
Canad. J. Math. Vol. 65 (4), 2013 pp. 843–862
http://dx.doi.org/10.4153/CJM-2013-008-4
c©Canadian Mathematical Society 2013

3-torsion in the Homology of Complexes of
Graphs of Bounded Degree
Jakob Jonsson

Abstract. For δ ≥ 1 and n ≥ 1, consider the simplicial complex of graphs on n vertices in which each
vertex has degree at most δ; we identify a given graph with its edge set and admit one loop at each
vertex. This complex is of some importance in the theory of semigroup algebras. When δ = 1, we
obtain the matching complex, for which it is known that there is 3-torsion in degree d of the homology
whenever (n − 4)/3 ≤ d ≤ (n − 6)/2. This paper establishes similar bounds for δ ≥ 2. Specifically,
there is 3-torsion in degree d whenever

(3δ − 1)n − 8

6
≤ d ≤

δ(n − 1) − 4

2
.

The procedure for detecting torsion is to construct an explicit cycle z that is easily seen to have the
property that 3z is a boundary. Defining a homomorphism that sends z to a non-boundary element
in the chain complex of a certain matching complex, we obtain that z itself is a non-boundary. In
particular, the homology class of z has order 3.

1 Introduction

The aim of this paper is to examine the integral homology of certain simplicial com-
plexes defined in terms of degree bounds of graphs. Specifically, each face in a given
complex corresponds to a graph such that the degree of each vertex is bounded from
above by a certain fixed value. The rational homology has been computed [7], but not
very much is known about the integral homology. This paper makes some progress
on the latter problem, detecting 3-torsion in the homology for various choices of
parameters.

Let us formulate the problem more precisely, starting with basic graph-theoretic
definitions. We refer to the positive integers as vertices. An edge is an unordered pair
{v,w} of vertices, where we allow v = w. We will often write vw instead of {v,w}.
An edge of the form vv is a loop. The vertices of an edge are the endpoints of the edge.
We refer to an edge set E as being on a vertex set V if the endpoints of the edges in
E all belong to V . A graph (more precisely, a simple graph admitting loops) is a pair
(V, E) such that E is an edge set on the vertex set V . We will mainly speak of edge sets
and only involve graphs when the underlying vertex set is not clear from context.

For an edge set σ, the degree degσ(v) of a vertex v is the number of occurrences
of v in σ; we adopt the convention that v occurs twice in the loop vv. For example,
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844 J. Jonsson

for the edge set σ = {aa, ab, ac, bc, bd}, we have that degσ(a) = 4, degσ(b) = 3,
degσ(c) = 2, and degσ(d) = 1.

Let n ≥ 1 and let λ = (λ1, . . . , λn) be an arbitrary sequence of integers. Define
BDλ

n to be the family of edge sets σ on the vertex set [n] = {1, . . . , n} such that
degσ(i) ≤ λi for each i ∈ [n]. For an edge set E on the vertex set [n], let BDλ

n(E) be
the subfamily of BDλ

n obtained by restricting to subsets of E. The two families BDλ
n

and BDλ
n(E) are closed under deletion of edges, which means that they are abstract

simplicial complexes.
Write BD(δ,...,δ)

n = BDδ
n. For δ = 1, we obtain the matching complex Mn = BD1

n.
By the work of Bouc [2] and Shareshian and Wachs [8], the bottom nonvanishing
homology group of Mn is an elementary 3-group for almost all n. One may use this
fact to prove that H̃d(Mn;Z) contains 3-torsion whenever

n− 4

3
≤ d ≤ n− 6

2
;

see Jonsson [4, §11.2.3]. The goal of the present paper is to obtain analogous results
about BDδ

n for δ ≥ 2.

Theorem 1.1 For δ ≥ 2, the group H̃d(BDδ
n;Z) contains 3-torsion whenever

(3δ − 1)n− 8

6
≤ d ≤ δ(n− 1)− 4

2
.

We prove Theorem 1.1 by constructing an explicit cycle z in C̃d(BDδ
n;Z) for each

pair (d, n) satisfying the inequalities in the theorem. As it turns out, the order of
the homology class of z is easily seen to divide three. To show that the homology
class is nonvanishing, we consider the natural epimorphism from the chain complex
C̃d(BDδ

n;Z) to the chain complex of a certain link in BDδ
n; we show that the homology

class of the image of z under this epimorphism is nonvanishing.
The following conjecture states that Theorem 1.1 remains true for δ = 1.

Conjecture 1.2 We have that H̃d(Mn;Z) contains 3-torsion whenever

n− 4

3
≤ d ≤ n− 5

2
.

To settle the conjecture, it suffices to prove that H̃d(Mn;Z) contains 3-torsion
whenever d = (n− 5)/2 and n ≥ 7 for n odd. Since 3-torsion is known to exist
for n ∈ {7, 9, 11, 13, 15} [2, 6, 8], one need only consider odd n ≥ 17.

For δ ≥ 2, we do not know whether there are parameters (n, d) not satisfying
the bounds in Theorem 1.1 such that there is 3-torsion in H̃d(BDδ

n). Computational
results [6] show that the homology of BD2

n contains no 3-torsion for n ≤ 8. In
this context, it might be worth mentioning that the homology of BD2

n does contain
5-torsion for n = 7 and n = 8; Andersen [1] established the case n = 7 in the early
1990s.

One may also consider the subcomplex of BDλ
n obtained by removing all loops vv.

The reason for focusing on the variant admitting loops is that this variant appears
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3-torsion in Complexes of Graphs of Bounded Degree 845

naturally in algebra. Specifically, one may express the minimal free resolution of cer-
tain semigroup algebras [3, 7, 9] in terms of the homology of BDλ

n . All constructions
in this paper rely on the existence of loops and hence only apply to the full complex
BDλ

n .

2 Simplicial Chain Complexes

2.1 Notation

Most material in this section is standard, but we present a fairly detailed overview of
the subject to avoid ambiguity in later sections.

Let ∆ be a simplicial complex and let F be the ring of integers or a field. For
d ≥ −1, let C̃d(∆;F) be the free F-module with one basis element, denoted as s1 ∧
· · · ∧ sd+1, for each d-dimensional face {s1, . . . , sd+1} of ∆. We refer to s1 ∧ · · · ∧ sd+1

as an oriented simplex. Let Sn be the symmetric group on the set [n] = {1, . . . , n}.
For any permutation π ∈ Sd+1 and any face σ = {s1, . . . , sd+1}, we define

(2.1) sπ(1) ∧ sπ(2) ∧ · · · ∧ sπ(d+1) = sgn(π) · s1 ∧ s2 ∧ · · · ∧ sd+1.

