), (g), and the remark following
Definition 1.

To prove the converse of Theorem 14 we will use the .R^-integral and for this
need to show that this integral has what are usually called Cauchy and Harnack
properties. That the /^-integral has the Cauchy property follows from the fact
that the equivalent /^-integral does, Theorem 1.3(f), but we will give an indepen-
dent proof.

THEOREM 15. / / / £ R*p[a, P],for all @, 0, a < a < 0 < b and if

exists, with value I say, then f £ R* [a, b], and fjjf = I.

https://doi.org/10.1017/S1446788700025738 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025738


248 P. S. Bullen [13]

PROOF. It is sufficient to consider the case where for all /}, a < /? < b,
f G R*[a, p] and Urn J^f = I. Let a = ft, < 0, < • • •, l i m ^ f l , = 6, e > 0,

then since A: > 1,/ G R*p[Pk, &_,], there exists AFC, Ak, of [^, £*_,] such that
for all A^-partitions of [Pk,Pk-t],

f~

},

£

Since lim a f%f = / , given e > 0 there exists 8 > 0 and a set A of density 1 at b,

A C[b-8, b], such that if xGA, \ I - J*f\< e, and \(b- x)f(b)\< e. A =

Uxe-4[jc, 6] U U^-^Afc is an AFC of [a, b] and consider the A-partition
{ao,...,an;xl,...,xn} of [a, b]:

i- 2/UK*,--«,-i
n-\

• - 2 .
i=\

and so / / / exists, with value /.

THEOREM 16. Let E be a perfect set, end points a, b, with closed contiguous
intervals in [a, b], [an, bn], n G TV; suppose that f\E G R*p[a, b] and that for all
n G TV, / G R*ap[an, bn]; suppose further that for all x G E there exists a set Ex of
unit density at x, 8 > 0, with an, bn G Ex if [an, bn] C ]x — j8, x + \8[, n G Nx,
for short and'2neN{sapa peE n [ a b ] \ f£f\] < oo; thenfG R*ap[a, b] and

PROOF. It is sufficient to prove that/(I — lE) G R*ap[a, b]. Note that the above
conditions imply that for all e > 0 there exists nQ such that

sup

and so, in particular, the right-hand side of (1) is defined.
For each n G TV there exists AFC An of [an, bn] such that for all An-partitions

At each x G £ there exists Exd Ex, of density 1 at x, containing all an, fon,
n > «0, and [«„, bn] C]x -\8,x+ ^8[: let £* = {[«, u]; u < JC < 0, M,U G EX).
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Consider A = UneA,An U UX(EEEX, an AFC on [a, b], and {ao,...,ap;
xu...,xp} any A-partition of [a, b\.

nEN 1 = 1

< 2
M>n0

<2e,

which completes the proof.

THEOREM 17. / / / D* then f R*p and the integrals are equal.

PROOF. Let / £ D*p, E = {x; a < x < 6 and / is not .R^-integrable in some
neighbourhood of x}; assume E ^ 0 . From Theorem 15, £ is perfect and if
[an, bn], n £ N are the closed continuous intervals of E, in [a, b], then / £
*y t f n , fcj, neN.U Fix) = D*p - f*f then / £ [ACG^] and so E contains a
portion Eo on which F is AC*p; let a, /S be the extremities of Eo. Since
F G AC(E0), F'ap — /a .e . on Eo and/ i s L-integrable there, and s o / l £ £ R*p[a, b].
Further since F £ AC*p(E0), by Theorem 8, all the conditions of Theorem 16 are
satisfied on [a, /}], and so / £ R*p[a, )8]. This proves that £ = 0 , and so

COROLLARY 18. = R*ap = D*p.

5. An approximate total

The approximate-total* of / , / : [a, b] -> R, 7 ^ - / / / , is constructed by the
transfinite induction as indicated below; if the construction is possible we say that
/"£ T*

The process uses four operations:
(1) if a < a < j8 < 6, / G L[a, )8] then 7J, - fff =L- f'f;
(2) if for all a', $', a < a < a' < /?' < 0 < b we have evaluated 7^, - fg'f and

if

exists, then 7^, - / f / i s defined to be this limit;
(3) if T* - /f/ and r* = / / / , a < a < )8 <

f is defined to be their sum;
fe, have been evaluated then

ap

https://doi.org/10.1017/S1446788700025738 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025738


250 P. S. Bullen [ is]

(4) if P C [a, b] is perfect, with extremities a, /?, and if f\P £ L[a, /?], and if
/ £ Tfp[an, fin], [(*„,/$„] being the closed contiguous intervals of P in [a, /?],
n E N, and if further for all x e P there exists a set £x of density 1 at x, S > 0
with an, &„ £ £,, if [an, bn] C ]x - {8, x + ±8[, n G Nx, for short, and

supa,^,£ n[an ^ , | T;p - fgf\} < oo, then T*p - /£/ is evaluated as L -

REMARK. This operation is related to that used in an integral defined by
Kubota, [11,12], in the same way as the corresponding operation in the special
Denjoy integral is related to that in the general Denjoy integral; Saks, [20; page
255].

