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Summary

Evolutionary consequences of natural selection, migration, genotype-environment interaction, and
random genetic drift on interpopulation variation and covariation of quantitative characters are
analysed in terms of a selection model that partitions natural selection into directional and
stabilizing components. Without migration, interpopulation variation and covariation depend
mainly on the pattern and intensities of selection among populations and the harmonic mean of
effective population sizes. Both transient and equilibrium covariance structures are formulated with
suitable approximations. Migration reduces the differentiation among populations, but its effect is
less with genotype-environment interaction. In some special cases of genotype-environment
interaction, the equilibrium interpopulation variation and covariation is independent of migration.

1. Introduction

Whether population differentiations is related to
within-population variation is an interesting question
in evolutionary biology. Kluge & Kerfoot (1973)
observed some positive correlation between the
amounts of interlocality differentiation and intra-
population variance for several morphometric charac-
ters. Subsequently, the 'Kluge-Kerfoot phenomenon'
was reported in several other studies (Sokal, 1976,
1978; Johnson & Mickevich, 1977; Pierce & Mitton,
1979; Baker, 1980; Atchley, Rutledge & Cowley,
1982). However, Rohlf, Gilmartin & Hart (1983)
showed that these observations did not prove the
existence of the correlation between interlocality
differentiation and intralocality variation, and that
the ' Kluge-Kerfoot phenomenon' could be simply a
statistical artifact because ' [t]he observed correlation
is due to the measures of within- and among-
population variability both being functions of a third
variable - the sample mean.'

Theoretically, if a group of populations diverge for
a short time, a positive relationship between within-
and among-population variation is expected. Both
neutral and selection models predict that the differ-
entiation of populations is directly related to within-
population genetic variation. In the long term,
however, the relationship becomes less clear. Con-
ventionally, it is regarded that in the long term
populations could converge to their local optima
(Bulmer, 1971a,*; Lande, 1980a). If these optima

display a geographic cline or some ecological patterns
(Felsenstein, 1977; Slatkin, 1978), among-population
variation would not necessarily be related to within-
population variation.

It is plausible that not all characters have local
optimum values. Characters are likely to evolve
together; while some shift to their new local optima,
others change as a consequence of genetic correlation
in the short term and selective correlation in the long
term (Zeng, 1988). In a model incorporating constant
stabilizing selection and spatially differential direc-
tional selection (Zeng, 1988), it is shown that at
equilibrium among-population variation could still be
related to within-population variation, but indirectly,
through the joint influence of stabilizing selection on
the maintenance of within-population variation and
the development of among-population variation.

In this paper, the previous work is extended to
include migration, genotype-environment interaction,
and random genetic drift. I will begin with an
introduction of the selection model and explore further
some of its properties. Then I will treat migration,
genotype-environment interaction, and random gen-
etic drift individually in different sections.

2. The model

Consider a group of isolated populations which
diverged from a common ancestral population due to
disruptive selection caused by environmental changes
or niche shifts. It is assumed initially that population
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size is infinite in each population and there is no
migration or genotype-environment interaction, but
later these assumptions will be removed.

Let i b e a column vector of phenotypic measure-
ments of n quantitative characters and suppose that
the corresponding vectors of additive genetic effects,
y, and environmental deviations, e, follow independent
multivariate normal distributions with x=y + e.
Then x is also multivariate normally distributed
with mean vector /ix = fiy+fie and covariance matrix
P = G+E, where fty, ne and G, E are the mean vectors
and covariance matrices of y and e, respectively.
Both G and P are assumed to be positive definite.
Assuming also that /ie = O',then/tx = ny. These assump-
tions are conventional for multivariate analyses of
quantitative inheritance.