For convenience, we write

[σ] = s1 ∧ s2 ∧ · · · ∧ sd+1,

implicitly assuming that we have a fixed linear order on the 0-cells in ∆.
Extend the definition of s1 ∧ · · · ∧ sd+1 to arbitrary sequences (s1, . . . , sd+1) by

defining s1 ∧ · · · ∧ sd+1 = 0 if si = s j for some i 6= j. Note that (2.1) implies that
2 · s1 ∧ · · · ∧ sd+1 = 0 for such a sequence.

The boundary map ∂d : C̃d(∆;F) → C̃d−1(∆;F) is the homomorphism defined
by

∂d(s1 ∧ · · · ∧ sd+1) =

d+1∑
i=1

(−1)i−1s1 ∧ · · · ∧ si−1 ∧ si+1 ∧ · · · ∧ sd+1.

Combining all ∂d, we obtain an operator ∂ on the direct sum C̃(∆;F) of all C̃d(∆;F).
It is well known and easy to see that ∂2 = 0.

For the chain complex (C̃(∆;F), ∂) on the simplicial complex ∆, we refer to el-
ements in ∂−1({0}) as cycles and elements in ∂(C̃(∆;F)) as boundaries. Define the
i-th reduced homology group of ∆ with coefficients in F as the quotient F-module

H̃d(∆;F) =
∂−1

d ({0})
∂d+1(C̃d+1(∆;F))

=
ker ∂d

im ∂d+1
.

2.2 Some Useful Constructions

Whenever σ = {s1, . . . , sa} and τ = {t1, . . . , tb} are faces such that σ ∪ τ ∈ ∆, we
define the product of the oriented simplices [σ] = s1∧· · ·∧ sa and [τ ] = t1∧· · ·∧ tb

to be the element

(2.2) [σ] ∧ [τ ] = s1 ∧ · · · ∧ sa ∧ t1 ∧ · · · ∧ tb.
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Note that [σ] ∧ [τ ] is zero whenever σ ∩ τ is nonempty, because this means that
si = t j for some i and j.

Let ∆1 and ∆2 be subcomplexes of ∆ such that σ1 ∪ σ2 ∈ ∆ whenever σ1 ∈ ∆1

and σ2 ∈ ∆2. Given elements ci ∈ C̃di−1(∆i ;F) for i = 1, 2, we define the product
c1 ∧ c2 ∈ C̃d1+d2−1(∆;F) by extending the product (2.2) bilinearly. We have that

(2.3) ∂(c1 ∧ c2) = ∂(c1) ∧ c2 + (−1)d1 c1 ∧ ∂(c2).

In particular, if c1 and c2 are cycles, then so is c1 ∧ c2.
For a face σ, let the link lk∆(σ) be the complex {τ : τ ∪ σ ∈ ∆, τ ∩ σ = ∅},

and let the face deletion fdel∆(σ) be the complex {τ : τ ∈ ∆, σ 6⊆ τ}. Let σ =

{s1, . . . , sr} ∈ ∆ and let c ∈ C̃d−1(∆;F). There is a unique decomposition of c as

c = s1 ∧ · · · ∧ sr ∧ c ′ + x,

where c ′ ∈ C̃d−r−1(lk∆(σ);F) and x ∈ C̃d−1(fdel∆(σ);F). We write lkc([σ]) = c ′

and fdelc([σ]) = x; thus

c = [σ] ∧ lkc([σ]) + fdelc([σ]).

Since

∂(c) = ∂([σ]) ∧ lkc([σ]) + (−1)r · [σ] ∧ ∂
(

lkc([σ])
)

+ ∂
(

fdelc([σ])
)
,

we have that

lk∂(c)([σ]) = (−1)r · ∂(lkc([σ])),

fdel∂(c)([σ]) = ∂([σ]) ∧ lkc([σ]) + ∂(fdelc([σ])).

Most importantly, up to the irrelevant sign (−1)r, the map c 7→ lkc([σ]) defines a
homomorphism from the chain complex of ∆ to the chain complex of lk∆(σ). In
particular, this map induces a homomorphism in homology.

Let ∆1, . . . ,∆k be subcomplexes of ∆ such that
⋃k

i=1 σi ∈ ∆ whenever σi ∈ ∆i

for each i. Suppose that we are given an element c = c1 ∧ · · · ∧ ck, where ci is an
element in C̃di−1(∆i ;F) for each i.

Lemma 2.1 Let σ be a face of ∆. We have that

[σ] ∧ lkc([σ]) =
∑

(τ1,...,τk)

[τ1] ∧ lkc1 ([τ1]) ∧ · · · ∧ [τk] ∧ lkck ([τk]),

where the sum is over all ordered partitions (τ1, . . . , τk) of σ such that τi ∈ ∆i .

Proof By linearity, we need only prove the lemma in the case that each ci coincides
with an oriented simplex [ρi]. For any τi ⊆ ρi , we have that [τi]∧ lk[ρi ]([τi]) = [ρi].
Moreover, if τi 6⊆ ρi , then [τi] ∧ lk[ρi ]([τi]) = 0. In particular, each summand in the
right-hand side is either c or 0. As a consequence, if some element appears in both ρi
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and ρ j for some i 6= j, meaning that c = 0, then the right-hand side is zero. Clearly,
the left-hand side is also zero in this case.

Assume that ρ1, . . . , ρk are pairwise disjoint and write ρ = ρ1 ∪ · · · ∪ ρk. If ρ does
not contain σ, then both sides in the lemma are zero. Assume that ρ does contain σ.
Then [σ] ∧ lkc([σ]) = c. Moreover,

c = [ρ1] ∧ · · · ∧ [ρk]

= [σ ∩ ρ1] ∧ lk[ρ1]([σ ∩ ρ1]) ∧ · · · ∧ [σ ∩ ρk] ∧ lk[ρk]([σ ∩ ρk]).

The latter expression coincides with the right-hand side in the lemma, because (σ ∩
ρ1, . . . , σ ∩ ρk) is the only partition (τ1, . . . , τk) of σ such that lk[ρi ]([τi]) is nonzero
for each i.

3 Basic Properties of Cycle Products in BDλ
n

Let X be a finite multiset consisting of r distinct elements x1, . . . , xr with associated
multiplicities m1, . . . ,mr, respectively. Define

µ(X) = m1!m2! · · ·mr!.

Let A = {a1, . . . , aq−1} be a multiset of elements from [n], and let B = {b1, . . . , bq}
be a subset of [n], not necessarily disjoint from A. Define

φA,B =
1

µ(A)
·
∑
π∈Sq

sgn(π) · a1bπ(1) ∧ · · · ∧ aq−1bπ(q−1).

