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Abstract

If w is a group word in n variables, x\,...,xn, then R. Horowitz has proved that under an
arbitrary mapping of these variables into a two-dimensional special linear group, the trace of the
image of w can be expressed as a polynomial with integer coefficients in traces of the images of
2"—1 products of the form xalxa2...x,m, 1 <CM <CT2 < ... < o m < n. A refinement of this
result is proved which shows that such trace polynomials fall into 2" classes corresponding to a
division of ^-variable words into 2" classes. There is also a discussion of conditions which two
words must satisfy if their images have the same trace for any mapping of their variables into a
two-dimensional special linear group over a ring of characteristic zero.

1980 Mathematics subject classification (Amer. Math. Soc): 20 G 99.

1. Preliminaries

To facilitate the discussion in subsequent sections the terminology to be used will
be established immediately.

We shall define a/ree group on a given set of generators as the set of all freely
reduced words in the generators, with multiplication of two elements defined by
juxtaposition and free reduction of the result.

4 primitive element is an element of a free group which is in a set of free
generators for the group.

A word is an element of a free group X = gp(x1,x2, •••) of countable rank. In
particular, note that a word is always freely reduced. As a rule, the letters occurring
in a word may be assumed without loss of generality to be xt, ...,xn, that is, to
lie in the group Xn = gp(x1,...,xn). In this situation the letters xt are referred to
as variables and the word is referred to as a word in n variables.

If A is a group, <x a mapping of the free generators of X into A, then the image
of a word w under the corresponding homomorphism a: X-* A is called a value
of the word w in A.
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402 J. B. Southcott [2]

The verbal subgroup of a group A corresponding to a set of words is the sub-
group generated by all values in A of words in the set. In the case where the set
consists of a single word w, the verbal subgroup is denoted by w(A).

The length of a word w = x"y\ x*v\... x£ is defined as

The exponent sum on generator xt in the word w is the length of the image of w
under the projection X-* X induced by the mapping of the generators xt -* xi7

Xj-*l,j¥=i.

The symmetric differences of sets ft and v, that is the set of elements which are
in n or v but not in both, will be denoted by /i©v.

This paper contains results from the author's PhD thesis (University of
Queensland, 1975) written under the supervision of Dr Sheila Oates Macdonald.
The author wishes to thank Dr Macdonald for her advice and encouragement.

2. Background

Let K be a commutative ring with identity. Then SL{2, K) denotes the two-
dimensional special linear group over K, that is the group of all two-by-two
matrices of determinant one with entries from K. PSL(2, K) denotes the quotient
group of SL{2,K) modulo its centre. If we write SL(2,q) this indicates that the
ring is the finite field of order q.

If w is a word in n variables, then the trace of w, denoted by tr w is defined to
be the trace of the value of w under an arbitrary mapping of its variables into
SL(2, K). To say that two words u and v have the same trace, tr u = tr v, means
that their traces are equal for all mappings of their variables into SL{2, K). The
question of when two words have the same trace in this sense is fundamental and
is discussed in Horowitz (1972) and Section 6 below.

THEOREM 2.1. (Horowitz (1972) Theorem 3.1). If w is a word in n variables, then
the trace ofw can be expressed as a polynomial with integer coefficients in the 2"— 1
traces of the form

under an arbitrary mapping of the variables into SL(2, K).

Polynomials which arise in this way will be referred to as trace polynomials.
The main result of this paper is Thoerem 4.1. This is a refinement of Theorem 2.1,

and gives strong restrictions on the structure of trace polynomials. It is also a
generalization of Theorem 5.2.2 of Cossey, Macdonald and Street (1970) which
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[3] Trace polynomials 403

holds only for two-variable words. The two-variable form has been applied there
and in Southcott (1974a, b) to obtain two-variable laws which hold in certain
PSL(2,q).

3. Basic trace identities

Given words, u, v, w it is well known that tr u = tr u", and if e is the empty word,
we have (Cossey, Macdonald and Street (1970) 5.2.1, Horowitz (1972) 2.2,2.4)

(3.1) ( l ) t re = 2,

(2) truv = trutrc— trwv"1.