Natural selection on phenotypes is partitioned into
two components: directional and stabilizing, and
assumed throughout to have a general form that for
the rth population the fitness function is

(i= l,2,...,m), (1)

where the superscript T denotes matrix transposition
and m is the number of populations. 6 = [0r] (r = 1,2,
...,«) is the column vector of original mean phenotypes
of the population before differentiation of sub-
populations (6r is the rth element of 0). at = [at r]
(r = 1,2,...,«) is a column vector which approximates
the intensities of directional selection in the rth
population, and Wi = \Wi rJ (r,s= 1,2,...,«) is an
n x n positive definite symmetrical matrix which
approximates the strength of stabilizing selection in
the /th population (Zeng, 1988). [The fitness function
(1) has been used by Felsenstein (1977) as a general
type of selection acting on n-linked loci.] In the
following the subscripts h, i,j and k are used to index
populations and p, q, r and s to index characters.

Selection is assumed to be weak so that genetic
variation can be maintained by the balance between
mutation and selection (Lande, 19806; Via & Lande,
1987). The covariance matrix of genotypes can then be
assumed to remain roughly constant as evolution of
mean phenotypes proceeds.

Under these assumptions it has been shown (Lande,
1980a; Zeng, 1988) that the mean phenotypes of
characters in the rth population in successive genera-
tions, /tf = [/*, r] (r = 1,2,...,«), can be written as

/*t(t+1) = MM+Gt(fvt+pty
1{0+ yviai-f,t{t% (2)

where fit(t) is the mean vector at generation t and C#,
and Pt are the genetic and phenotypic covariance
matrices in the rth population. At equilibrium [//,(') =

(3)

rsat s unless G, is

= 0+

or in component /nt r =
singular.

Since the ultimate responses are determined only by
Wt and af, the interpopulation variation at equilibrium
depends only on the variation of W( and a, among
populations. Let a, be random variables among
populations with mean vector a and covariance
matrix A. Wt could be regarded as random variables as
well, but this would greatly complicate the expression
of interpopulation covariances. Instead, for simplicity,
we ignore the variation of W, among populations and
take W as constants. The interpopulation covariance
matrix at equilibrium is then approximately

K~WA W{m- \)/m =* WAW (4)

for m not very small, where m is the number of
populations (Zeng, 1988).

If the original mean phenotypes, 0,'s, are not the
same among the populations and 0,'s have a mean
vector 0 and covariance 0, equation (4) becomes

K~0+ WAW, (5)

provided that 0t is independent of a,. If in addition
the genetic and phenotypic covariance matrices in a
population remain approximately constant during
phenotypic evolution, the expected mean phenotypes
at generation t in the rth population after the
population occupied a new environment will be
approximately nt(t) ~ 0i + [I-{I-Gt(Wl + Pf1}1] W^
(Lande, 1980 a; Zeng, 1988), where / is an nxn
identity matrix. The interpopulation covariance
matrix at generation / can then be approximated as

K(t) ^
(6)

by neglecting the variations of Gt, P( and W( among
populations, where G and P are the mean covariance
matrices of C, and Pt among populations.

3. Migration

Migration of individuals from one population to
another can reduce variation among populations. If
populations are not totally isolated from each other,
the effect of migration should be taken into account in
analysing interpopulation variances and covariances.
Suppose there are m large populations distributed in
m heterogeneous environments. Selection occurs
within each environment. After selection a pro-
portion/,, of individuals migrate from the rth to the
y'th population, with F= [f(i] (ij = \,2,...,m) as the
forward migration matrix (Bodner & Cavalli-Sforza,
1968). It is clear that/a ^ 0 and 2,1,/y = 1. In order
to write the approximate transformation of mean
phenotypes of populations in successive generations,
we need to define the backward migration. matrix
M=[mtJ](iJ= \,2,...,m) where mtj is the propor-
tion of individuals in the rth population originating
from the7th population after selection and migration.
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If c, is the relative number of individuals in the /th
population (c, > 0 and 2™, c, — 1), then

= ct fti 0 and

(Bodmer & Cavalli-Sforza, 1968). We assume that
ww is constant across generations and random mating
occurs after migration within each local population.