For example,

φ{a1,a2},{b1,b2,b3} = k · (a1b1 ∧ a2b2 − a1b2 ∧ a2b1 + a1b2 ∧ a2b3

− a1b3 ∧ a2b2 + a1b3 ∧ a2b1 − a1b1 ∧ a2b3),

where k = 1 if a1 6= a2 and k = 1/2 if a1 = a2. The reason for not admitting
repetitions in B is that φA,B = 0 whenever bi = b j for some i 6= j; this is easy to see
in the given example.

Lemma 3.1 The element φA,B is a cycle in C̃q−2(BDλ
n ;Z), where λi is the total number

of occurrences of the vertex i in A and B (counting multiplicities in A).

Proof Let H be the subgroup of Sq consisting of those µ(A) permutations in Sq

that satisfy aκ(i) = ai for 1 ≤ i ≤ q− 1 and κ(q) = q. Let R be a right transversal of
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H in Sq. To see that φA,B has integer coefficients, note that

µ(A) · φA,B =
∑
κ∈H

∑
π∈R

sgn(κπ) · a1bκπ(1) ∧ · · · ∧ aq−1bκπ(q−1)

=
∑
κ∈H

∑
π∈R

sgn(π) · aκ−1(1)bπ(1) ∧ · · · ∧ aκ−1(q−1)bπ(q−1)

=
∑
κ∈H

∑
π∈R

sgn(π) · a1bπ(1) ∧ · · · ∧ aq−1bπ(q−1)

= µ(A) ·
∑
π∈R

sgn(π) · a1bπ(1) ∧ · · · ∧ aq−1bπ(q−1).

To see that φA,B is a cycle, let tπ,i be the oriented simplex obtained by removing aibπ(i)

from a1bπ(1) ∧ · · · ∧ aq−1bπ(q−1). We get that

∂(φA,B) =

q−1∑
i=1

(−1)i−1
∑
π

sgn(π)tπ,i .

Letting gi : Sq → Sq be the involution given by gi(π) = π ◦ (i, q), we see that
tπ,i = tgi (π),i and sgn(π) = −sgn(gi(π)); hence another standard argument yields
that the sum is zero.

We refer to φA,B as a chessboard cycle. To explain this terminology, if A and B are
disjoint ordinary sets, then φA,B is the fundamental cycle of the chessboard complex
with rows indexed by A and columns indexed by B; see Shareshian and Wachs [8]. We
say that the chessboard cycle φA,B is an (|A|, |B|)-cycle. Note that φ{a},{b,c} = ab− ac

and that φ∅,{b} = [∅] for any b. The latter cycle is the generator of C̃−1(M{b};Z) ∼=
Z, where MX denotes the matching complex on the vertex set X.

We will use chessboard cycles as building blocks when constructing homology
elements of order three. A chessboard product is a cycle of the form

w = φA1,B1 ∧ φA2,B2 ∧ · · · ∧ φAt ,Bt ,

By some abuse of notation, we refer to the value t as the codegree of w. If M =∑t
i=1(|Ai |+ |Bi |), then M = 2|Ai |+ t , and w is a cycle of degree (M− t)/2− 1. Note

that the codegree always has the same parity as the sum M.
The following result is due to Bouc [2] and Shareshian and Wachs [8].

Proposition 3.2 Let η ∈ {0, 1, 2} andα ≥ 0, and let X be a set of size n = 3α+2η+1.
Let X =

⋃α
i=0(Ai ∪ Bi) be a partition of X into sets such that |Ai | = 1 and |Bi | = 2 for

1 ≤ i ≤ α and such that |A0| = η and |B0| = η + 1. Then the homology class of the
chessboard product

z =

α∧
i=0

φAi ,Bi
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is a nonzero element of the group

H̃α+η−1(MX ;Z) ∼= H̃α+η−1(Mn;Z).

This group is an elementary 3-group for n ≥ 15 and for n ∈ {7, 10, 12, 13}, a fi-
nite group of exponent divisible by three for n = 14, and an infinite group for n ∈
{1, 3, 4, 5, 6, 8, 9, 11}.

The group in the proposition is the bottom nonvanishing homology group of Mn

[2, 8]. For n = 14, the exponent of the group is in fact divisible by 15 [5].
Let k ≥ 1. For 1 ≤ i ≤ k, let

λi = (λi
1, . . . , λ

i
n)

be a sequence of nonnegative integers, and let E be a set of edges on the vertex set [n].

Let di ≥ 0 and γi ∈ C̃di−1(BDλi

n (E);Z). Write

λ =

k∑
i=1

λi , d =

k∑
i=1

di , and γ = γ1 ∧ · · · ∧ γk.

Lemma 3.3 We have that γ is an element in C̃d−1(BDλ
n(E);Z). If each γi

is a cycle, then so is γ. Moreover, the order of the homology class of γ in the
group H̃d−1(BDλ

n(E);Z) divides the order of the homology class of γi in the group
H̃di−1(BDλi

n (E);Z) for 1 ≤ i ≤ k.

Proof By construction, if e1∧· · ·∧ed appears in the expansion of γ1∧· · ·∧γk, then the
sequence (degσ(1), . . . , degσ(n)) is bounded by

∑
i λ

i = λ, where σ = {e1, . . . , ed}.
As a consequence, γ is indeed an element in C̃d−1(BDλ

n(E);Z). The identity (2.3)
and a straightforward induction argument yield that γ is a cycle whenever each γi is
a cycle. Finally, if the homology class of, say, γ1 has finite order a, then there is an

element c ∈ C̃d1 (BDλ1

n (E);Z) such that ∂(c) = a · γ1. Since c ∧ γ2 ∧ · · · ∧ γk belongs
to C̃d(BDλ

n(E);Z) and

∂(c ∧ γ2 ∧ · · · ∧ γk) = (aγ1) ∧ γ2 ∧ · · · ∧ γk = a · γ1 ∧ · · · ∧ γk,

it follows that the order of the homology class of γ1∧· · ·∧γk divides a. By symmetry,
the same is true for γi instead of γ1 for each i ∈ {2, . . . , k}.

From now on, assume that each γi is a cycle. We will make repeated use of the
following result.

Lemma 3.4 Suppose that one cycle γi has the property that

γi = φ{a1},{b1,c1} ∧ φ{a2},{b2,c2} ∧ φ∅,{x},

where the seven elements in the vertex set W = {a1, b1, c1, a2, b2, c2, x} are all distinct.
Furthermore, suppose that E contains all edges between vertices in W . Then the order of
the homology class of γ = γ1 ∧ · · · ∧ γk in H̃d−1(BDλ

n(E);Z) divides three.
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Proof For simplicity, assume that i = 1. Write γ = γ1∧γ ′, where γ ′ = γ2∧· · ·∧γk.
We may view γ1 as a cycle in the chain complex of MW and γ ′ as a cycle in the chain
complex of BDλ ′

n (E), where λ ′ is obtained from λ by subtracting one from λw for
each w ∈W . Proposition 3.2 yields that the order of the homology class of γ1 in the
chain complex of MW is three. By Lemma 3.3, we are done.

