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3-torsion in the Homology of Complexes of
Graphs of Bounded Degree

Jakob Jonsson

Abstract. For 6 > 1and n > 1, consider the simplicial complex of graphs on n vertices in which each
vertex has degree at most J; we identify a given graph with its edge set and admit one loop at each
vertex. This complex is of some importance in the theory of semigroup algebras. When § = 1, we
obtain the matching complex, for which it is known that there is 3-torsion in degree d of the homology
whenever (n — 4)/3 < d < (n — 6)/2. This paper establishes similar bounds for § > 2. Specifically,
there is 3-torsion in degree d whenever

(35—1)n—8<d<5(n—1)—4.
6 - 2

The procedure for detecting torsion is to construct an explicit cycle z that is easily seen to have the
property that 3z is a boundary. Defining a homomorphism that sends z to a non-boundary element
in the chain complex of a certain matching complex, we obtain that z itself is a non-boundary. In
particular, the homology class of z has order 3.

1 Introduction

The aim of this paper is to examine the integral homology of certain simplicial com-
plexes defined in terms of degree bounds of graphs. Specifically, each face in a given
complex corresponds to a graph such that the degree of each vertex is bounded from
above by a certain fixed value. The rational homology has been computed [7], but not
very much is known about the integral homology. This paper makes some progress
on the latter problem, detecting 3-torsion in the homology for various choices of
parameters.

Let us formulate the problem more precisely, starting with basic graph-theoretic
definitions. We refer to the positive integers as vertices. An edge is an unordered pair
{v,w} of vertices, where we allow v = w. We will often write vw instead of {v, w}.
An edge of the form vv is a loop. The vertices of an edge are the endpoints of the edge.
We refer to an edge set E as being on a vertex set V if the endpoints of the edges in
E all belong to V.. A graph (more precisely, a simple graph admitting loops) is a pair
(V, E) such that E is an edge set on the vertex set V. We will mainly speak of edge sets
and only involve graphs when the underlying vertex set is not clear from context.

For an edge set o, the degree deg (v) of a vertex v is the number of occurrences
of v in o; we adopt the convention that v occurs twice in the loop vv. For example,
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for the edge set ¢ = {aa,ab, ac, bc, bd}, we have that deg _(a) = 4, deg (b) = 3,
deg (c) = 2, and deg_(d) = 1.

Letn > landlet A = (Ay,...,\,) be an arbitrary sequence of integers. Define
BD? to be the family of edge sets o on the vertex set [n] = {1,...,n} such that
deg (i) < A for each i € [n]. For an edge set E on the vertex set [#], let BDﬁ(E) be
the subfamily of BD? obtained by restricting to subsets of E. The two families BD;
and BDﬁ(E) are closed under deletion of edges, which means that they are abstract
simplicial complexes.

Write BD!% = BD°. For § = 1, we obtain the matching complex M,, = BD!..
By the work of Bouc [2] and Shareshian and Wachs [8], the bottom nonvanishing
homology group of M,, is an elementary 3-group for almost all n. One may use this
fact to prove that H;(M,;7Z) contains 3-torsion whenever

n—4 n—=6

<d<
3 - = 2

>

see Jonsson [4, §11.2.3]. The goal of the present paper is to obtain analogous results
about BDf, ford > 2.

Theorem 1.1 For § > 2, the group Hy(BD?; Z) contains 3-torsion whenever

(35—1)n—8<d<5(n—1)—4.
6 - 2

We prove Theorem 1.1 by constructing an explicit cycle z in éd(BDi; Z) for each
pair (d, n) satisfying the inequalities in the theorem. As it turns out, the order of
the homology class of z is easily seen to divide three. To show that the homology
class is nonvanishing, we consider the natural epimorphism from the chain complex
C4(BD’; Z) to the chain complex of a certain link in BD®; we show that the homology
class of the image of z under this epimorphism is nonvanishing.

The following conjecture states that Theorem 1.1 remains true for 6 = 1.

Conjecture 1.2 We have that ﬁd(fv\n; 7.) contains 3-torsion whenever

n—d g2
3 9=

To settle the conjecture, it suffices to prove that H;(M,37) contains 3-torsion
whenever d = (n—5)/2 and n > 7 for n odd. Since 3-torsion is known to exist
forn € {7,9,11,13,15} [2,6, 8], one need only consider odd n > 17.

For § > 2, we do not know whether there are parameters (1, d) not satisfying
the bounds in Theorem 1.1 such that there is 3-torsion in Hd(BDi). Computational
results [6] show that the homology of BD? contains no 3-torsion for n < 8. In
this context, it might be worth mentioning that the homology of BD? does contain
5-torsion for n = 7 and n = 8; Andersen [1] established the case n = 7 in the early
1990s.

One may also consider the subcomplex of BD?) obtained by removing all loops vv.
The reason for focusing on the variant admitting loops is that this variant appears
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naturally in algebra. Specifically, one may express the minimal free resolution of cer-

tain semigroup algebras [3,7,9] in terms of the homology of BD;\. All constructions
in this paper rely on the existence of loops and hence only apply to the full complex
BD).

2 Simplicial Chain Complexes
2.1 Notation

Most material in this section is standard, but we present a fairly detailed overview of
the subject to avoid ambiguity in later sections.

Let A be a simplicial complex and let ' be the ring of integers or a field. For
d> —1,let Ed(A; IF) be the free F-module with one basis element, denoted as s; A

-+~ A'sgy1, for each d-dimensional face {sy, ..., sz} of A. Wereferto sy A« -+ A sy
as an oriented simplex. Let &, be the symmetric group on the set [n] = {1,...,n}.
For any permutation 7 € G4, and any face 0 = {s, ..., s41}, we define

(2.1) Se1) A ey A<+ A Saqaer) = SgN(T) - 51 Asy A+ A S

For convenience, we write
[0] =s1 Asy A Asayn,

implicitly assuming that we have a fixed linear order on the 0-cells in A.