The mean vector of fi,(t) in the next generation
depends on the migration matrix M and the mean
vectors of other populations. Let

fi(0T = lfMT-fim0ri 6{t)T = [ W • • • Bjiif),

and d(t)T = [al(t)
T ...am(t)T], which all have length

nm. Let also

and W =

where Gff = Gt, Pn = Pt, Wit = W, and Gl} = 0, Pt} = 0,
Jf̂  = 0, /+_/. The equation (2) can be written in
another way as

fi(t+ 1) = fi(') + G(W+P)-1{0+ Wa-fi(t)}.

With migration the recurrent equation is changed to

fi(t + 1) = M[fi(t) + G(W+P)-1{6+ Wd-fi(t)}], (7)Wd-fi(t)}], (7)

where M = / ® M is the direct product of / and M.
Here it is assumed that selection is weak and that the
means of populations are not very different so that the
approximation of normal genetic and phenotypic
distributions remains valid with migration. If the
means of populations do become appreciably different,
this approximation is not very accurate. From (7) we
can write

fi(t) = ( M -
x ( / - M + MH)1 MH(0 + Wo) (8)

and at equilibrium

fi = (f-M + MH)1 MH(0 + Wa), (9)

where H=G{W+P)~l and / i s an nmxnm identity
matrix, unless I-M+MH is singular. [Strictly speak-
ing (8) and (9) hold only when Glt = GjS for all / and

j , see below.] Since H is a positive definite diagonal
block matrix, J—H is non-singular and M is a
stochastic matrix, f—M + MH is expected to be
nonsingular and the equilibrium (9) exists.

With (8) and (9) we can theoretically calculate the
interpopulation variance and covariance matrix K at
equilibrium or at any generation. It is difficult,
however, to give a formula for K similar to (6) in this
situation. But we observe that, when mi} = \/m for
all / and j , there is no variation expected among
population means and all populations form a single
large panmictic population. At the other extreme,
when M = / (no migration or gene flow among local
populations), the interpopulation variances and covari-
ances are defined by (6). With migration the inter-

population variances and covariances are therefore
smaller than or equal to those defined by (6).

4. Genotype-environment interaction

Environmental modification of phenotypes of indi-
viduals inhabiting heterogeneous environments can
give rise to genotype-environment interaction. The
phenotypes of a character observed in different
environments may not be the same genetically, but
can be viewed as being genetically correlated. Selection
on a phenotype expressed in one environment may
then cause correlated responses in other phenotypes
which are expressed in other environments (Falconer,
1981). Via & Lande (1985) have used this approach to
examine the effect of genotype-environment inter-
action on the evolution of population means of a
quantitative character, which are under soft and hard
selection, in two environments. In the following I will
illustrate some effects of genotype-environment inter-
action on the modelling of interpopulation variances
and covariances under the selection function of (1).

Following Via & Lande (1985), the expression of a
character in a given environment is considered to be a
character state. If there are m populations distributed
in m different environments, there will be m character
states for each of n quantitative characters, a total of
nm expressed character states. Although each state is
only expressed in one environment, we have to define
nm, not n, character states in each population. The
other states which are not expressed in one environ-
ment need to be defined because the genes which
determine them will be carried by migrants to the
alternate environments where they will be expressed.
In general, for n characters and m environments there
are nmm character states defined in the analysis.

Let x be the array of these nmm character states
which is defined as

x = (i,j= 1,2, ...,m)

were x(jr is the state of character r which is expressed
in the y'th environment, but carried by individuals
located in the /'th environment. When i+j, the
character state is not expressed and will evolve only by
correlated responses to selection on the expressed
states. Let fi be the population mean vector of x.
Thus

fi = [fit], fit = bttil

and

Ma = [/ttjr](iJ= \,2,...,m;r= 1,2,.. . ,«).

Similarly the initial mean vector, 0, is defined as

0 = [*,U = [0«]> and 0(V = [0,,r];

and the vector of directional selection intensities

a = [a,], at = [al}], and atj = [aljr].
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Since xy's (/ 4=y) are not expressed and selection does
not act on them directly, aa — 0 (/' 4=y) and alf = a,.