Suppose that we are given pairwise disjoint faces σi ∈ BDλi

n (E), 1 ≤ i ≤ k; thus

each edge in E appears in at most one σi . Write σ =
⋃k

i=1 σi . Note that γ ′i =
lkγi ([σi]) is a cycle in the chain complex of

lkBDλi
n (E)(σi) = BD

λi−degσi
n (E \ σi),

where degσi
= (degσi

(1), . . . , degσi
(n)).

Lemma 3.5 With σ as above, suppose that the following condition is satisfied:

• If σ is the disjoint union of the sets τ1, . . . , τk, and lkγi ([τi]) is nonzero for all i, then
τi = σi for all i.

Then

(3.1) lkγ([σ]) = ±lkγ1 ([σ1]) ∧ · · · ∧ lkγk ([σk]),

and the order of the homology class of lkγ([σ]) in H̃d−|σ|−1(BDλ−degσ
n (E\σ);Z) divides

the order of the homology class of γ in H̃d−1(BDλ
n(E);Z).

Proof By Lemma 2.1 and the assumption in the present lemma,

[σ] ∧ lkγ([σ]) = [σ1] ∧ lkγ1 ([σ1]) ∧ · · · ∧ [σk] ∧ lkγk ([σk]).

Thus (3.1) follows immediately. For the final statement, use the fact that the map
c 7→ lkc([σ]) induces a homomorphism between the given homology groups.

Assume that lkγi ([σi]) is nonzero for 1 ≤ i ≤ k. Note that if the condition
in Lemma 3.5 is satisfied, then lkγi ([σi]) does not contain any edge from σ in its
expansion for 1 ≤ i ≤ k. Namely, suppose e ∈ σ j appears in lkγi ([σi]) for some
j 6= i. Then each of lkγi ([σi ∪{e}]) and lkγ j ([σ j \{e}]) is nonzero, contradicting the
uniqueness of the partition (σ1, . . . , σk).

Recall that our goal is to detect 3-torsion in the homology of BDδ
n for various

values of n and δ. To achieve this, we will build a chessboard product

z = φA1,B1 ∧ · · · ∧ φAk,Bk

and apply Lemma 3.4 to conclude that the order of the homology class of z in the
chain complex of BDδ

n divides three. To prove that the order is indeed three and not
one, we will construct a set σ such that Lemma 3.5 applies. Specifically, there is a
unique partition σ = σ1 ∪ · · · ∪ σk such that lkφAi ,Bi

([σi]) is nonzero for all i. In
particular,

lkz([σ]) = ±lkφA1 ,B1
([σ1]) ∧ · · · ∧ lkφAk ,Bk

([σk]).
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By Lemma 3.5, it suffices to show that the homology class of lkz([σ]) is nonzero in

the chain complex of BD(δ,...,δ)−degσ
n (En \ σ), where En is the set of all edges on the

vertex set {1, . . . , n}. In fact, it suffices to show that this is true in the chain complex

of the larger complex BD(δ,...,δ)−degσ
n .

Lemma 3.6 Let A be a multiset and let B be a set such that |B| = |A| + 1 = q. Let
r ≤ q− 1, and let {x1, . . . , xr} ⊆ A be a multiset and {y1, . . . , yr} ⊂ B a set such that
xi = yi whenever yi ∈ A and xi ∈ B. Writing σ = {x1 y1, . . . , xr yr}, we have that

lkφA,B ([σ]) = ±φA\{x1,...,xr},B\{y1,...,yr}.

Proof By a simple induction argument, it suffices to consider the case that r = 1 and
σ = {x1 y1}. We may assume that x1 = a1 and y1 = b1. We obtain that

lkφA,B ([σ]) = lkφA,B (a1b1)

=
1

µ(A)
·
∑

j:a j =a1

∑
π∈Sq:π( j)=1

(−1) j−1sgn(π)

· a1bπ(1) ∧ · · · ∧ a j−1bπ( j−1) ∧ a j+1bπ( j+1) ∧ · · · ∧ aq−1bπ(q−1).

Here, we use the assumption that a1 = b1 if b1 ∈ A and a1 ∈ B. Defining π̂ = π ◦
(1, j) and moving the element a1bπ(1) = a jbπ̂( j) to the position between a j−1bπ( j−1)

and a j+1bπ( j+1), we obtain that this is equal to

1

µ(A)
·
∑

j:a j =a1

∑
π̂:π̂(1)=1

sgn(π̂) · a2bπ̂(2) ∧ · · · ∧ aq−1bπ̂(q−1)

=
ma1 (A)

µ(A)
·
∑

π:π(1)=1

sgn(π) · a2bπ(2) ∧ · · · ∧ aq−1bπ(q−1)

=
1

µ(A \ {a1})
·
∑

π:π(1)=1

sgn(π) · a2bπ(2) ∧ · · · ∧ aq−1bπ(q−1)

= φA\{a1},B\{b1}.

Here, ma1 (A) denotes the multiplicity of the element a1 in A.

Without the assumption that a1 = b1 if b1 ∈ A and a1 ∈ B, lkφA,B (a1b1) would be
equal to the sum of±φA\{a1},B\{b1} and±φA\{b1},B\{a1}. For example,

lkφ{1,2},{1,2,3}(12) = φ{2},{3,1} + φ{1},{2,3}.

4 Main Ideas and the Case δ = 2

Before proceeding to the complicated proof of Theorem 1.1, we discuss the main
ideas of the proof and consider the easiest case δ = 2.
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For the remainder of the paper, we assume that δ ≥ 2. Recall that our goal is to
prove that H̃d(BDδ

n;Z) contains 3-torsion whenever

(4.1)
(3δ − 1)n− 8

6
≤ d ≤ δ(n− 1)− 4

2
.

The basic idea of the proof is to construct a cycle z of degree d in the chain complex
of BDδ

n such that the order of the homology class of z is three. The cycle z will be a
chessboard product of the form

φA1,B1 ∧ · · · ∧ φAt ,Bt

such that each element in [n] appears a total of δ times in the multisets A1, . . . ,At

and the sets B1, . . . ,Bt . Assuming that |Ai | = |Bi | − 1, we obtain that

t∑
i=1

|Ai | = d + 1.

We deduce that

δn =

t∑
i=1

(2|Ai | + 1) = 2(d + 1) + t,

which yields that

d =
δn− t − 2

2
.