Extend the definition of s; A --- A sz to arbitrary sequences (sy,...,S4+1) by
defining s; A -+ A sgyp = 0if s; = s; for some i # j. Note that (2.1) implies that
251 A+ Asgep = 0 for sugvh a sequence._

The boundary map 0; : Ca(A;F) — Cy—1(A;F) is the homomorphism defined
by

d+1
Oa(si A=+ Nsgy) = Z(—l)i_lsl AN NSt ASign N A sgar.
i=1

Combining all 9, we obtain an operator 0 on the direct sum C (A;TF) of all Ca(A; ).
It is well known and easy to see that 9* = 0.

For the chain complex (C~ (A;F),d) on the simplicial complex A, we refer to el-
ements in O~ 1({0}) as cycles and elements in O(C(A;F)) as boundaries. Define the
i-th reduced homology group of A with coefficients in [F as the quotient F-module

7' {0})  kerdy

Hy(A;TF) = d_ — .
’ 041 (Car1 (A F)) M O

2.2 Some Useful Constructions

Whenever 0 = {s1,...,s,} and 7 = {t1,...,1} are faces such that c U T € A, we
define the product of the oriented simplices [0] = s; A---As;and [T] =5 A Aty
to be the element

(2.2) ATl =i A Asa At A Aty
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Note that [o] A [7] is zero whenever o N 7 is nonempty, because this means that
s; = t; for some i and j.

Let A} and A, be subcomplexes of A such that oy U o, € A whenever 0, € A,
and 0, € A,. Given elements ¢; € Cy_1(A;;F) for i = 1,2, we define the product
alNg € 5d1+d2,1 (A; F) by extending the product (2.2) bilinearly. We have that

(2.3) Ay Aey) =) Ay + (=D)%e; A d(ey).

In particular, if ¢; and ¢, are cycles, then so is ¢; A ;.

For a face o, let the link ks (o) be the complex {7 : TUo € A;7No = T},
and let the face deletion fdels (o) be the complex {7 : 7 € Ajo € 7}. Leto =
{s1,...,5} € Aandlet c € Cy_i(A;F). There is a unique decomposition of ¢ as

c=s51A---As, Ac' +x,

where ¢/ € Cy_,_1(Ika(0);F) and x € C,y_,(fdela(); F). We write Ik ([0]) = ¢’
and fdel.([o]) = x; thus

¢ = [o] ANk ([o]) + fdel.([o]).
Since
9(e) = A([o) Nk ([o]) + (=1)" - [0] A 9 (Ik([0])) + O(fdel([0])),
we have that

ko ([o]) = (=1)" - 0(lk([0])),
fdely ([o]) = O([o]) ANke([o]) + O(fdel([0])).

Most importantly, up to the irrelevant sign (—1)", the map ¢ — lk.([o]) defines a
homomorphism from the chain complex of A to the chain complex of lka(c). In
particular, this map induces a homomorphism in homology.

Let Ay, ..., Ag be subcomplexes of A such that Ui;l o; € A whenever g; € A;
for each i. Suppose that we are given an element ¢ = ¢; A --- A ¢, where ¢; is an
element in Cvdi,l(Ai; F) for each i.

Lemma 2.1 Let o be a face of A. We have that

(o] Alke([o]) = Y [n] Alke ([m]) A= A Lm] Ak (7)),

where the sum is over all ordered partitions (11, ..., Tx) of o such that 1; € A,;.

Proof By linearity, we need only prove the lemma in the case that each ¢; coincides
with an oriented simplex [p;]. For any 7; C p;, we have that [7;] A Lk, ([7]) = [pi].
Moreover, if 7; € p;, then [7;] Ak, ([7:]) = 0. In particular, each summand in the
right-hand side is either ¢ or 0. As a consequence, if some element appears in both p;

https://doi.org/10.4153/CJM-2013-008-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2013-008-4

3-torsion in Complexes of Graphs of Bounded Degree 847

and p; for some i # j, meaning that ¢ = 0, then the right-hand side is zero. Clearly,
the left-hand side is also zero in this case.

Assume that py, . . ., pi are pairwise disjoint and write p = p; U - - - U py. If p does
not contain o, then both sides in the lemma are zero. Assume that p does contain o.
Then [o] A lk.([o]) = c. Moreover,

c=[pi] A Alpi
= [oNp] ALk (loNpi) A= Ao 0 pe] Ak (To M ped).

The latter expression coincides with the right-hand side in the lemma, because (o N
p1,--.,0 N pg) is the only partition (71, ..., 7x) of o such that Ik;,,;([7;]) is nonzero
for each i. |

3 Basic Properties of Cycle Products in BD

Let X be a finite multiset consisting of r distinct elements x;, . .., x, with associated
multiplicities m;, . . ., m,, respectively. Define

Let A = {ay,...,a,—1} be amultiset of elements from [n], and let B = {by,...,b,}
be a subset of [#], not necessarily disjoint from A. Define

1
PaB = A > sgn(m) - arbey A+ - Adg—1bag.
H €6
For example,

Ofaray {bibabsy = K+ (a1by A ayby — a1by A ayby + arby A aybs
— a1b3 A drby + 611b3 Aaryby —a by A a2b3),

where k = 1ifa; # a, and k = 1/2 if a; = a,. The reason for not admitting
repetitions in B is that ¢4 g = 0 whenever b; = b; for some i # j; this is easy to see
in the given example.