The phenotypic variances and covariances of x,, are
defined by Pu ( = P(), but the phenotypic covariances
of xkl and xkJ (k 4= / or k 4=y) are undefined since xkl is
not expressed if k 4= /'. Similarly the stabilizing
selection intensities are also only defined on xlt as
WH ( = tVf). The genetic covariances of xkl and xkj for
all k are, however, defined by Gl} since the states
are genetically correlated. When / = y, G,, = G,. Then
the selection responses on /?, at generation / before
migration is

where G = [Go] (ij = 1,2, ...,m) is the genetic covari-
ance matrix, and jfy) = [*<,(?)] 0 = 1,2, ...,m) is the
vector of selection gradients (Lande, 1979). In this
vector

•{Vt,+ wHau-rilt(t))

from (2) and Vtj(i) = 0 when / 4= j because selection
does not act on xi}. Although jcy (i 4= j) is not exposed
to selection, fiiS has correlated responses through the
genetic covariances. Equation (10) can be expressed in
another way as

-s,-&(0}, (11)

Vtt + Ptty

where

Rtt = [Ru.ik] U,k = 1,2, ...,m), RiUii =

and

*, = K l (7 = 1,2, ...,m), su = Wtiau, *„ = 0(14= j).

After migration and random mating, the mean vector
of character states becomes

fi(t+ 1) = M[A(t) + GR(6 + s-ji(t))], (12)

where

M=I®M,G=G®I, R = [Rit](i,j= 1,2,...,m)t

R» = 0(i 4= j); and S = [sj (i = 1,2,..., m).

Again this is an approximation and subject to the
assumption that the distribution of genotypes and
phenotypes within populations remain approximately
multivariate normal in each generation before selec-
tion.

If l—M+MGR is non-singular, we can write from
(12)

(13)

(14)

and at equilibrium

where / is an nmm x nmm identity matrix,

J=1®J and J=[JtJ],Jl}

— Utj. khi ('»./> k,h = 1,2,..., w),

Jl}Jj = 1 for every /' andy, and JiIkh = 0 wheny 4= k or
J 4= h. For example, when m = 2,

1 0 0 0"
0 0 0 1
1 0 0 0

.0 0 0 1.

(We observe that MJ = / a n d MGRJ = MGR from
the definitions of M, G, R and / , so (f-M + MGR)1

MGR = /when I—M + MGR is non-singular). It can
be shown that the conditions for I—M+MGR to be
non-singular are (i) G is non-singular; and (ii) the
stochastic matrix M is irreducible. (R is singular and
of rank nm.) Thus we have

for every / and j . Equation (15) is equivalent to (3)
when / =y. This shows that, if G is non-singular and
M is irreducible, the populations in different environ-
ments at equilibrium will converge to the same vector
of mean breeding values, but not necessarily to the
same vector for expressed character states, so that
indirectly selected character states attain the same
values as their directly selected counterparts (i.e.
fii} = fijj for every i andy) (Via & Lande, 1985); and
the equilibrium variation of population means of ex-
pressed character states is determined by (5), inde-
pendent of the influence of the migration structure.
However, before reaching the equilibrium the vari-
ation will depend on the migration structure (A/) and
the degree of genotype-environment interaction, and
is smaller than that defined by (6).

When the migration matrix M is reducible (i.e.
individuals in some populations never migrate to
other populations, directly or indirectly), (13) and (14)
will not exist and (15) will not hold not for all / andy,
but for those / andy which are equal (i.e. for expressed
characters). For example, when M = /, at equilibrium

and

an = 0ti + G\(rit a,,,

where Ft] is a diagonal matrix whose rth diagonal
element (r = 1,2,...,«) is the genetic correlation
between xkir and xkjr. It is this FtJ matrix that measures
the degree of genotype-environment interaction
between xki and xkj. When there is no genotype-
environment interaction (e.g. Fi} — / ) ,

which reduces to fi(] = 0tj + Wnatj only when Git = Gir

G can be singular. It happens if genetic correlations
between some character states or partial correlations
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are perfect (1 or —1), or genetic variance of a
character is exhausted. This perhaps happens quite
often in reality when n and m are not small. When G
is singular, as long as Glt is non-singular for every /',
(12) still converges to some equilibrium which is not
denned by (15). The equilibrium will depend on M
and G. An extreme case has been given by (9) in which
Flf = I for every / and j .