Equivalently, t = δn − 2d − 2. Note that we may write the bounds in (4.1) in terms
of the codegree t as

(4.2) δ + 2 ≤ t ≤ n + 2

3

with the additional constraint that t ≡ δn (mod 2).
Let us consider the special case δ = 2. This case is significantly easier to handle

than the general case, and the construction described in this section is not an im-
mediate specialization of the general construction described in later sections. Yet the
underlying ideas are the same. For integers a ≤ b, we define

[a, b] = {i : a ≤ i ≤ b}.

Theorem 4.1 For 4 ≤ t ≤ (n + 2)/3 and t even, there is a chessboard cycle z of
codegree t in the chain complex of BD2

n such that the homology class of z has order three.

Proof First, we construct a cycle as in the theorem whenever n = 3t − 2 and t ≥ 4.
Since t is even, n is also even. Let

A1 = {1} ∪ [1, . . . , n/2],

B1 = {2, 3} ∪ [n/2 + 1, . . . , n].
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Let X = [4, n], and let w be a chessboard product of codegree t − 1 in the chain
complex of M[X] consisting of one (0, 1)-cycle and t−2 (1, 2)-cycles. More precisely,
define

w = φ∅,{4} ∧ φ{5},{6,7} ∧ φ{8},{9,10} ∧ · · · ∧ φ{n−2},{n−1,n}.

Let z = φA1,B1 ∧ w; we have that z is chessboard product of codegree t in the chain
complex of BD2

n. By Lemma 3.4, the order of the homology class of z divides three.
It remains to prove that the order of the homology class is not one. For this, let

σ = {i(i + n/2) : 1 ≤ i ≤ n/2}. The edges in σ only appear in the cycle φA1,B1 , not
in w. In particular,

lkz([σ]) = lkφA1 ,B1
([σ]) ∧ w = ±φ{1},{2,3} ∧ w

by Lemma 3.6. This is a chessboard product of codegree t in the chain complex of
Mn. By Proposition 3.2, the homology class of this cycle is nonzero. By Lemma 3.5,
the same is then true for the cycle z, which concludes the proof in this particular case.

The remainder of the proof is specific for the case δ = 2 and does not easily
generalize to larger values of δ. For n ′ ≥ n = 3t−2 ≥ 10, define A ′1 = A1∪[n+1, n ′],
B ′1 = B1 ∪ [n + 1, n ′], σ ′ = {ii : n + 1 ≤ i ≤ n ′}, and z ′ = φA ′1 ,B

′
1
∧ w. We have that

z ′ is a chessboard product of codegree t in the chain complex of BD2
n ′ . Moreover, it

is clear that
lkσ ′(z ′) = lkφA ′1 ,B

′
1
([σ ′]) ∧ w = ±φA1,B1 ∧ w = ±z,

which we know is a cycle in BD2
n such that the homology class is nonzero. Using

exactly the same argument as before, we deduce that the order of the homology class
of z ′ is three.

5 Three Cases Yielding the Main Result

As we saw in the previous section, one single construction suffices to establish the
result for δ = 2. This does not appear to be the case for general δ. Instead, we need
different constructions depending on the parity of n. Specifically, we divide into three
cases, depending on the parity of n and δ:

A. n and δ are both odd or both even.
B. n is even and δ is odd.
C. n is odd and δ is even.

Let us describe the basics of the three constructions. In each case, we will define
multisets A1, . . . ,Aδ−1 and sets B1, . . . ,Bδ−1 of elements from [n] with the property
that |Ap| + 1 = |Bp| for 1 ≤ p ≤ δ − 1.

The total number of times each vertex i ∈ [n] occurs in the multisets A1, . . . ,Aδ−1

and the sets B1, . . . ,Bδ−1 will be either δ − 1 or δ; we will let X denote the set of
vertices appearing only δ−1 times. We will form a chessboard product w of codegree
t − δ + 1 in the chain complex of MX satisfying the conditions of Lemma 3.4.

Consider the element

z =
δ−1∧
p=1

φAp ,Bp ∧ w,
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Table 1: Definition of the multisets C p and the sets Dp in the case that δ = α = β = 5; hence
n = 25. There is one copy of i in the multiset C p for each occurrence of C p in column i, and
analogously for Dp . C p is a submultiset of Ap , and Dp is a subset of Bp . There is one star in a
given column i for each additional occurrence of the vertex i in the sets Aq, Bq, and X.

1 2 3 4 5 6 7 8 9 10 11 12

C1 C1 C1 ∗ ∗ ∗ ∗ ∗ D1 D1 D1 D1
C1 C1 C1 C2 C2 C2 ∗ ∗ ∗ ∗ ∗ D2
C1 C1 C1 C2 C2 C2 C3 C3 C3 ∗ ∗ ∗
C1 C1 C1 C2 C2 C2 C3 C3 C3 C4 C4 C4
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

13 14 15 16 17 18 19 20 21 22 23 24 25

D1 D1 D1 D1 D1 D1 D1 D1 ∗ ∗ ∗ ∗ ∗
D2 D2 D2 D2 D2 D2 D2 D2 ∗ ∗ ∗ ∗ ∗
∗ ∗ D3 D3 D3 D3 D3 D3 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ D4 D4 D4 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

which is a chessboard product of codegree t in the chain complex of BDδ
n. To prove

Theorem 1.1, we will first apply Lemma 3.4 to deduce that the homology class of
z has order dividing three. Defining an edge set σ such that z satisfies Lemma 3.5,
we obtain a new cycle lkz([σ]), which turns out to be a non-boundary in the chain
complex of a certain matching complex. As a consequence, the homology class of z
must be an element of order three.

6 First Step

The first step of the construction is identical for all three cases. Recall that δ ≥ 2, and
let α and β be any positive integers. Define n = 3δ + α + β.

For 1 ≤ p ≤ δ − 1, let C p be the multiset consisting of δ − p copies of each of
3p − 2, 3p − 1, and 3p. Moreover, let Dp = {i : 3p + β + 1 ≤ i ≤ 3δ + β}. The
multiset C p and the set Dp both have size 3(δ − p). The case δ = α = β = 5 and
n = 3δ + α + β = 25 is illustrated in Table 1.

In all three cases, C p will be a submultiset of Ap and Dp a subset of Bp. We will also
construct an edge set σ and a cycle w of codegree t with properties as in Section 5. In
each case, the following will hold.

(a) If i belongs to Dq (equivalently, 3q + β + 1 ≤ i ≤ 3δ + β), then i does not belong
to Aq.

(b) If i belongs to C p for some p < q (equivalently, 1 ≤ i ≤ 3q− 3), then i does not
belong to Aq or Bq.

(c) No edge in the set σ is contained in the cycle w.