The construction of T*p — / / / can now be described as follows.

Stage 1: Step 1. Let E = {x; a < x < b, f is not summable at x). If E is not
nowhere dense,/ $ T£ , if E is nowhere dense proceed to

Step 2. For all [a, /8], [a, /?] D E = 0 compute Tfp - /f /by operation (1).
Step 3. If [a, /?] is a closed contiguous interval of E see if

T*ap - ff

exists; if not/ £ T£p, if so compute T£p — f£f by operation (2).
Step 4. For all [a, /?], [a, /?] n E' = 0 compute T£p - /.f/by operation (3).
Step 5. Applying step 3 to the contiguous intervals of £", then by a transfinite

process using steps 4 and 3, we either find t h a t / £ T*p, or will have computed
T*p — jif for all [a, /?], closed contiguous intervals of the perfect kernel P of E; if
P = 0 we have completed the calculation, if not proceed to

Stage 2: Step 1. Let £ = {x; x G P and/1^ is not summable at x). If E is not
nowhere dense in P, f £ 7^,; if £ is nowhere dense on P, proceed to

Step 2. For all [a, £], [a, /?] D E - 0 compute Tfp- / f /as described in stage
3 below. If this is not possible/ £ T*p, if it is use steps 3, 4 of stage 1 to compute,
if possible T*p — f£f for all [a, /?], closed contiguous intervals of the perfect
kernel of E.

Step 3. A transfinite process using the above steps then either finds / £ T*p or
computes T£p — f£f on the closed contiguous intervals of £, = E, E2 — E,
£3, . . . ,EX,..., where if X has a predecessor Ex is nowhere dense in the perfect
kernel, P\-\ of Ex_l and Ex = {x; x G / \ - i and/ lp is not summable at x},
while if X has no predecessor Ex — D <^£M- For some »< < fl, £„ = 0 , £„_, =̂ 0 ,
that is, either Pr_x = 0 or /1/ , ( G L[a, b\, in either case stages 1-3 applied to
£„_, completes the computation.

https://doi.org/10.1017/S1446788700025738 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025738


[161 The Burkill integral 251

Stage 3: (From step 2 of stage 2 we have to compute T*p — j£f where [a, /?]
defines a closed portion of a perfect set P, Q say, wi th / l e summable, and on the
closed contiguous intervals in [a, /}] of Q, [an, /?„], T*p — /^-/has already been
computed, n £ TV.)

Step 1. Let * be a regular point of Q if there exists a set Ex, of density 1 at x,
8>0, with an, #, £ £x if [an, /?„] C ]JC - ^5, x + ±8[, n £ Nx for short, and
2n G^{supQ,.^e^nK./sjl7?/ ,- /a^'/l) < °o; let E be the set of non-regular
points of Q. If E is not nowhere dense in Q, f £ ra*p, if it is proceed to

Step 2. For all [«', 0'], [a', 01 n E = 0 compute 7^, - /£'/by operation (4).
Step 3. Proceed as in stage 1 to obtain T*p - j$f on all [«', 0'] closed

contiguous intervals of the perfect kernel of E; then proceed to stage 2 again.

To facilitate the discussion of the 7^,-integral we define for all a, 0 < a < 12,
on [a, b] an integral L*p"; this follows the ideas of Saks, [20], and Kubota,
[11,12].

(a)£# = L.
(b) If for all a < /? < fi we have defined L*p" in such a way that the integrals

are compatible and if a < a' < /? then L*p
a C l*p

a' then if is the integral defined
by

/(•= u t : ; , *?-fbf=L:r-fbf,

where

«0 = m i n { « ; / £ L * / } -

(c) (i) If 0 < ft then /f is the integral (/f )c
ap, see Definition l(a) below; and

see Definition l(b) below;
(ii) if /? = fi,

DEFINITION 1. If / is an integral let Sf = S — {x; f is not 7-integrable at x);
then:

(a) the approximate Cauchy extension of /, l£p, is defined as follows: / £ /£, if
and only if there exists F £ Cap such that if [a', b'] n S = $ then / - ja'f —
F(b') - F(a') then lc

ap - }a
bf = F(b) - F{a).

(b) the approximate Harnack* extension of /, I"p, is defined as follows:
/ £ I"* if and only if ( i ) / l s £ L, (ii) if [an, bn], n G N are the closed contiguous
intervals of S in [a, b] then/is /-integrable on each, and if x is a limit point of the
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[an, bn] there exists a set Ex of unit density, S > 0, with an, bn £ Ex if [an, bn] C
]x -$8,x+ ±8[, x G Nx for short, and 2n 6^{supa, f t , eBiin[a.,b.\ I 7 " / # / l >
< oo, then

The following theorem is then easily deduced, using the methods of Saks, [20],
and Kubota, [11,12].

THEOREM2. (a)((L*af )c
ap)"a'P = K?•

p p

(d) If / is an approximately continuous integral such that (i) L C /, (ii)
ZpKp = I' then D:p C / .

COROLLARY 3. P*p = R*ap = D*ap = T*ap = L*af.
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