5. Drift under stabilizing selection

Random genetic drift due to finite population size is
another source of interpopulation variation. Even
without selection populations can diverge from their
original means with the rate depending on the nature
and amount of genetic variation within populations,
mutation schemes, and population sizes (Wright,
1951; Robertson, 1952; Clayton & Robertson, 1955;
Lande, 1976, 1979; Chakraborty & Nei, 1982; Lynch
& Hill, 1986; Cockerham & Tachida, 1987). When
populations are selected for different optimum pheno-
types, the divergence due to drift is constrained by
stabilizing selection (Lande, 1980a). Let x({t) be the
column vector of mean phenotypes of n quantitative
characters in the /th population with effective size N(

at generation t and Dt{i) represent the dispersion
matrix for the probability distribution of JC,(/) among
populations. The expectation of xt{t) is fit(t). While
equation (2) gives the dynamics of the expectation of
xt(t) in successive generations without migration, the
recursion for the dispersion matrix is given approxi-
mately by (Lande, 1980 a)

(16)

to first order in Gi{Wi + P>)'1. This was obtained by
using the approximation of a normal probability
distribution of xt{t) and neglecting variation in (7,
across generations. Unless Nt is very small, the
approximation is appropriate. G/(N{ is the expected rate
of dispersion per generation if there is no stabilizing
selection. However, under selection the dispersion is
constrained. So starting with Dt(0) zero, the dispersion
matrix of x,(0 iS

D,(t) = [/-{/- (17)

The expected interpopulation variation of charac-
ters due to drift, Kd(t), is the mean of Dt(t) among
populations. Neglecting the variation of Gt, Pt, and
Wt among populations, we have

KJ,t) * [/-{/-2G(W+P)-*Y}{W+P)/{2N), (18)

where N is the harmonic mean of Nt among the
populations. Then the expected total interpopulation
variation becomes

K(t) ^ - {I- G( W+

from (6) and (18), since the dispersion of the mean
vectors from expectations is independent of evolution
of the expected means of populations (Lande, 1980a).
At equilibrium

K~0+WAW+(W+ P)/(2N). (20)

In this formula the second term on the right hand side
is the contribution of differential selection to the
interpopulation variation and the third is of drift
which is constrained by stabilizing selection. (The
first is the initial variation.) Thus if \.r{WAYV)f>
tv{W+P)/2N [tr( ) is the trace of a matrix, i.e. the
sum of the diagonal elements of a matrix], it will be
expected that most of the variation among population
means at equilibrium is due to differential selection
among populations rather than random genetic drift
for the characters concerned, and vice versa. For
example, in the one dimension case, the inter-
population variation will be largely due to differential
selection if An P 2-6 x 10"4 for N = 100, PX1 = I, and
Wn = 20.

With (19) we can also have the expected inter-
population variation after one generation selection
and sampling which is approximately

K(\)~ (21)

(19)

after making the approximation W+ P ~ W for weak
stabilizing selection (i.e. magnitudes of eigenvalues of
W much larger than those of P). This shows that K is
mainly a function of G in the short term, but of W in
the long term.

The relative contribution of the differential selection
and drift on interpopulation variation depends also
on the number of generations since populations
diverged. For instance, in the one dimension case if
we take Wu = 20, Pn = 1, Gn = 0-5, N= 100, and
A n = 0-001, we can show from (19) that the
short-term population variation is mostly due to drift
(accounting for 82 % when / = 5 and 69 % when
/ = 10), although in the long term the differential selec-
tion accounts for most of the variation (78 % at the
equilibrium). Since W(t is generally much larger than
GH under weak stabilizing selection, it is expected
that for given At( and N the relative contribution of
the differential selection to interpopulation variation
increases with time until reaching its maximum, unless
At = 0.