Lemma 3.1 Theelement ¢ pisacyclein C~q,2(BD3; 7), where \; is the total number
of occurrences of the vertex i in A and B (counting multiplicities in A).

Proof Let H be the subgroup of &, consisting of those ;1(A) permutations in &,
that satisfy a,,;) = a; for 1 <i < g —1and k(q) = g. Let R be a right transversal of
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H in &,,. To see that ¢, p has integer coefficients, note that

/J'(A) . ¢A,B = Z ngn(ﬁﬂ-) : albmr(l) ZANRERA aqflbmr(qfl)

KEH mER

= Z Z sgn(7) - ae-1)bry A A Ge-1g—1ybrg—1)

xr€H mER
= Z Z Sgl’l(ﬂ') . albﬂ(l) JANRERWAN aq—lbw(q—l)
kEH mER
= u(A) - Z sgn(m) - arbray A -+ - A ag_1br(g—1).
TER

To see that ¢4 p is a cycle, let ¢, ; be the oriented simplex obtained by removing a;b,;
from a;br1y) A - -+ A ag_1br(g—1). We get that

q—1
Apap) =D (=) sgn(m)tr.
i=1 T

Letting g;: &, — &, be the involution given by gi(7) = 7 o (i,q), we see that
tri = tg(m, and sgn(m) = —sgn(g;(m)); hence another standard argument yields
that the sum is zero. [ |

We refer to ¢4 p as a chessboard cycle. To explain this terminology, if A and B are
disjoint ordinary sets, then ¢, p is the fundamental cycle of the chessboard complex
with rows indexed by A and columns indexed by B; see Shareshian and Wachs [8]. We
say that the chessboard cycle ¢4 p is an (|A|, |B|)-cycle. Note that ¢4y 1} = ab — ac
and that ¢ () = (9] for any b. The latter cycle is the generator of C_, Mgy Z) =
Z, where My denotes the matching complex on the vertex set X.

We will use chessboard cycles as building blocks when constructing homology
elements of order three. A chessboard product is a cycle of the form

W= da B NoPa,p NN Pa, B,

By some abuse of notation, we refer to the value t as the codegree of w. If M =
> 1 (JAi] + |Bi]), then M = 2|A;| + ¢, and w is a cycle of degree (M — t)/2 — 1. Note
that the codegree always has the same parity as the sum M.

The following result is due to Bouc [2] and Shareshian and Wachs [8].

Proposition 3.2 Letn € {0,1,2} and o > 0, and let X be a set of sizen = 3a+2n+1.
Let X = |Ji_(A; U B;) be a partition of X into sets such that |A;| = 1 and |B;| = 2 for
1 < i < « and such that |Ay| = n and |By| = n + 1. Then the homology class of the
chessboard product
«
z= /\ Pa;B;
i=0
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is a nonzero element of the group
I:ia+n—1 (MX; Z) = ﬁryﬂ]—l (Mn; Z)

This group is an elementary 3-group for n > 15 and for n € {7,10,12,13}, a fi-
nite group of exponent divisible by three for n = 14, and an infinite group for n €
{1,3,4,5,6,8,9,11}.

The group in the proposition is the bottom nonvanishing homology group of M,,
[2,8]. For n = 14, the exponent of the group is in fact divisible by 15 [5].
Letk > 1.Forl <i <Kk, let

)\1:(>‘11a7)‘§1)

be a sequence of nonnegative integers, and let E be a set of edges on the vertex set [n].
Letd; > 0and ; € Cd‘,,l(BDf (E); Z)). Write

k k
)\:Z)\i, d:Zdi, and Y=y A A%
i=1

i=1

Lemma 3.3 We have that v is an element in 5d_1(BDﬁ(E);Z). If each ~;
is a cycle, then so is . Moreover, the order of the homology class of ~ in the
group Hy_(BD)NE); Z) divides the order of the homology class of ~y; in the group
Hy_1(BD) (E;;Z) for1 <i <k

Proof By construction, ife; A- - - Aey appears in the expansion of 3 A- - - A7y, then the
sequence (deg_(1),...,deg (n)) is bounded by ) _. A = )\, where o = {e,...,e;}.
As a consequence, 7 is indeed an element in Cvd,l(BDﬁ(E);Z). The identity (2.3)
and a straightforward induction argument yield that - is a cycle whenever each ~; is
a cycle. Finally, if the homology class of, say, v; has finite order a, then there is an

element c € Edl (BDﬁ1 (E); Z) such that O(c) = a - ;. Since ¢ A y2 A - - - A v« belongs
to C4(BD)(E); Z) and
e Am A Ay = (@) A A Ap=a-7 A A,

it follows that the order of the homology class of y; A - - - A vk divides a. By symmetry,
the same is true for ~; instead of y; for eachi € {2,... k}. ]

From now on, assume that each ~; is a cycle. We will make repeated use of the
following result.

Lemma 3.4 Suppose that one cycle ~y; has the property that

Vi = Pladqba) N Pla el N Po.ix)s

where the seven elements in the vertex set W = {ay, by, c1, az, by, ¢, x} are all distinct.
Furthermore, suppose that E contains all edges between vertices in W. Then the order of
the homology class of Y = 41 A - -+ Ay in Hy_1(BDNE); Z) divides three.
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Proof For simplicity, assume that i = 1. Write y = 41 A/, where v/ = 1 A+ - A
We may view 7, as a cycle in the chain complex of My, and v’ as a cycle in the chain
complex of BDﬁl(E), where A’ is obtained from A by subtracting one from \,, for
each w € W. Proposition 3.2 yields that the order of the homology class of y; in the
chain complex of Myy is three. By Lemma 3.3, we are done. |

Suppose that we are given pairwise disjoint faces o; € BDQi(E), 1 <i < k; thus
each edge in E appears in at most one ;. Write 0 = ULI o;. Note that 7/ =
Ik, ([o]) is a cycle in the chain complex of

X' —deg_
kg (01) = BDy (BN ),

where degm = (degm(l), ey degm(n)).