For 1 ≤ p ≤ δ − 1, define

σ1
p = {i(i + 3k + β) : 3p − 2 ≤ i ≤ 3p, 1 ≤ k ≤ δ − p}.

Note that σ1
p constitutes a perfect matching between the multiset C p and the set Dp
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for each p. The set σ1 = σ1
1 ∪ · · · ∪ σ1

δ−1 is a subset of the set σ to be constructed.
Write A ′p = Ap \C p and B ′p = Bp \ Dp.

Lemma 6.1 Assuming (a)–(c) are true, σ1 =
⋃δ−1

p=1σ
1
p is the unique partition σ1 =⋃δ−1

p=1 τp such that the link lkφAp ,Bp
([τp]) is nonzero for all p. In particular,

lkz([σ1]) = ±
δ−1∧
p=1

φA ′p ,B
′
p
∧ w.

Proof Assume the opposite, and let p ≤ δ − 1 be minimal such that some edge i j
belongs to σ1

p but not to τp; assume that i < j.

First, suppose that i j ∈ τq for some q > p. By properties of σ1
p, we have that

i ≤ 3p. Since q > p, this implies by (b) that i /∈ Aq ∪ Bq, which is a contradiction.
Next, suppose that i j ∈ τq for some q < p. By properties of σ1

p, we have that

3p + β + 1 ≤ j ≤ 3δ + β.

Since q < p, this implies by (a) that j /∈ Aq, which yields that the total multiplicity
of j in Aq and Bq is one. However, by minimality of p, τq contains σ1

q , which implies
that the vertex j already appears in an edge in τq. As a consequence, i j cannot belong
to τq, as this would render lkφAq ,Bq

([τq]) zero. This is another contradiction.
The last statement now follows from Lemma 3.5 and assumption (c) that no edge

in σ is used in w.

7 Second Step

Throughout this section, for 1 ≤ p ≤ δ − 1, we define

Ip = {3p − 2}, Jp = {3p − 1, 3p}.

In all three cases, Ip is a subset of A ′p, whereas Jp is a subset of B ′p. Moreover, A ′p is an
ordinary set in which no vertex has multiplicity exceeding one. In particular, there is
no need to bother with multisets anymore.

Write

y =
δ−1∧
p=1

φA ′p ,B
′
p
∧ w = lkz([σ1]);

the second equality is by Lemma 6.1. In all three cases, we want to define a set σ2

such that

lky([σ2]) = ±
δ−1∧
p=1

φIp , Jp ∧ w.

Similarly to the situation for σ1, the edges in σ2 do not appear in w in any of the three
cases. We will define the set σ as the union of σ1 and σ2.
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Table 2: Definition of the sets Ep , Fp , Gp , Hp , Ip , Jp , and X in Case A for δ = α = 5 and
t = 7. We have that n = 25 and ` = 3. Each star denotes membership in C p or Dp for some p;
compare to Table 1.

1 2 3 4 5 6 7 8 9 10 11 12

∗ ∗ ∗ E1 E1 E1 E1 E1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ E2 E2 E2 E2 E2 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E3 E3 E3
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
I1 J1 J1 I2 J2 J2 I3 J3 J3 I4 J4 J4

13 14 15 16 17 18 19 20 21 22 23 24 25

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F1 F1 F1 F1 F1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F2 F2 F2 F2 F2
E3 E3 ∗ ∗ ∗ ∗ ∗ ∗ F3 F3 F3 F3 F3
G4 G4 G4 E4 E4 ∗ ∗ ∗ F4 F4 G4 G4 G4
H4 H4 H4 X X X X X X X H4 H4 H4

7.1 Case A

In this case, n ≡ δ (mod 2). We need to a find a chessboard product of codegree
t for each t satisfying δ + 2 ≤ t ≤ n+2

3 and t ≡ n (mod 2). We let α = β; thus
n = 3δ + 2α. The inequalities for t imply that α ≥ 2.

For integers a, b, c such that b ≤ c, we use the notation

a + [b, c] = [a + b, a + c] = {a + b, a + b + 1, . . . , a + c}.

We define this to be empty if b > c. The last α elements in the vertex set [n] =
[3δ + 2α] will play a special role in the construction; we define

F = 3δ + α + [1, α].

For 1 ≤ p ≤ δ − 2, define

Ep = 3p + [1, α], Fp = F, Gp = ∅, Hp = ∅.

Moreover, define

` =
n− 3t + 2

2
,

and let
L1 = 3(δ − 1) + [1, `], L2 = 3δ + α + [α− ` + 1, α].

Define

Eδ−1 = 3(δ − 1) + [` + 1, α], Fδ−1 = 3δ + α + [1, α− `],

Gδ−1 = L1 ∪ L2, Hδ−1 = L1 ∪ L2.

We let
A ′p = Ep ∪ Gp ∪ Ip, B ′p = Fp ∪Hp ∪ Jp.
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It is a straightforward exercise to show that the multiset Ap = A ′p ∪ C p and the set
Bp = B ′p ∪ Dp have the property that each i ∈ [n] appears a total of either δ − 1 or δ
times in A1, . . . ,Aδ−1 and B1, . . . ,Bδ−1. Indeed, the elements in the set

X = 3(δ − 1) + [` + 1, 3 + 2α− `]

are exactly those elements that only appear δ−1 times. See Table 2 for an illustration.
Note that

|X| = 2α + 3− 2` = 3(t − δ) + 1.

Writing X = [a, b], we define

w = φ∅,{a} ∧ φ{a+1},{a+2,a+3} ∧ φ{a+4},{a+5,a+6} ∧ · · · ∧ φ{b−2},{b−1,b}.

We have that w is a chessboard product of codegree t − δ + 1 in the chain complex of
MX .

For 1 ≤ p ≤ δ − 2, define

σEF
p = {(3p + r)(n + 1− r) : 1 ≤ r ≤ α}, σGH

p = ∅.

Moreover, define

σEF
δ−1 = {(3(δ − 1) + r)(n + 1− r) : ` + 1 ≤ r ≤ α},

σGH
δ−1 = {ii : i ∈ L1 ∪ L2}.

Each σEF
p is a perfect matching between Ep and Fp, and each σGH

p is a perfect matching

between Gp and Hp. Write σ2
p = σEF

p ∪ σGH
p and σ2 =

⋃δ−1
p=1 σ

2
p.

Lemma 7.1 We have that σ2 =
⋃δ−1

p=1 σ
2
p is the unique partition σ2 =

⋃δ−1
p=1 τp such

that the link lkφA ′p ,B
′
p
([τp]) is nonzero for all p. In particular,

lkz([σ1 ∪ σ2]) = lky([σ2]) = ±
δ−1∧
p=1

φIp , Jp ∧ w.