Thus it is possible that the pattern of inter-
population variation is different in different time
scales. In the short term, especially immediately after
separation of populations, the drift proportion on
interpopulation variation attains the maximum, and
A" could be expected to be approximately proportional
to G. But since differential selection contribution to
the interpopulation variation increases with time, K
would be expected to be a quadratic function of W in
the long term. In that case the overall level of
correlation of K matrix is likely to be higher than that
of W matrix (Zeng, 1988).

GRH 53
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6. Discussion

Interpopulation variation and covariation of quanti-
tative characters can principally originate from four
sources; differential selection among populations,
random genetic drift, genotype-environment inter-
action, and mutation. Migration (or gene flow)
increases homogeneity of populations. In this paper I
used a specific selection model (1) to examine the
effects of different forces (except mutation) on
interpopulation variation.

Under selection and drift, the interpopulation
covariance matrix K is likely to be approximately
proportional to the genetic covariance matrix G in the
short term. In the long term A" is a quadratic function
of the stabilizing selection matrix W. This implies that
the overall level of correlation of K (interpopulation
correlations) is likely to be in the magnitude of that of
G in the short term, and can increase with time, thus
tending to be larger than that of the phenotypic
covariance matrix P (intrapopulation correlations) if
the overall level of correlation of W is not less than
that of G and P.

For quantitative characters under multivariate
stabilizing selection, it is usually assumed that genetic
and phenotypic variation and covariation of the
characters are selected to conform to the shape of the
fitness surface acting on them (Schmalhausen, 1949;
Waddington, 1957; Olson & Miller, 1958). Studies on
functionally related traits also show that these traits
tend to be highly integrated morphologically, and
their phenotypic correlation structure conforms to the
functional relationship structure (Bader & Hall, 1960;
Cheverud, 1982). Some studies (Cheverud, 1982;
Cheverud, Rutledge & Atchley, 1983; Cheverud &
Leamy, 1985; Kohn & Atchley, 1988) suggest that the
genetic correlation structure among morphological
traits is more highly integrated than the phenotypic
correlation structure. However, these observations of
high genetic correlations may partly be due to the bias
toward high integration of the correlation matrix
inherent in the method of estimating the genetic
covariance matrix (Hill & Thompson, 1978; Cheverud,
1988). This is because the estimator of between-group
covariance matrix tends to bias eigenvalues of the
matrix toward extremes (Hill & Thompson, 1978) and
a correlation matrix with higher dispersed eigenvalues
is more tightly integrated. Observations on morpho-
logical characters of Pemphigus also suggest that the
overall level of interpopulation correlations is higher
than that of intrapopulation correlations (Thomas,
1968; Sokal, Bird & Riska, 1981). This is consistent
with the result obtained in this paper. (For inter-
population correlations these studies computed both
the product-moment correlation matrix based on
locality means and the interlocality-component cor-
relation matrix based on covariance component
analysis. The overall level of interlocality-component
correlations is slightly higher than that of product-
moment correlations (Thomas, 1969).)

Genotype-environment interaction causes further
divergence among populations, because different
suites of genes or different gene effects may be
expressed in different environments. The effect of
migration on interpopulation variation is directly
related to the extent of genotype-environment inter-
action. When there is no genotype-environment
interaction, the interpopulation variation will be
reduced by migration, and the structure of migration
among populations will be critical in determining
population differentiation. However, with genotype-
environment interaction the effect of migration is
reduced. This is because genotype-environment inter-
action permits somewhat independent evolution of
characters in different environments. In the special
case that the genetic covariance matrix G is non-
singular, migration will not influence the equilibrium
interpopulation variation and covariation of expressed
character states, but will reduce the rate of con-
vergence to the equilibrium variation. The within-
population variation at the equilibrium will also be
free from the effect of migration and disruptive
selection (Via & Lande, 1987).