Lemma 3.5 With o as above, suppose that the following condition is satisfied:

» Ifo is the disjoint union of the sets T, . . . , Tk, and 1k, ([7;]) is nonzero for all i, then
Ti = o for all i.

Then

(3.1) Ik, ([o]) = £lky, ([o1]) A - - - Ak, (To]),

and the order of the homology class of Ik, ([o]) in I?Id,|g|,1(BDﬁ7deg” (E\0); Z) divides
the order of the homology class of 7y in ﬁd,l(BDﬁ(E); 7).

Proof By Lemma 2.1 and the assumption in the present lemma,
[o] A1k, ([o]) = [o1] ALKy, ([o1]) A - -+ A [oi] ALk, ([ok]).

Thus (3.1) follows immediately. For the final statement, use the fact that the map
¢ — lk.([o]) induces a homomorphism between the given homology groups. [ |

Assume that lk,,([o;]) is nonzero for 1 < i < k. Note that if the condition
in Lemma 3.5 is satisfied, then lk,,([o;]) does not contain any edge from ¢ in its
expansion for 1 < i < k. Namely, suppose e € o; appears in lk,,([o;]) for some
j # i. Then each of Ik, ([o; U {e}]) and Ik, ([o; \ {e}]) is nonzero, contradicting the
uniqueness of the partition (o1, . .., o).

Recall that our goal is to detect 3-torsion in the homology of BD® for various
values of n and §. To achieve this, we will build a chessboard product

zZ=da,B N N dag

and apply Lemma 3.4 to conclude that the order of the homology class of z in the
chain complex of BDf, divides three. To prove that the order is indeed three and not
one, we will construct a set o such that Lemma 3.5 applies. Specifically, there is a
unique partition ¢ = o7 U - - - U gy such that lkdmi.s,. ([o;]) is nonzero for all i. In
particular,

Ik,([o]) = +lk, , (1)) A~ Alky, , ((ow]).
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By Lemma 3.5, it suffices to show that the homology class of Ik, ([¢]) is nonzero in

the chain complex of BD —des, (E. \ 0), where E, is the set of all edges on the

vertex set {1,...,n}. In fact it suffices to show that this is true in the chain complex

of the larger complex BD 09

Lemma 3.6 Let A be a multiset and let B be a set such that |B| = |A| +1 = q. Let
r<q-—1andlet{x,...,x,} C Abeamultisetand {y\,...,y,} C Ba setsuch that
x; = y; whenever y; € A and x; € B. Writingo = {x1y1,...,%y:}, we have that

lky, ,([0]) = £Pa\ {10} B\ {y10en} -

Proof By asimple induction argument, it suffices to consider the case that r = 1 and
o = {x1y1}. We may assume that x; = a; and y; = b;. We obtain that

kg, ([o]) = lk¢AB (a1b1)

( 1)/~ 'sgn(m)
X X
jaj=ar T€S g (j)=
. albﬂ(l) VANREIWAN ajflbﬂ(jfl) AN aj+1b77(j+1) VANRERWAN aqflbﬂ(qfl).
Here, we use the assumption that a; = by if b; € A and a; € B. Defining 7 = 7 o

(1, j) and moving the element a,b.(1) = a;bz(;) to the position between a;_1b;(;_)
and aj; by (j+1), we obtain that this is equal to

N(A) > Z sgn(7) - arbz) A+ -+ A ag-1bzg-1)

jaj=a T7(

mal(A)
= . sgn(m) - axbry A+ A ag—1brg—1
/JI(A) W:Tr(zl):ZI (2) q (g—1)
1
_ sgn(m) - aybr) A+ AN adg_1bga—
,U(A\{al}) Z g 2Y7(2) q—1 (g—1)

m(l)=
= a\{ai} B\ (b1}

Here, m,, (A) denotes the multiplicity of the element a, in A. [ |

Without the assumption that a; = b, if b, € Aand a;, € B, lky, ,(a1b;) would be
equal to the sum of &=d4\ {4,1,8\{v,} and £\ {5,},8\ {a,}- FOr example,

1k¢{1,2},{1.2.3} (12) = ¢{2},{3,1} + ¢{l},{2,3}-

4 Main Ideas and the Case § =2

Before proceeding to the complicated proof of Theorem 1.1, we discuss the main
ideas of the proof and consider the easiest case § = 2.
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For the remainder of the paper, we assume that § > 2. Recall that our goal is to
prove that Hd(BDi; 7.) contains 3-torsion whenever

(@) (35—1)n—8§d§5(n—1)—4.
6 2

The basic idea of the proof is to construct a cycle z of degree d in the chain complex
of BD? such that the order of the homology class of z is three. The cycle z will be a
chessboard product of the form

A N N Pa, B,

such that each element in [n] appears a total of § times in the multisets Ay, ..., A,
and the sets By, . .., B,. Assuming that |A;| = |B;| — 1, we obtain that

t
> Al =d+1.
i=1

We deduce that .
on = Z(zw +1)=2(d+1) +t,
i=1
which yields that
on—t—2
5 .
Equivalently, t = én — 2d — 2. Note that we may write the bounds in (4.1) in terms
of the codegree t as

d:

+2
(4.2) sr2<e<”

with the additional constraint that t = n (mod 2).

