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APPROXIMATION TO DOPPLER OBSERVABLE 

The orbit of a spacecraft with respect to an asteroid can be approximated to 
zero order by a hyperbola of zero bending angle (fig. 1). In an orbital system of 
coordinates (xu , y u ) , the zero-order orbit is given by 

xw = r cosf=b 

yoj=r' sin f=v(t-T) 

(1) 

(2) 

where r is the distance between the asteroid and the spacecraft, / is the true 
anomaly, b is the impact parameter or miss distance, v is the constant 

SPACECRAFT 

Figure l.-Geometry of the flyby reference orbit in an orbit-plane coordinate system. The 
actual orbit is developed to the first order in the mass m as a perturbation from this 
reference orbit. 
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hyperbolic velocity, t is the time of observation, and T is the time of closest 
approach. After this zero-order solution is substituted into the two-body 
equations of motion, an approximation to the actual orbit can be obtained. 
The approximate equations of motion are given by 

Gmb , . . 

^ . . S n f c J J (4) 
r i 

where 
r'2 = 6 2 + v 2 ( , _ r ) 2 (5) 

and the results of integration of equations (3) and (4) to the first order in Gm 
are 

• _ G m • t (c\ 

x«---foSmf (6) 

yu-v + -foc™f (7) 

where the constants of integration have been chosen such that v is the 
hyperbolic velocity at infinity. It is not necessary to carry the integration 
further because the mass m of the asteroid will be determined from Doppler 
data. Of course, the expressions for xw and yu can also be obtained from the 
hyperbolic orbital equations by establishing approximations for large eccentri­
cities, but the perturbational derivation presented here is slightly easier and 
more straightforward. 

For purposes of determining the mass of an asteroid from the velocity 
history given by equations (6) and (7), it is sufficient to consider the geocentric 
range rate A' to the spacecraft. If the orientation of the spacecraft orbit is 
referred to the plane of the sky (fig. 2), then the range rate is given by 

A' = A - ( i u sin co + yu cos co) sin i + CM — J (8) 

(where O means "on the order of magnitude o f ) and from equations (6) and 
(7), 

c / ' \ 
A' = A - v cos co sin i - -7— cos (f+ co) sin i + oi-r ) (9) 

Note that the range rate is independent of the location of the node of the 
spacecraft's orbit on the plane of the sky, but it does depend on the argument 
of the perifocus and the inclination. 
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CLOSEST 
APPROACH 

Figure 2.-Geometry of spacecraft encounter with an asteroid in a plane of the sky 
coordinate system. 

However, in a determination of the mass, it is impossible to separate the 
function sin i from Gm. Therefore, it is convenient to define a quantity, 
Gm sin /, that can be determined from the range-rate curve. Also, because the 
zero-order range rate contains no information about the mass of the asteroid, 
the only term of interest in equation (9) is the one containing Gm. A Doppler 
observable z that carries all the information on the mass can be defined by 

where 

z = - | - cos (f + co) bv 

f = Gm sin i 

(10) 

01) 

COVARIANCE ANALYSIS 

There are a number of unknown parameters in the expression for z, but the 
ones of particular interest to the flyby data are f, b, and T. The velocity v and 
the argument of the perifocus CJ can be determined from the ephemerides of 
the spacecraft and asteroid outside the flyby region, although a reasonably 
accurate velocity ephemeris for the asteroid is needed for this purpose and also 
for a determination of the inclination i, a quantity required for the separation 
of Gm from the mass function J. 

The sensitivity of z to the three parameters f, b, and T can be obtained by 
partial differentiation, where the true anomaly / is related to b and T by the 
relation 

t an /= - ( f - T) (12) 
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The differentiation yields the following three expressions: 

dz 1 
— = cos(/+co) (13) 
H bv 

dz f 
— = — (cos3/cos co -2 sin/sin co +sin3/sin co) (14) 
db b2v 

— = cos2/sin(/+co) (15) 
dT b2 

To construct a covariance matrix on the three parameters, it is necessary to 
form the products and cross products of the three partial derivatives and then 
to integrate over / from -TT/2 to irj2, the limits of the zero-order reference 
orbit. The integration can be performed either with respect to time t or the 
true anomaly / For the former, an integration with respect to t implies a 
sampling of the Doppler data at equal intervals of time. With / as the 
independent variable, the sampling is assumed to occur at equal intervals of the 
true anomaly. This is probably closer to the actual situation in which it would 
be expected that the sampling of data would be most frequent around the time 
of closest approach. Besides, an integration with respect to time results in the 
same functional form for the standard error on f, but the numerical coefficient 
is smaller than for the integration in the true anomaly. Thus, a sampling at 
equal intervals of / yields a more conservative estimate of the expected 
accuracy in f than does a sampling at equal intervals of t. In view of all the 
simplifying assumptions of this analysis, a conservative estimate is preferable. 