The model of population differentiation examined
in this paper is restricted in many ways. In addition to
the general assumptions usually made in multivariate
quantitative genetic analyses (e.g. polygenic inherit-
ance, multivariate normality of phenotypic and
additive genetic distributions), other assumptions
have been made, including (i) the fitness function (1);
(ii) simultaneous divergence of progeny populations
from the base population; and (iii) uniform Jfmatrices
among populations [(6), (18) and (19) also rely on the
assumptions of constant G and P matrices over time
and across populations]. The fitness function (1)
appears to be quite general and can encompass
different types of selection (Felsenstein, 1977). The
model analysed here differs from that of Lande
(1980a) in that at is assumed to be independent of W.
It is also different from the Brownian motion model of
Felsenstein (1985). Uniform W matrices among
populations are made for convenience of analysis, so
are G and P matrices. Variation of these matrices
among populations will greatly complicate the analy-
sis. Although these matrices are likely to change as
populations diverge, there is some evidence to indicate
that both phenotypic and genetic covariance matrices
(and particularly correlation matrices) are likely to be
similar in closely related populations (Lofsvold, 1986;
Kohn & Atchley, 1988). A branching phylogeny will
affect transient pattern of covariation among lineages,
but will not influence the equilibrium covariation.

This is paper No. 11828 of the Journal Services of the
North Carolina Agricultural Research Service, Raleigh,
NC 27695-7606. This investigation was supported in part
by National Institute of Health Research Grant GM
11546 from the National Institute of General Medical
Science.

https://doi.org/10.1017/S0016672300028196 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300028196


Interpopulation variation 221

References

Atchley, W. R., Rutledge, J. J. & Cowley, D. E. (1982). A
multivariate statistical analysis of direct and correlated
response to selection in the rat. Evolution 36, 677-698.

Bader, R. S. & Hall, J. S. (1960). Osteometric variation and
function in bats. Evolution 14, 8-17.

Baker, A. J. (1980). Morphometric differentiation in New
Zealand population of the house sparrow {Passer domesti-
cus). Evolution 34, 638-653.

Bodmer, W. F. & Cavalli-Sforza, L. L. (1968). A migration
matrix model for the study of random genetic drift.
Genetics 59, 565-592.

Bulmer, M. G. (1971a). Stable equilibrium under the two-
island model. Heredity 27, 321-330.

Bulmer, M. G. (19716). Stable equilibrium under the
migration matrix model. Heredity 27, 419-430.

Chakraborty, R. & Nei, M. (1982). Genetic differentiation
of quantitative characters between populations and
species. I. Mutation and random genetic drift. Genetical
Research 39, 303-314.

Cheverud, J. M. (1982). Phenotypic, genetic, and environ-
mental morphological integration in the cranium. Evolu-
tion 36, 499-516.

Cheverud, J. M. (1988). A comparison of genetic and
phenotypic correlations. Evolution 42, 958-968.

Cheverud, J. M. & Leamy, L. J. (1985). Quantitative genetics
and the evolution of ontogeny. III. Ontogenetic changes in
correlation structure among live-body traits in random-
bred mice. Genetical Research 46, 325-335.

Cheverud, J. M., Rutledge, J. J. & Atchley, W. R. (1983).
Quantitative genetics of development: Genetic corre-
lations among age-specific trait values and the evolution
of ontogeny. Evolution 37, 895-905.

Clayton, G. A. & Robertson, A. (1955). Mutation and
quantitative variation. American Naturalist 89, 151-158.

Cockerham, C. C. & Tachida, H. (1987). The evolution and
maintenance of quantitative genetic variation by muta-
tion. Proceedings of the National Academy of Science,
USA 84, 6205-6209.

Felsenstein, J. (1977). Multivariate normal genetic models
with a finite number of loci. In Proceedings of the
International Conference on Quantitative Genetics (ed.
E. Pollak, O. Kempthorne and T. B. Bailey), pp. 227-246.
Ames: Iowa State University Press.

Felsenstein, J. (1985). Phylogenies and the comparative
method. American Naturalist 125, 1-15.

Falconer, D. S. (1981). Introduction to Quantitative Genetics,
2nd edn. London: Longman.