Let us consider the special case 6 = 2. This case is significantly easier to handle
than the general case, and the construction described in this section is not an im-
mediate specialization of the general construction described in later sections. Yet the
underlying ideas are the same. For integers a < b, we define

l[a,b] ={i:a <i<b}.

Theorem 4.1 For4 < t < (n+2)/3 and t even, there is a chessboard cycle z of
codegree t in the chain complex of BD? such that the homology class of z has order three.

Proof First, we construct a cycle as in the theorem whenever n = 3t — 2 and t > 4.
Since t is even, n is also even. Let

A ={1}U[1,...,n/2],
B ={2,3}U[n/2+1,...,n].
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Let X = [4,n], and let w be a chessboard product of codegree t — 1 in the chain
complex of M[X] consisting of one (0, 1)-cycle and t —2 (1, 2)-cycles. More precisely,
define

W= 0g (4} N Ogs) (67} N Ps).{9.00) N+ A Plu—2} fn—1}-

Let z = ¢4, B, /\ w; we have that z is chessboard product of codegree ¢ in the chain
complex of BD?. By Lemma 3.4, the order of the homology class of z divides three.

It remains to prove that the order of the homology class is not one. For this, let
o ={i(i+n/2):1<i<mn/2}. The edges in o only appear in the cycle ¢, 5,, not
in w. In particular,

k. ([o]) =lky, , ([0]) ANw=E£d(1y 25y AW

by Lemma 3.6. This is a chessboard product of codegree ¢ in the chain complex of
M,.. By Proposition 3.2, the homology class of this cycle is nonzero. By Lemma 3.5,
the same is then true for the cycle z, which concludes the proof in this particular case.

The remainder of the proof is specific for the case § = 2 and does not easily
generalize to larger values of §. Forn’ > n = 3t—2 > 10, define A] = A U[n+1,n'],
Bl =B U[n+1,n'],0" ={ii:n+1<i<n'},andz’ = $pas p/ A w. We have that
2’ is a chessboard product of codegree ¢ in the chain complex of BD2,. Moreover, it
is clear that

Ik (z") = Tkg,, , ([0'D) Aw = Fba, 5, Aw = 2,

which we know is a cycle in BD? such that the homology class is nonzero. Using
exactly the same argument as before, we deduce that the order of the homology class
of z’ is three. [

5 Three Cases Yielding the Main Result

As we saw in the previous section, one single construction suffices to establish the
result for § = 2. This does not appear to be the case for general §. Instead, we need
different constructions depending on the parity of n. Specifically, we divide into three
cases, depending on the parity of # and §:

A. nand ¢ are both odd or both even.
B. niseven and § is odd.
C. nisodd and ¢ is even.

Let us describe the basics of the three constructions. In each case, we will define

multisets Aj, ...,As—_1 and sets By, ..., Bs_ of elements from [rn] with the property
that [A,| +1 = [B,|for1 < p <6 —1.

The total number of times each vertex i € [n] occurs in the multisets A, ..., As_;
and the sets By, ..., Bs_; will be either § — 1 or §; we will let X denote the set of

vertices appearing only § — 1 times. We will form a chessboard product w of codegree
t — ¢ + 1 in the chain complex of My satisfying the conditions of Lemma 3.4.

Consider the element
51

z = A ¢APvBP A w,
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Table 1: Definition of the multisets C, and the sets D, in the case that § = o« = 8 = 5; hence
n = 25. There is one copy of i in the multiset C,, for each occurrence of C,, in column i, and
analogously for D,. C, is a submultiset of A,, and D, is a subset of B,. There is one star in a

given column i for each additional occurrence of the vertex 7 in the sets Ay, By, and X.

[1 2 374 5 6]7 8 9J10 11 12
C C: * * * * * Dy | Dy D; D
Ci Cy Cy C; C; C, * * * * * D,
C1 C] C1 Cz Cz C2 CS C3 C3 * * *
C1 Cl C1 Cz Cz Cz C3 C3 C3 C4 C4 C4
* * * * * * * * * * * *

[13 14 15 16 1718 19 2021 22 23 24 25 ]

D1 D1 D1 D1 D1 D1 D] Dl * * * * *

D, D, Dy D, Dy | Dy D, Dy * * * * *

* * D3 D3 D3 D3 D3 D3 * * * * *

* * * * * | Dy Dy Dy | * * * * *

* * * * * * * * * * * * *

which is a chessboard product of codegree ¢ in the chain complex of BDi. To prove
Theorem 1.1, we will first apply Lemma 3.4 to deduce that the homology class of
z has order dividing three. Defining an edge set o such that z satisfies Lemma 3.5,
we obtain a new cycle lk,([o]), which turns out to be a non-boundary in the chain
complex of a certain matching complex. As a consequence, the homology class of z
must be an element of order three.

6 First Step

The first step of the construction is identical for all three cases. Recall that § > 2, and
let @ and 3 be any positive integers. Define n = 39 + o + 5.

For1 < p < § — 1, let C, be the multiset consisting of § — p copies of each of
3p —2,3p — 1, and 3p. Moreover, let D, = {i : 3p+ [ +1 < i < 30+ 3}. The
multiset C, and the set D, both have size 3(§ — p). The case § = @ = 3 = 5 and
n =30+ a+ B = 25is illustrated in Table 1.

In all three cases, C,, will be a submultiset of A, and D, a subset of B,. We will also
construct an edge set o and a cycle w of codegree t with properties as in Section 5. In
each case, the following will hold.