The integrals of interest are 

J-«,2\dVdf= 2b2v2 ° 6 ) 

/ 
- M / = — 7 T - - cos 2co (17) 

X SS*-^'™2") (i8> 

I 
n/2 dz dz J7T 

df= — (4 - cos 2co) (19) 
•Kft 3f db 8bh2 
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/ -

T/2 bz bz ftf 
df= sin2co (20) 

-n/2 9? bT 8bh 

I "l2bz bz f27T 
df= sin2co (21) 

TT/2 bb bT I6b4v 

From equations (20) and (21), it is apparent that at co = 0° and co = 90° the 
correlation of T with f and b is zero. Therefore, it is reasonable to neglect the 
correlation with T in all cases, and to compute the two-dimensional covariance 
matrix on f and b. The inverse covariance matrix J is defined by 

(22) 

where he is the sample interval in the true anomaly and az is the standard error 
on the Doppler measurements represented by z. At the time of closest 
approach, the sample interval he in the true anomaly is related to the sample 
interval h in time by 

hr
V-h (23) 

The inverse covariance matrix in terms of h can be obtained by substituting 
equations (16), (17), and (19) into equation (22). 

1 -j (1 - V* cos 2CJ) 

J= — I , / \ I (24) 
Ibv^ha 2 \ S n v 0 x £2 [9 <, \ 

z \ - j - (1 - % cos 2co) —- I - - cos 2w) 

The inverse can be obtained easily, and the standard deviation on J is simply 
the upper left element of the resulting matrix. 

2 _ 4bv3 / 9 - 4 c o s 2 o > \ , , . . . . 
°t I ; ) haz (25) f T \ 2 - cos22<o/ z 

From this expression for the error in the mass function, it can be seen that a 
better determination of the mass is obtained by viewing the flyby along the 
orbit path (cj = 0°) rather than across it (co = 90°). However, the ratio of the 
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two standard errors for CJ = 90° and a> = 0° is only V2l>, and the sensitivity to 
co is not particularly great. At co = 30°, the expression for a J- is a minimum, 
and the resulting value of a f

2 is about the best that can be expected from the 
flyby data. This minimum value of af

 2 is 

2 = 16ftv£ 2 ( 2 6 ) 
S 77 Z 

NUMERICAL RESULTS 

The percentage error in the mass m of the asteroid is related to the error in f 
by 

and from equation (26) 

^• = i=77-J— (27) 
m f Gm sin i 

M = 
m) 

16fcv3 , , , 
hoz

z csc1 i (28) 
G2m2n 

The mass m can be replaced by the radius R of the asteroid by means of the 
relation 

m = | TtpRl (29) 

where p is the mean density. The substitution for m can be made in equation 
(28) and the expression can be rearranged to yield the closest approach 
distance b as a function of the percentage error in the mass. 

9haz
2 v3 \ m ) 

As an estimate of the accuracy in the Doppler data, we will assume that 
az = 0.5 mm/s and that h = 60 s. This assumption is consistent with the present 
capability of the NASA/JPL Deep Space Net. In addition, a mean density of 
3.33 g/cm3 will be assumed in the evaluation of equation (30). In units of 
kilometers and seconds, equation (30) then reduces to 

2 *_6 feV .in2 b = 1.132 X 10-2 — [ — ) sin2 J (31) 
y3 \ YYl 

or 

°m 
log6 = -1.946 + 61og/?-31ogv + 21og — +21og(sin/) (32) 
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A plot of log b as a function of log R is shown in figure 3 for a range of 
values of v and for a 1 percent determination of the mass. The region of 
inaccessibility to a flyby (b<,R) is below the dashed line on this plot. The 
inclination angle is assumed equal to its optimum value of 90°. 

0 1 2 3 
LOG R, km 

Figure 3.-Miss distance b required to determine the mass of an asteroid of radius/? to an 
accuracy of ± 1 percent. Curves are shown for various flyby velocities v. A density of 
3.33 g/cm3 is assumed in converting from mass to radius. The Doppler data are 
assumed accurate to 0.S mm/s at a sample rate of one per minute. 

Flyby velocities for asteroid missions should be on the order of 5 km/s. At 
this speed it should be possible to obtain a 1 percent determination of the 
masses of the larger asteroids. Ceres would require a flyby distance of 
23 X 106 km, Pallas would require 1.7 X 106 km, and Vesta, 0.4 X 106 km. 
The closest approach to Juno, on the other hand, would have to be on the 
order of 9100 km for a 1 percent determination of its mass. 

For a smaller asteroid such as Eros, any determination of its mass is 
practically out of the question for a flyby mission. However, for rendezvous 
missions with approach speeds less than 1 km/s, a 10 percent determination of 
the mass of an asteroid like Eros appears feasible for closest approach distances 
on the order of a few hundred kilometers. Of course, information on the mass 
could be destroyed by the performance of terminal maneuvers during the 
rendezvous. 
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