Proof Assume the opposite; there is a partition σ2 =
⋃δ−1

q=1 τq such that the link
lkφA ′q ,B

′
q
([τq]) is nonzero for all q and such that τp 6= σ2

p for some p.

First, for 1 ≤ q ≤ δ − 1 and 1 ≤ k ≤ n, we claim that there is at most one edge
in τq containing the element k. Since A ′q ∩ B ′q is empty when q ≤ δ − 2, the claim is
true in this case. For the same reason, the loops in σGH

δ−1 must be contained in τδ−1;
hence the claim is true for q = δ − 1 and k ∈ L1 ∪ L2. For the remaining values of k,
just observe that A ′δ−1 ∩ B ′δ−1 = L1 ∪ L2.

Most importantly, for 1 ≤ q ≤ δ − 1 and k ∈ F, there is exactly one edge in τq

containing the vertex k; this is because σ2 contains a total of δ − 1 such edges.
Now, let j ∈ F be minimal such that some edge i j containing j belongs to σ2

p \ τp

for some p; choose p maximal with this property. We concluded above that the loops
in σGH

δ−1 all belong to τδ−1; hence we must have that i ∈ Ep and j ∈ Fp.
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Let q be such that i j ∈ τq. For q ′ > p, we have that τq ′ contains the unique edge
in σ2

q ′ that contains j; this is by maximality of p. In particular, i j /∈ τq ′ , which means
that q < p.

Note that 3p + 1 ≤ i ≤ 3p +α. Writing i = 3p + r, we observe that j = n + 1− r.
If i ≤ 3q + α, then σ2

q contains the edge with endpoints

i = 3p + r = 3q + (3p − 3q + r),

j ′ = n + 1− (3p − 3q + r) = j − 3(p − q).

By minimality of j, we must have that i j ′ belongs to τq, which makes it impossible
for i j to belong to τq. If i > 3q + α, then i is not contained in A ′q ∪ B ′q, which again
makes it impossible for i j to belong to τq. In both cases, we obtain a contradiction;
hence σ2

p = τp.

Since all edges ab in σ2 have the property that a = b or |b − a| ≥ 4, no edges
in σ2 appear in the cycle w. As a consequence, we obtain the final statement of the
lemma.

Lemma 7.2 Let n ≡ δ (mod 2), and assume that

δ + 2 ≤ t ≤ n + 2

3
and t ≡ n (mod 2).

Then there is a cycle z of codegree t in the chain complex of BDδ
n such that the homology

class of z has order three.

Proof Let notation and assumptions be as above. Consider the cycle z ′ = lkz([σ])
in Lemma 7.1, where σ = σ1 ∪ σ2; this is a chessboard product of codegree t . Note
that each vertex appears in exactly δ− 1 edges in σ. For vertices belonging to L1 ∪L2,
one of these edges is a loop, which means that those vertices appear δ times in σ. In
particular, we may view z ′ as a cycle in the chain complex of M[n]\(L1∪L2)

∼= M3t−2.
By Proposition 3.2, the order of the homology class of z ′ is not one. By Lemma 3.5,
this order divides the order of the homology class of z in the homology of BDδ

n.
It remains to prove that the latter order divides three. For this, note that w is

a chessboard product of codegree t − δ + 1. Since t − δ + 1 ≥ 3, we may apply
Lemma 3.4 to deduce that the homology class of z indeed divides three.

7.2 Case B

In this case, n is even and δ is odd. We need to a find a chessboard product of codegree
t for each even t satisfying δ + 3 ≤ t ≤ n+2

3 . We let α = β − 1; thus n = 3δ + 2α + 1.
The inequalities for t imply that α ≥ 3.

We make small modifications to the construction in Case A, shifting all sets one
step up. For example, F = Fp was previously defined as 3δ + α + [1, α] for 1 ≤ p ≤
δ − 2 and 3δ + α + [1, α− `] for p = δ − 1. This time, we define

F = Fp = 3δ + α + 1 + [1, α]
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Table 3: Definition of Ep , Fp , Gp , Hp , Ip , and Jp in Case B for δ = α = 5, and t = 8. We have
that n = 26 and ` = 2. Each star denotes membership in C p or Dp for some p; compare to
Table 1. Boxes denote positions yet to be filled.

1 2 3 4 5 6 7 8 9 10 11 12

∗ ∗ ∗ � E1 E1 E1 E1 E1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ � E2 E2 E2 E2 E2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � E3 E3
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
I1 J1 J1 I2 J2 J2 I3 J3 J3 I4 J4 J4

13 14 15 16 17 18 19 20 21 22 23 24 25 26

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F1 F1 F1 F1 F1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F2 F2 F2 F2 F2
E3 E3 E3 ∗ ∗ ∗ ∗ ∗ ∗ F3 F3 F3 F3 F3
� G4 G4 E4 E4 E4 ∗ ∗ ∗ F4 F4 F4 G4 G4
� H4 H4 � � � � � � � � � H4 H4

Table 4: A completed version of Table 3, including definitions of G′
p , H ′

p , and X. As before,
each star denotes membership in C p or Dp for some p.

1 2 3 4 5 6 7 8 9 10 11 12

∗ ∗ ∗ H ′
2 E1 E1 E1 E1 E1 ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ G′
2 E2 E2 E2 E2 E2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ H ′
4 E3 E3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
I1 J1 J1 I2 J2 J2 I3 J3 J3 I4 J4 J4

13 14 15 16 17 18 19 20 21 22 23 24 25 26

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F1 F1 F1 F1 F1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F2 F2 F2 F2 F2
E3 E3 E3 ∗ ∗ ∗ ∗ ∗ ∗ F3 F3 F3 F3 F3
G′

4 G4 G4 E4 E4 E4 ∗ ∗ ∗ F4 F4 F4 G4 G4
X H4 H4 X X X X X X X X X H4 H4

for 1 ≤ p ≤ δ − 2 and Fδ−1 = 3δ + α + 1 + [1, α− `]. In the same manner, we shift
the other sets Ep,Gp,Hp, L1, and L2 one step up; as before, ` = (n− 3t + 2)/2. This
shift leaves us with some gaps, marked with boxes in Table 3. Specifically, the vertices
in the set {3p + 1 : 1 ≤ p ≤ δ − 1} appear fewer than δ times, as do the vertices in
the set 3(δ− 1) + 1 + [`+ 1, 3 + 2α− `]. One vertex, 3(δ− 1) + 1, appears only δ− 2
times.

We fill these gaps in the following manner. For odd p, define

G ′p = ∅, H ′p = ∅.

For even p, define
G ′p = {3p + 1}, H ′p = {3p − 2}.