From these relations follow (Horowitz (1972) 2.1,2.3)

(3) tru"1 = t r« ,
(4) trM«w = tr«trj;H'+trt>trww-HrH>tr«tf—trutrutrw— truwv.

The derivation of 3.1 (4) illustrates many of the techniques of manipulating
expressions involving traces of words. Using identities 3.1 (l)-(3) and conjugation
as necessary, we have

truvw = tr«trw—truw~1v~1,
triw"1 p"1 = trKW~1trr—trtW1 v,

trKW"1 =trwtrw—tr uw,
and

tr uw~1 v = tr vuw~1

= tiuvtT\v—truwv.
Hence

tr uvw = tr u tr vw+tr v tr uw+ tr w tr uv—tr u tr v tr w—tr uwv.

4. Definitions and main theorem

The following material establishes the framework for the statement and proof
of Theorem 4.1.

Words in n variables can be divided into 2" classes, namely the cosets of the
verbal subgroup x2(Xn). Each class of words will be denoted in the form Wx

where A is a subset of {1,2,...,«}.

DEFINITION. Suppose weXn. Then weW0 if the exponent sum is even on each
generator, and we Wv = WlviiV2f ...Vm, if the exponent sum in w is odd on each of
the generators xVl,xV2,...,xVm and even on each other generator.

https://doi.org/10.1017/S1446788700012544 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012544


404 J. B. Southcott [4]

Recall from Theorem 2.1 that the trace of any word in n variables is a poly-
nomial in the 2"— 1 traces ta, a a. non-empty subset of {1,2,...,«}. We shall define
a class of operators which act on polynomials in these traces. Each operator will
be denoted in the form Sx where k is a subset of {1,2,...,«}.

DEFINITION. For each trace /„, Sx is defined by Si(f<,)=(-l)l*n<r|r<r, and for
polynomials, Ŝ  is defined recursively by

S*(<* c. *c. • • • O = c s*('c) s ^ ) • • • S*C c)>
where c is a constant, and if gl,g2,...,gr are monomials in the variables to

These operators will now be used to define classes of polynomials in the variables
/„; each class will be denoted in the form Ep where p is a subset of {1,2, ...,n}.

DEFINITION. A polynomial / in the 2" — 1 variables ta lies in the class Ep if for
alU

Note that the sum of two polynomials in Ep, for some fixed p, also lies in Ep.
From the definition of the classes Wx as cosets of x2(Xn) it is clear that they

form a group under coset multiplication isomorphic to C\, elementary abelian of
exponent two on n generators.

The classes of polynomials Ep also form a group isomorphic to C2 with identity
Ez and multiplication defined by En E( = Ex where x = i;©C- The class Ex contains
all polynomials of the form fg,feEn, geE(.

It may also be noted that the operators Sx form a group under composition,
isomorphic to C2, with identity S0, generated by S^ ...,Sn.

THEOREM 4.1. Suppose w is a word in n variables. Then under an arbitrary mapping
of the variables into SL(2, K), tr w may be expressed as a polynomial with integer
coefficients in the 2"—\ traces to and, moreover, trwe-E^ if and only if we Wx.

PROOF. The 'only if' follows easily by reductio ad absurdum once we have proved
that we Wx implies tr weEx.

The proof that weWx implies tr w e Ex will be by induction on word length of w.
The theorem is true for words of the form 1 and

xvlxV2...xVm, 1 sg v1<v2<. . .<vm<n.

Note that if it has been established that ueWn, tr ueEn and veWt,
then uveWqW( = W 0̂C and the expression truttv lies in EnEz = £,0C.
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Suppose that the theorem is true for all words of length less than k, and let
we Wx be a word of length k. The rest of the proof establishes that it is always
possible to express tr w in terms of traces of words of length less than k, or of
known trace, and hence, by induction, that tr w is a polynomial in the traces ta

and belongs to Ex.
The proof may be divided into three cases.
Case 1: w = x"; x£ . . . x"* where for some q, \ ^q^s, \ <xq \ > 2.
We may assume that q = s and that <xs ^ 2, since w can be transformed into a

word of this form having the same trace by conjunction and inversion if necessary.
Then

tr w = tr wx^1 tr XVM — tr wx~t
2.

t

All words appearing on the right-hand side are of length less than k, so by the
induction hypothesis the theorem holds for their traces, and tr weEx.