(a) If i belongs to D, (equivalently, 3g + 8 +1 < i < 36 + 3), then i does not belong
to A,

(b) Ifi Igelongs to C,, for some p < q (equivalently, 1 < i < 3g — 3), then i does not
belong to A, or B,.

(c) No edge in the set o is contained in the cycle w.

For1 < p < § — 1, define
o, ={i(i+3k+8):3p—2<i<3p,1<k<d—p}

Note that 011) constitutes a perfect matching between the multiset C,, and the set D,
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for each p. The set 0! = o] U--- U} | is a subset of the set o to be constructed.
Write A, = A, \ Cp and B, = B, \ D,.
Lemma 6.1 Assuming (a)—(c) are true, o' = Ui;ioll, is the unique partition o' =

U;;ll 7p such that the link kg, , ([7p]) is nonzero for all p. In particular,

0—1
lke([01]) =+ A Gaysy Aw.
p=1

Proof Assume the opposite, and let p < 6 — 1 be minimal such that some edge ij
belongs to Jll, but not to 7,; assume that i < j.
First, suppose that ij € 7, for some g > p. By properties of 0},, we have that
i < 3p. Since g > p, this implies by (b) that i ¢ A, U By, which is a contradiction.
Next, suppose that i j € 7, for some q < p. By properties of 011), we have that

3p+B+1<j<35+p.

Since q < p, this implies by (a) that j ¢ A,, which yields that the total multiplicity
of jin A; and B, is one. However, by minimality of p, 7, contains 0‘;, which implies
that the vertex j already appears in an edge in 7,. As a consequence, i j cannot belong
to 74, as this would render lk@Aqﬂq ([74]) zero. This is another contradiction.

The last statement now follows from Lemma 3.5 and assumption (c) that no edge
in o is used in w. u

7 Second Step

Throughout this section, for 1 < p < § — 1, we define

I, ={3p—2}, J,={3p—1,3p}.

In all three cases, I, is a subset of A1/>’ whereas J, is a subset of B;. Moreover, Al’, isan
ordinary set in which no vertex has multiplicity exceeding one. In particular, there is
no need to bother with multisets anymore.

Write
6—1
y= N éas Aw=1lk([o'];
p=1

the second equality is by Lemma 6.1. In all three cases, we want to define a set o
such that

6—1
liy (%)) = = A 01, A w
p:

Similarly to the situation for o', the edges in o> do not appear in w in any of the three
cases. We will define the set o as the union of ¢! and o2.
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Table 2: Definition of the sets E,, Fp, Gp, Hp, I, J5, and X in Case A for 6 = o = 5 and
t = 7. We have that n = 25 and ¢ = 3. Each star denotes membership in C,, or D, for some p;
compare to Table 1.

[1 2 3[4 5 6]7 8 97J]10 11 12|
* * * El El El El El * * * *
* * * * * x | B2 Ey Ey | Ex E %
* * * * * * * * x | E3 E3 E3
* * * * * * * * * * * *
L L h|Lh & | B Bl i L

[13 14 15 16 1718 19 2021 22 23 24 25|
* F] F] F] F] F]
* F2 Fz Fz Fz F2
* |l F3 F35 F F
* F4 F4 G4 G4 G4
X| X X Hy Hi¢ Hs

*

* *

Es E; * * ok |k
G4 G4 G4 E4 E4 *
X

R

7.1 Case A

In this case, n = § (mod 2). We need to a find a chessboard product of codegree
t for each ¢ satisfying § + 2 < t < 2 andt = n (mod 2). We let a = f3; thus
n = 30 + 2« The inequalities for ¢ imply that o > 2.

For integers a, b, ¢ such that b < ¢, we use the notation

a+[b,c]=la+ba+cl={a+ba+b+1,...,a+c}.

We define this to be empty if b > ¢. The last o elements in the vertex set [n] =
[36 + 2] will play a special role in the construction; we define

F=30+a+[1,a].
For1 < p < § — 2, define
E,=3p+[l,al, F,=F G,=9, H,=@.

Moreover, define

0 — n— 3t—i—27
2
and let
Li=30-1)+[1,4], L=30+a+[a—{+1,a].

Define

Es_1=300—-1+[{+1,a], Fs_1=30+a+[l,a—1{],

Gs—1 =L UL, Hs_ 1 =L UL,.
We let

A, =E,UG,Ul,, B,=F,UH,U]J,.
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It is a straightforward exercise to show that the multiset A, = A) U C,, and the set
B, = B, U D), have the property that each i € [n] appears a total of either § — 1 or §
timesin Ay,...,As_; and By, ..., B;s_1. Indeed, the elements in the set

X=30—-1)+[£+1,3+2a—{]

are exactly those elements that only appear § — 1 times. See Table 2 for an illustration.
Note that
|X| =2a+3—-20=3(—0)+1.

Writing X = [a, b], we define

W= @g fa} N Plat1} {ar2.a+3} N Plard} fatsare} N AN Op_2y (h—10) -

We have that w is a chessboard product of codegree t — § + 1 in the chain complex of
My.
For1 < p < § — 2, define

agF:{(3p+r)(n+l—r):lgrga}, JI?H:Q

Moreover, define

o = {3 - D+rmn+1—r):l+1<r<al,

ot ={ii:i € L UL,}.
Each U{fP is a perfect matching between E, and F,,, and each U?H is a perfect matching
between G, and H,. Write o = 03" U 07" and 0* = Ui;i o)

Lemma 7.1 We have that 0* = | J0_| o7, is the unique partition o* = |J | 7 such

that the link 1k, , ., ([7,]) is nonzero for all p. In particular,
PP

d—
p=

lk([o' Ua®]) = Ik, ([0°]) = i5/_\1 D1y, 1y A W-
p=1

Proof Assume the opposite; there is a partition o2 = Ug;ll 7, such that the link

1k, AL ([4]) is nonzero for all g and such that 7, # 012, for some p.