Hill, W. G. & Thompson, R. (1978). Probabilities of non-
positive definite between-group or genetic covariance
matrices. Biometrics 34, 429^139.

Johnson, N. S. & Mickevich, M. F. (1977). Variability and
evolutionary rates of characters. Evolution 31, 642-648.

Kluge, A. G. & Kerfoot, W. C. (1973). The predictability
and regularity of character divergence. American Natural-
ist 107, 426-442.

Kohn, L. A. P. & Atchley, W. R. (1988). How similar are
genetic correlation structures? Data from mice and rats.
Evolution 42, 467-481.

Lande, R. (1976). Natural selection and random genetic
drift in phenotypic evolution. Evolution 30, 314—334.

Lande, R. (1979). Quantitative genetic analysis of multi-
variate evolution, applied to brain:body size allometry.
Evolution 33, 402—416.

Lande, R. (1980 a). Genetic variation and phenotypic
evolution during allopatric speciation. American Natural-
ist 116,463^179.

Lande, R. (19806). The genetic covariance between charac-
ters maintained by pleiotropic mutations. Genetics 94,
203-215.

Lofsvold, D. (1986). Quantitative genetics of morphological
differentiation in Peromyscus. I. Tests of the homogeneity
of genetic covariance structure among species and
subspecies. Evolution 40, 559-573.

Lynch, M. & Hill, W. G. (1986). Phenotypic evolution by
neutral mutation. Evolution 40, 915-935.

Olson, E. C. & Miller, R. L. (1958). Morphological Inte-
gration. Chicago: University of Chicago Press.

Pierce, B. A. & Mitton, J. B. (1979). A relationship of
genetic variation within and among populations: an
extension of the Kluge-Kerfoot phenomenon. Systematic
Zoology 28, 63-70.

Robertson, A., (1952). The effect of inbreeding on the
variation due to recessive genes. Genetics 37, 189-207.

Rohlf, F. J., Gilmartin, A. J. & Hart, G. (1983). The
Kluge-Kerfoot phenomenon - a statistical artifact. Evo-
lution 37, 180-202.

Schmalhausen, I. I. (1949). Factors of Evolution, the Theory
of Stabilizing Selection. Philadelphia: Blakiston.

Slatkin, M. (1978). Spatial patterns in the distribution of
polygenic characters. Journal of Theoretical Biology 70,
213-228.

Sokal, R. R. (1976). The Kluge-Kerfoot phenomenon
reexamined. American Naturalist 110, 1077-1091.

Sokal, R. R. (1978). Population differentiation: something
new or more of the same? In Ecological Genetics: the
Interface (ed. P. F. Brussard), pp. 215-239. New York:
Springer-Verlag.

Sokal, R. R., Bird, J. & Riska, B. (1980). Geographic
variation in Pemphigus populicaulis (Insecta: Aphididae)
in Eastern North America. Biological Journal of the
Linnean Society 14, 163-200.

Sokal, R. R. & Riska, B. (1981). Geographic variation in
Pemphigus populitransversus (Insecta: Aphididae). Bio-
logical Journal of the Linnean Society 15, 201-233.

Thomas, P. A. (1968). Variation and covariation in charac-
ters of the rabbit tick. Haemaphysalis leporispalustris.
University of Kansas Science Bulletin 47, 829-862.

Via, S. & Lande, R. (1985). Genotype-environment inter-
action and the evolution of phenotypic plasticity.
Evolution 39, 505-522.

Via, S. & Lande, R. (1987). Evolution of genetic variability
in a spatially heterogeneous environment: effects of
genotype-environment interaction. Genetical Research
49, 147-156.

Waddington, C. H. (1957). The Strategy of the Genes.
London: Allen and Unwin.

Wright, S. (1951). The genetical structure of populations.
Annals of Eugenics 15, 323-354.

Zeng, Z.-B. (1988). Long-term correlated response, inter-
population covariation and interspecific allometry. Evo-
lution 42, 363-374.

16-2

https://doi.org/10.1017/S0016672300028196 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300028196