Case 2: w = x j j x ^ . . . x ^ , where |<x,| = 1, 1 < # < & , and the xv> are not all
distinct. We may consider two subcases.

(1) w — uv, where u =x*\...xV(, v = x* *}...xVfc and v; = vk.
Then trw = tr«trt> —trwu"1. All words on the right-hand side are of length
less than k, so by the induction hypothesis the theorem holds for their
traces, and t rwe£ A .

(2) w = uv where u = x£ ... x% v = x*+;... xv~ J v( = vk.
Then tr w = tr w tr v—tr wt>"1. The length of uv ~J is not greater than A;, hence
by Case 1, tr uv~1eEx, and it follows that tr weEx.

Case 3: w= x^...x^k
k, | a, | = 1, 1 «S q < k, all xv^ distinct. Either all a, = 1 or

we may assume a k = - l . Then trw = trwxVktrxv~1-trwXvk. The lengths of
wxVfc and x^1 are less than k, hence by repeated applications of this procedure,
trw can be expressed as a sum of terms in Ex and +trxVlxV2...xVk. We must
prove that tr xVl... xVk € Ex.

If 1 < vt < v2 < . . . < vk < n, the result is true. Otherwise, suppose

1 < vf<vJ<...<v, ^ H

and write xVl... xVk = axVib. If a or b is empty xv, can be moved immediately to
the end of the word. Otherwise, by 3.1(4)

\xaxVib = tratrxV(Z>+trxVitra£+trZ>traxV( — t ra t rx V | t r6 — trabxVl.

By repeated application of this procedure xv.,xVJ, ...,xV| can be moved to the end
of the word in turn, and trxV l . . . xVk can be expressed as a sum of terms in Ex and
trxV(xV/... xVl, which is known and is in Ex. Hence
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5. Examples

In this section we shall consider several examples involving three-variable words.
For a polynomial/in the seven variables tu t2, t3, tl2, t13, t23, tl23 the definitions

of the operators Ŝ  are

S 0 ( / ) = / ,
Si ( / ) =f\ — ti,t2,t3, — t12, —t13,t23, — ̂ 123)'

Slif) =f(tU ~*2>f3> ~'l2>'l3> ~^23» ~*123)>
« S3(/) =f(ti,t2, "" *3>*12> ~'l3» ~̂ 23> ~*123)>

Trace polynomials of words in three or more variables are not necessarily
unique. For example,

=trxfx2trx|x2—trxfx3
2,

and

tr x]x3
 2 = t3 tr x{ x3

 x - t r x\
= f3(f1trx1x3-

1-f3)-(f+2
= tlt3(t1t3-ti3)-t

2
3-tj+2.

Hence

tTX
2x2xlx2=t2+tl+t2-t1t2t12+t1t3t13-t2t3t23 + t1

But

trXj x2 x | x2 = trXj x2 x3 x3 x2 xx

^ fj2 3 trx3 x2 Xj—trxjX2X3Xj x2 x2 ,

and partitioning into subwords of length two and applying 3.1(4) we have

t r x t x 2 x 3 X i 1 x 2
i x 3

1 = t T x x x 2 t r x 3 X i 1 x 2
1 x 3

1

+tr x3 xj"1 tr xt x2 x2
lx3

x

+tr X2"1 x3
 1 tr xt x2 x3 xfJ

— tr Xj ^2 X2 x$ ^ X
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Hence

tTx\x2xlx2 = t123(t1t23+t2t13+t3t12-t1t2t3-t123)
~tl2~h3~t23~h t3+2tt 3̂ *13 + 'l *3 *12 *23 ~ *12'l 3 2̂3 +2-

Note that xJx2X3X2eW0 and the trace polynomials calculated for it are in E0.
The known examples of non-uniqueness are not derived using the algorithm

given in the proof of Theorem 4.1. Clearly, that algorithm could be modified so
that there are no arbitrary choices involved, and in that case there would be a
canonical trace polynomial corresponding to each n-variable word. But even given
such a modification of the algorithm, the possibility that two words have the same
trace but different canonical forms for their trace polynomials cannot be ruled out.