First, for 1 < g < J —1land1 < k < n, we claim that there is at most one edge
in 7, containing the element k. Since Aé N Bé is empty when g < § — 2, the claim is
true in this case. For the same reason, the loops in U(?fl must be contained in 75_1;
hence the claim is true for g = 0 — 1 and k € L, U L,. For the remaining values of k,
just observe that Aj | N B§_, = L U L.

Most importantly, for 1 < g < § — 1 and k € F, there is exactly one edge in 7,
containing the vertex k; this is because o contains a total of § — 1 such edges.

Now, let j € F be minimal such that some edge i j containing j belongs to 012, \ 7p
for some p; choose p maximal with this property. We concluded above that the loops
in Jg{l all belong to 7;_;; hence we must have that i € E, and j € F,,.
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Let q be such that ij € 7,. For g’ > p, we have that 7, contains the unique edge
in 03, that contains j; this is by maximality of p. In particular, i j ¢ 7,/, which means
that g < p.

Note that3p+1 < i < 3p+ . Writingi = 3p +r, we observe that j = n+1—r.
If i < 3g+ o, then afl contains the edge with endpoints

i=3p+r=3q+@3p—3q+r),

i'=n+1-0CBp—-3q+r)=j—3(p—q).

By minimality of j, we must have that ij’ belongs to 7,, which makes it impossible
for ij to belong to 7,. If i > 39 + «, then i is not contained in A; U B, which again
makes it impossible for ij to belong to 7, In both cases, we obtain a contradiction;
hence o} = 7.

Since all edges ab in o2 have the property that a = b or |b — a| > 4, no edges
in o appear in the cycle w. As a consequence, we obtain the final statement of the
lemma. ]

Lemma 7.2 Letn =06 (mod 2), and assume that
n+2
6+2§t§T and t=n (mod 2).

Then there is a cycle z of codegree t in the chain complex of BD? such that the homology
class of z has order three.

Proof Let notation and assumptions be as above. Consider the cycle z’ = lk,([c])
in Lemma 7.1, where ¢ = ¢! U ¢ this is a chessboard product of codegree t. Note
that each vertex appears in exactly § — 1 edges in o. For vertices belonging to L U Ly,
one of these edges is a loop, which means that those vertices appear § times in o. In
particular, we may view z’ as a cycle in the chain complex of M\ 1,ur,) = Msi—2.
By Proposition 3.2, the order of the homology class of z’ is not one. By Lemma 3.5,
this order divides the order of the homology class of z in the homology of BDf,.

It remains to prove that the latter order divides three. For this, note that w is
a chessboard product of codegree t — § + 1. Since t — § + 1 > 3, we may apply
Lemma 3.4 to deduce that the homology class of z indeed divides three. ]

7.2 CaseB

In this case, 1 is even and § is odd. We need to a find a chessboard product of codegree
t for each even ¢ satisfying 6 +3 <t < ”T*z Weleta = 5 — 1;thusn = 36 + 2 + 1.
The inequalities for ¢ imply that o > 3.

We make small modifications to the construction in Case A, shifting all sets one
step up. For example, F = F,, was previously defined as 36 + o + [1,a] for 1 < p <
0 —2and 30 + a+ [1,a — £] for p = § — 1. This time, we define

F=F,=30+a+1+[1,0a]
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Table 3: Definition of E,, F,, G, Hy, I, and ], in Case B for § = ov = 5, and t = 8. We have
that n = 26 and £ = 2. Each star denotes membership in C, or D, for some p; compare to
Table 1. Boxes denote positions yet to be filled.

[1 2 3[4 5 6]7 8 9710 11 12
* * * O E1 E1 E1 El El * * *
* % * | % * * |0 E E |E E E
* % * | % * * * * * | O Es Es
* * * * * * * * * * * *
L h h|L L LB 3 L Jis 4

[13 14 15 16 17 1819 20 21[22 235 24 25 26 ]

*

*

E3 E3 * * * *
G4 G4 E4 E4 E4 *
O

OO& « «
O % % % %
O % % % =
e
e
e
o
o

Table 4: A completed version of Table 3, including definitions of G;, H }',, and X. As before,
each star denotes membership in C,, or D, for some p.

[1 2 3[4 5 6]7 8 910 11 12]
* * * HZI El E1 El El El * * *
* k% * x % |Gy E2 E|E E B
% ok % * * % * * x| Hl E3 E;
* * * * * * * * * * * *
L h h| L h k| B B B L Ji .

[13 14 15 16 17 18] 19 20 21 ][22 23 24 25 26 ]

FF i F F F
FFE, b b F B
Fs F5 F5 F F;
F4 F4 F4 G4 G4
X X X Hy Hy

I
P

forl1 <p<d—2andFs_; =36+ a+1+[1,a— {]. In the same manner, we shift
the other sets E,, G, Hp, L1, and L, one step up; as before, ¢ = (n — 3t +2)/2. This
shift leaves us with some gaps, marked with boxes in Table 3. Specifically, the vertices
intheset {3p+1:1 < p < §— 1} appear fewer than § times, as do the vertices in
theset3(0 —1)+ 1+ [£+1,34 2« — £]. One vertex, 3(0 — 1) + 1, appears only § — 2
times.

We fill these gaps in the following manner. For odd p, define
G,=9, H,=2.

For even p, define
G,={3p+1}, H,={3p—2}
For1<p<§—1,let

A, =E,UG,UG,UI,, B,=F,UH,UH,U]J,.
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Finally, define
X=00-D+13U (36 -1 +1+[(+1,3+20—(]).