For 1 ≤ p ≤ δ − 1, let

A ′p = Ep ∪ Gp ∪ G ′p ∪ Ip, B ′p = Fp ∪Hp ∪H ′p ∪ Jp.
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Finally, define

X = {3(δ − 1) + 1} ∪
(

3(δ − 1) + 1 + [` + 1, 3 + 2α− `]
)
.

See Table 4 for an illustration.
Note that

|X| = 1 + 2α− 2` + 3 = 3(t − δ) + 1.

Writing X = {3δ − 2} ∪ [a + 1, b], we define

w = φ∅,{3δ−2} ∧ φ{a+1},{a+2,a+3} ∧ φ{a+4},{a+5,a+6} ∧ · · · ∧ φ{b−2},{b−1,b}.

As before, w is a chessboard product of codegree t − δ + 1.
For 1 ≤ p ≤ δ − 2, define

σEF
p = {(3p + 1 + r)(n + 1− r) : 1 ≤ r ≤ α},

σGH
p =

{
{3p − 2, 3p + 1} if p is even,

∅ if p is odd.

Moreover, define

σEF
δ−1 = {(3(δ − 1) + 1 + r)(n + 1− r) : ` + 1 ≤ r ≤ α},

σGH
δ−1 = {ii : i ∈ L1 ∪ L2} ∪ {3(δ − 1)− 2, 3(δ − 1) + 1}.

Each σEF
p is a perfect matching between Ep and Fp, and each σGH

p is a perfect matching
between Gp ∪ G ′p and Hp ∪H ′p. Write

σ2
p = σEF

p ∪ σGH
p and σ2 =

δ−1⋃
p=1

σ2
p.

Lemma 7.3 We have that σ2 =
⋃δ−1

p=1 σ
2
p is the unique partition σ2 =

⋃δ−1
p=1 τp such

that the link lkφA ′p ,B
′
p
([τp]) is nonzero for all p. In particular,

lkz([σ1 ∪ σ2]) = lky([σ2]) = ±
δ−1∧
p=1

φIp , Jp ∧ w.

Proof We proceed as in the proof of Lemma 7.1, thus assuming the opposite. Look at
the edges in σGH

r for even r. We have that 3r−2 is contained in B ′q if and only if q = r,
and 3r + 1 is not contained in any B ′q. Therefore, we must have that (3r−2)(3r + 1) ∈
τr. The remainder of the proof is identical to the proof of Lemma 7.1. Again, no
edges in σ2 appear in w, as every edge ab ∈ σ2 satisfies a = b or |b− a| ≥ 3.

Lemma 7.4 Let n be even and δ odd, and assume that

δ + 3 ≤ t ≤ n + 2

3

and t is even. Then there is a cycle z of codegree t in the chain complex of BDδ
n such that

the homology class of z has order three.

Proof The proof is exactly the same as that of Lemma 7.2, except that the first refer-
ence in the proof should be to Lemma 7.3 rather than to Lemma 7.1.
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Table 5: Definition of the sets Ep , Fp , Gp , G′
p , Hp , H ′

p , Ip , Jp , and X in Case C for δ = 6, α = 5,
and t = 8. We have that n = 29 and ` = 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

∗ ∗ ∗ H ′
2 E1 E1 E1 E1 E1 ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ G′
2 E2 E2 E2 E2 E2 ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ H ′
4 E3 E3 E3 E3 E3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ G′
4 E4 E4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
I1 J1 J1 I2 J2 J2 I3 J3 J3 I4 J4 J4 I5 J5 J5

16 17 18 19 20 21 22 23 24 25 26 27 28 29

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F1 F1 F1 F1 F1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F2 F2 F2 F2 F2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ F3 F3 F3 F3 F3
E4 E4 E4 ∗ ∗ ∗ ∗ ∗ ∗ F4 F4 F4 F4 F4
G′

5 G5 G5 G5 E5 E5 ∗ ∗ ∗ F5 F5 G5 G5 G5

H ′
5 H5 H5 H5 X X X X X X X H5 H5 H5

7.3 Case C

In this final case, n is odd and δ is even. We need to a find a chessboard product of
codegree t for each even t satisfying δ+ 2 ≤ t ≤ n+1

3 (we cannot have t = (n + 2)/3 if
t is even and n is odd). Again, we let α = β−1; thus n = 3δ+2α+1. The inequalities
for t imply that α ≥ 2.

This case is very similar to Case B. For p < δ − 1, the sets Ep, Fp, Gp, G ′p, Hp,

H ′p, σEF
p , and σGH

p are defined in exactly the same manner as in that case. The sets L1,
L2, Eδ−1, Fδ−1, Gδ−1, Hδ−1, and σEF

δ−1 are also defined as before, except that we now
define

` =
n− 3t + 1

2
.

We do make one small modification, defining

G ′δ−1 = {3(δ − 1) + 1}, H ′δ−1 = {3(δ − 1) + 1}.

We modify the set σGH
δ−1 accordingly by setting

σGH
δ−1 = {ii : i ∈ L1 ∪ L2 ∪ {3(δ − 1) + 1}}.

Let
A ′p = Ep ∪ Gp ∪ G ′p ∪ Ip, B ′p = Fp ∪Hp ∪H ′p ∪ Jp.

Finally, define
X = 3(δ − 1) + 1 + [` + 1, 3 + 2α− `].

See Table 4 for an illustration.
Note that

|X| = 2α− 2` + 3 = 3(t − δ) + 1.
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Writing X = [a, b], we define

w = φ∅,{a} ∧ φ{a+1},{a+2,a+3} ∧ φ{a+4},{a+5,a+6} ∧ · · · ∧ φ{b−2},{b−1,b}.

Again, w is a chessboard product of codegree t − δ + 1.

Lemma 7.5 We have that σ2 =
⋃δ−1

p=1 σ
2
p is the unique partition σ2 =

⋃δ−1
p=1 τp such

that the link lkφA ′p ,B
′
p
([τp]) is nonzero for all p. In particular,

lkz([σ1 ∪ σ2]) = lky([σ2]) = ±
δ−1∧
p=1

φIp , Jp ∧ w.

Proof Use exactly the same argument as in the proof of Lemma 7.3.

Lemma 7.6 Let n be odd and δ even, and assume that

δ + 2 ≤ t ≤ n + 1

3

and t is even. Then there is a cycle z of codegree t in the chain complex of BDδ
n such that

the homology class of z has order three.

Proof The proof is exactly the same as that of Lemma 7.2, except that the first refer-
ence in the proof should be to Lemma 7.5 rather than to Lemma 7.1.

7.4 Conclusion

Combining Lemmas 7.2, 7.4, and 7.6, and using the reformulation (4.2) in terms of
codegree of the bounds (4.1), we obtain Theorem 1.1.
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