6. Words with the same trace

In this section we shall look at the problem of determining when two words
have the same trace in the sense defined in Section 3, that is, both have the same
trace under an arbitrary mapping of their variables into some SL(2, K).

One aspect of this problem is to find in the polynomial ring in 2" — 1 variables
over the integers, the ideal which is identically zero when the variables are taken
as the traces ta. This ideal will be denoted by In(K).

THEOREM 6.1 (Horowitz (1972) Theorem 4.1). If K is a commutative ring of
characteristic zero, then Ii(K) =I2(K) = {0}, the zero ideal; that is, the trace of any
word in one or two variables is a unique polynomial in the traces tu t2 and t12.

THEOREM 6.2 (Horowitz (1972) Theorem 4.3). Let Kbe a ring which contains the
rational numbers as a subring. Then /3(i^) is the ideal generated by the polynomial

I conjecture that this result holds when K is any ring of characteristic zero.
Whittemore (1973) shows that for n ^ 4, In(K) is not principal.
The other aspect of the problem of determining when two words have the same

trace is finding group theoretic conditions which such words must satisfy. To
simplify the discussion, only cases where traces lie in a ring of characteristic zero
will be considered.

For words u and v in any number of variables, we have the condition: If v is
conjugate to u or u'1 then tr u — tr v.

For two-variable words we can say more than this. If

u =x"\x"l...x"™, V j # v i + 1 , l < i
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then the reversal of u, denoted revw, is the word xj™... x"l xj | , and the family of
syllables of u is {xj;,x£, . . . , x£} .

THEOREM 6.3. Let u and v be two-variable words. Ifv is conjugate to u or u~l or
the reversal ofuoru'1 then tr u = tr v.

PROOF. It is sufficient to show that trw = tr(revw) for any two-variable word u.
Without loss of generality, assume « = x" yfil x*2 yfi2... x*m yfim. If u contains only
one or two syllables, the theorem is true since rev u is conjugate to u. Assume
that the theorem holds for all words with conjugates containing fewer syllables
than M, or with the same number of syllables but of shorter length. We may
consider two cases.

Case 1: | a.t | > 2 for some i, or | /?y | > 2 for some j .
By choosing a suitable conjugate of u arid inverting if necessary we may assume

that otj > 2 or flm $s 2. Then

tr« =tixtrxtti~1yfil ...

and

tr(revu) = trx tr(revx"1 '1 yPl... x"myfim)-tr(revx"1 ~2yfl... x'my0m)

in the former case; similar relations hold if fim ^ 2. In either case the induction
hypothesis gives immediately that trw = tr(rev«).

Case 2: | a, | = |/?, | = 1,1 < / < /w.
If aj = j8j = l, 1 < Z ^ T M then u is conjugate to revw. Otherwise suppose

aj = - l or pm = - l . Then

t r x " 1 ^ ' - •• x*m y*m = tr xtTx'2 yfi*... x*m yP^*™ -tixy*1... x*m y"™

and

t rCrevx" 1 / ' •• -x"myfim) = t rx t r ( revx" 2 / 2 ...x"myfil*fim)
- tr(rev x/1... x"m yfm),

in the former case; similar relations hold if fim = — 1.
In either case, the first terms on the right-hand side are equal by the induction

hypothesis, and the terms can be shown to be equal by applying the same process
repeatedly until the last terms are tr(;ej>)m and tr (rev (xy)m).

Example 8.2 of Horowitz (1972), showing that there is no bound on the orders
of sets of non-conjugate two-variable words with the same trace, indicates that a
necessary condition for two words to have the same trace must be much weaker
than that of Theorem 6.3.

LEMMA 6.4 (Horowitz (1972) 2.7). For any integer m, trxm = C,m|(trx) where

https://doi.org/10.1017/S1446788700012544 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012544


[9] Trace polynomials 409

Cm(z) is defined inductively by C0(z) = 2, C^z) = z, and

CJz) = zCm_ ,(z) - Cm_2, m > 2.