See Table 4 for an illustration.
Note that
X|=14+2a—20+3=3@—0)+1.

Writing X = {30 — 2} U [a + 1, b], we define

W= Qg (36-2} N\ Plat1} {ar2,a+3} N Platra} {at5are} N N Plo—2} (b—1,b}-
As before, w is a chessboard product of codegree t — ¢ + 1.
For1 < p < § — 2, define

ggF:{(3p+1+r)(n+1—r):lﬁrﬁa}a

GH {3p—2,3p+1} ifpiseven,
g =
P @ if p is odd.

Moreover, define
o ={B@E - D+1+Nm+1-1:Ll+1<r<al,
o ={ii:ie LLUL}U{3(6—1)—2,3(6 — 1) +1}.

Each 0" is a perfect matching between Ej, and F, and each o' is a perfect matching
between G, U G, and H, U H,. Write

6-1
> _ EF,, GH 2 2
o,=0, Uo,” and o° = leJ1 s

Lemma 7.3 We have that 0* = | J0_! o is the unique partition 0> = U‘sp;} Ty such
that the link ks, ., ([7,]) is nonzero for all p. In particular,
PP

6—1
k,([c' Ud?]) =1k, ([0?]) = £ /\1 é1,.5, \ W.

=
Proof We proceed as in the proof of Lemma 7.1, thus assuming the opposite. Look at
the edges in 0 for even r. We have that 37— 2 is contained in Bjifandonlyifq =r,
and 37+ 1 is not contained in any Bé. Therefore, we must have that (3r —2)(3r+1) €
T;. The remainder of the proof is identical to the proof of Lemma 7.1. Again, no
edges in 0% appear in w, as every edge ab € o satisfiesa = b or |b — a| > 3. ]

Lemma 7.4 Let n be even and d odd, and assume that
n+2
0+3<t< 5

and t is even. Then there is a cycle z of codegree t in the chain complex of BD? such that
the homology class of z has order three.

Proof The proof is exactly the same as that of Lemma 7.2, except that the first refer-
ence in the proof should be to Lemma 7.3 rather than to Lemma 7.1. ]
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Table 5: Definition of the sets Ey, Fy, Gp, Gy, Hp, Hp, Ip, Jp, and X in Case C for § = 6, a = 5,
and t = 8. We have that n = 29 and ¢ = 3.

l

[ 4 5 6[]7 8 9J10 11 12][13 14 15|

3

«* |Hy E El | E E E | * PR * * %
* * * x |Gy Ey Ey | E2 E E | * * *
*
*
*

* * * * * * |Hf Es Es|E E Es
/

* * * * * * * * * G, Ei E

* * * * * * * * * * * *

L L h| L h Ll 5 Bl s |l 5 ]

* ¥ X ¥ XD

[ 16 17 18 19 20 21 [ 22 23 24 [ 25 26 27 28 29 ]
* * * * * * * * * | [ FB F F F
* * * * * * * * x | b F, F, F, F
* * * * * * * * * | /3 F3 F3 F3 F3
E4 E4 E4 * * * * * * F4 F4 F4 F4 F4
G; Gs Gs Gs Es Es * * * Fs Fs Gs Gs Gs
H Hs Hs Hs X X |X X X|X X Hs Hs Hs

7.3 CaseC

In this final case, n is odd and ¢ is even. We need to a find a chessboard product of
codegree ¢ for each even ¢ satisfying 6 +2 <t < "7“ (we cannot have t = (n+2)/3 if
tis even and n is odd). Again, welet a = §—1; thus n = 3§ +2a+ 1. The inequalities
for t imply that o > 2.

This case is very similar to Case B. For p < § — 1, the sets E,, F,, G, Gz/ﬂ H,,
H,, agp ,and JEH are defined in exactly the same manner as in that case. The sets Ly,
L,, Es_q, F5_1, Gs—_1, Hs_1, and affl are also defined as before, except that we now
define
n—3t+1

3 .

(=
We do make one small modification, defining
Gs_,={306-1)+1}, Hj_,={36-1)+1}.
We modify the set 0§, accordingly by setting
ot ={ii:i € LLUL,U{3(5 —1)+1}}.

Let
A, =E,UG,UG,Ul,, B,=F,UH,UH,U]J,.

Finally, define
X=30—-1)+1+[£+1,34+2a—{].

See Table 4 for an illustration.
Note that
|X| =2 —20+3=3(—0)+1.
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Writing X = [a, b], we define

W= 0g (a} N Ofar1} far2.a+3) N Plara) fars.ar6) N A DLy} {b—1,0}-
Again, w is a chessboard product of codegree t — 6 + 1.

Lemma 7.5 We have that 0* = | J0_! o, is the unique partition o> = Ui;i 7p such

that the link 1ky , ., ([7,]) is nonzero for all p. In particular,
PP

Ik ([0' Uo?]) =1k, ([0%]) = d:(s/_\1 b1,.5, N W.
p=1

Proof Use exactly the same argument as in the proof of Lemma 7.3. ]
Lemma 7.6 Letn be odd and § even, and assume that

n+1

0+2<t<

and t is even. Then there is a cycle z of codegree t in the chain complex of BD? such that
the homology class of z has order three.

Proof The proof is exactly the same as that of Lemma 7.2, except that the first refer-
ence in the proof should be to Lemma 7.5 rather than to Lemma 7.1. ]

7.4 Conclusion

Combining Lemmas 7.2, 7.4, and 7.6, and using the reformulation (4.2) in terms of
codegree of the bounds (4.1), we obtain Theorem 1.1.
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