LEMMA 6.5 (Horowitz (1972) Lemma 6.1). Let u and v be cyclically reduced two-
variable words of the form

u = x"1 / ' x"2 y02... x"r v"r,

J / " t ru=t rv /Aen r = s and the family of syllables {x|ail,)>l/ri1, .:.,xWr\y^A) is the
same as the family {x1"1,}/1*'1 xM,y]s'1}-

THEOREM 6.6. Let

u=xl\x%\...x'v
r
r, vr¥=vt, v , /v j + 1 , l

and

be cyclically reduced words in n variables. If tr u = tr v f/je/i r = s and the family of
syllables {xt"'1, ....xj,"-1} is equal to the family {xj,^1 xj^*1}.

PROOF. By 6.4 and 6.5 the theorem is true for words in one or two variables.
Suppose n>2 and the result is true for all words in n — 1 variables. Then consider
the mapping 6 denned by 9(xi) = xi, l < i < n , Q(XJ = X2ax$xf where \a\ is
greater than the length of any syllable in x2 occurring in u or v, and b is an
arbitrary non-zero integer.

The images of u and v under the mapping 0 must have the same trace. But under
6, all syllables in the variables x3,...,xn-x remain distinct and unchanged, hence
the family of lengths of syllables in each of these variables is the same in u as in v.

Also, under the mapping 6, all syllables in x t are preserved, and corresponding
to each syllable of length c in xn which occurred in the original word, a syllable
in xx of length be is introduced. Since the family of lengths of syllables in xx-must
be the same in the images of u and v for arbitrary b, the family of lengths of
syllables in xt is the same in u as in v, and the family of lengths of syllables in xn

is the same in u as in v.
If we now consider the images of u and v under the mapping x defined by

X(Xi) = Xi, l^i<n, xix«) = xi"xh2xi where \a\ is greater than the length of

any syllable in x t occurring in u or v, and b is an arbitrary non-zero integer, a
similar argument shows that the family of lengths of syllables in x2 is the same in
M as in v.

The necessary condition given in Theorem 6.6 for trw to be equal to trv is
much too weak. The following condition, while still not sufficient, seems plausible.

https://doi.org/10.1017/S1446788700012544 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012544
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CONJECTURE 6.7. Let u = x£ x£... x£, v , . ^ ! and t> = x£;...x£, ns¥= nu be
cyclically reduced words in n variables. Iftru = tr v then the family of syllables ofu
is equal to the family of syllables ofvorv~l.

There is considerable evidence favouring this hypothesis in the two-variable
case. Once proved for two variables the method of proof of Theorem 6.6 would
lead to the general result.

Let u = x"yfl ...x"ryPr and v = xnySl... x"'yim. Then if tr« = trv we have

i = l '

*

r

(=1

and
r

L

y

It)
s

from considering mappings which respectively
(a) map y to the identity and x to an arbitrary element of SL(2, K),
(b) map x to the identity and y to an arbitrary element of SL{2, K),
(c) map x and j to the same arbitrary element of SL(2, K).

Now define a mapping p by

- { ; ; }
where ? is an arbitrary integer. Then

THEOREM 6.8. Ifu=x"1 yfil... x*ry*r then

i = 0

r -1

where

i=0

r-1
ZJ '

(=0
^rf2'

r

m = l

. n1
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[11] Trace polynomials 411

t
m-l

L ....V^Si1

PROOF. The proof is by induction on r. The theorem holds for r = 1,2 so assume
it to be true for r = h, say. Matrix multiplication then yields the relations (for h > 2)

*i,»+i = a * +

"*,*+i =

CO,fc+l =P*+1+CO*>
c(,*+i =c»+i?»+irfi-i,*+aj+1^+1c,_l j j , 1 < «< A-l ,
C*,*+l = A

= 1

"*,*+l ~ a * + l CA-1,*-
The theorem follows immediately from these relations and the induction

hypothesis.
For example, take r = 3. Then

aO3 = 1,

= <*i P \ <*2

C03 -P1+P2+P3,

d23=P1a2p2tx3.
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Given a two-variable word u, all candidates for words with the same trace can
be obtained, according to Theorem 6.6, by permuting the syllables in x and in y,
and changing the signs of some of them. If the only such transformations which
leave invariant the expressions arr and air+dir, 0 < / < r— 1, may be regarded as
permutations of the syllables of u or its inverse, then Conjecture 6.7 is proved.

In all cases, the condition that arr is invariant means that an even number of
syllables must change sign, and au+du invariant implies (£?= i «i)
invariant.
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