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Abstract

The herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) are primarily used
for weed control in corn, barley, oat, rice, sorghum, sugarcane, and wheat production fields
in the United States. The objectives of this review were to summarize 1) the history of
HPPD-inhibitor herbicides and their use in the United States; 2) HPPD-inhibitor resistant
weeds, their mechanism of resistance, and management; 3) interaction of HPPD-inhibitor her-
bicides with other herbicides; and 4) the future of HPPD-inhibitor-resistant crops. As of 2022,
three broadleaf weeds (Palmer amaranth, waterhemp, and wild radish) have evolved resistance
to theHPPD inhibitor. The predominance ofmetabolic resistance toHPPD inhibitor was found
in aforementioned three weed species. Management of HPPD-inhibitor-resistant weeds can be
accomplished using alternate herbicides such as glyphosate, glufosinate, 2,4-D, or dicamba;
however, metabolic resistance poses a serious challenge, because the weeds may be cross-resist-
ant to other herbicide sites of action, leading to limited herbicide options. An HPPD-inhibitor
herbicide is commonly applied with a photosystem II (PS II) inhibitor to increase efficacy and
weed control spectrum. The synergism with an HPPD inhibitor arises from depletion of plas-
toquinones, which allows increased binding of a PS II inhibitor to the D1 protein. New HPPD
inhibitors from the azole carboxamides class are in development and expected to be available in
the near future. HPPD-inhibitor-resistant crops have been developed through overexpression
of a resistant bacterial HPPD enzyme in plants and the overexpression of transgenes for HPPD
and a microbial gene that enhances the production of the HPPD substrate. Isoxaflutole-resist-
ant soybean is commercially available, and it is expected that soybean resistant to other HPPD
inhibitor herbicides such as mesotrione, stacked with resistance to other herbicides, will be
available in the near future.

Introduction

Herbicides are used for managing weeds in diverse cropping systems in many countries (Jhala
et al. 2014a). The 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides
represent one of the latest discoveries of a new herbicide site of action that was introduced
in the late 1990s (Mitchell et al. 2001). Based on the site of action, HPPD inhibitor has been
classified as Group 27 herbicides by the Weed Science Society of America and Herbicide
Resistance Action Committee (Mallory-Smith and Retzinger 2017). The HPPD-inhibiting her-
bicides are broadly classified into chemical families: isoxazole (e.g., isoxaflutole), pyrazolone
(e.g., pyrasulfotole, tolpyralate, topramezone), triketone (e.g., bicyclopyrone, mesotrione, and
tembotrione; Figure 1), and isoxazolidinone (e.g., clomazone; Lee et al. 1997). An additional
class, azole carboxamides, has emerged in the patent literature, but these molecules have not
been commercialized as of 2022 (Figure 1).
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These herbicides inhibit the HPPD enzyme found in plants and
animals that is essential for the synthesis of plastoquinone and
tocopherols (Liu and Lu 2016). The plastoquinone is in turn a
co-factor in the formation of carotenoids, which protect chloro-
phyll in plants. Because of the lack of plastoquinone, tocopherols
and carotenoid synthesis due to HPPD inhibition, sensitive plants
suffer oxidative damage and chlorophyll destruction, turn white
without deformation, and eventually die (Mitchell et al. 2001).
TheHPPD-inhibiting herbicides are mainly used to control annual
grass and broadleaf weeds, including herbicide-resistant biotypes
primarily in grass crops such as sugarcane and corn (Grossman
and Ehrhardt 2007; Pallett et al. 2001). After the evolution and wide-
spread occurrence of weeds that became resistant to the acetolactate
synthase (ALS) inhibitor, atrazine and glyphosate, the HPPD-inhib-
iting herbicides, played a key role for their management in agronomic
crops, primarily in corn (Ganie and Jhala 2017).

The HPPD-inhibitor herbicides are used primarily for selective
preemergence (PRE) and postemergence (POST) use as a weed
control mechanism primarily in corn, barley, oat, rice, sorghum,
sugarcane, and wheat. Mesotrione is labeled for PRE use in weed
control in sorghum and sugarcane. The HPPD- and photosystem
(PS) II-inhibiting herbicides are applied in a mixture, because
certain herbicides belonging to both sites of action interact synerg-
istically and provide higher efficacy compared with being
applied alone (Fluttert et al. 2022). For example, field experiments
conducted in Nebraska reported that Palmer amaranth
(Amaranthus palmeri L.) that was resistant to atrazine and an
HPPD inhibitor was effectively controlled by their mix, even
applied at labeled rates (Chahal and Jhala 2018a).

The scientific literature is not available to cover the past,
present, and future of the HPPD inhibitor. Therefore, the objec-
tives of this review were to 1) summarize the history of HPPD-
inhibitor herbicides and their use in the United States; 2) summa-
rize HPPD-inhibitor resistant weeds, their mechanism of resis-
tance, and management; 3) highlight the interactions of HPPD-
inhibitor herbicides with other herbicides; and 4) summarize the
future of HPPD-inhibitor herbicides, including products in the
pipeline and HPPD-inhibitor-resistant crops.

History of HPPD-Inhibiting Herbicides

Inhibitors of HPPD (HPPD, EC 1.13.11.27) were the results of sev-
eral concurrent industry research programs. Pyrazolones were first
commercialized by the Sankyo company in 1980 with pyrazolynate
in the United States (Figure 2). Pyrazoxyfen by Ishihara followed in
1985, benzofenap by Mitsubishi and Rhône-Poulenc in 1987, top-
ramezone by BASF in 2006, and pyrasulfotole by Bayer Crop
Science in 2007 (Figure 3). The Ishihara company has commercial-
ized its corn herbicide tolpyralate, which was first registered in
2017 (Tsukamoto et al. 2021).

KingAgroot launched four new pyrazolone herbicides in China
in 2020: cyprafluone, bipyrazone, fenpyrozone, and tripyrasulfone.

Cyprafluone became KingAgroot’s first active ingredient to launch
outside of China when granted registration in Pakistan in 2021
(KingAgroot 2021), with a plan for registration in other coun-
tries. Cyprafluone controls grass weeds such as Japanese foxtail
(Alopecurus japonicus Steud.) and littleseed canarygrass
(Phalaris minor Retz.) in wheat (Triticum aestivum L.). Wang
et al. (2020) reported that bipyrazone applied POST has a poten-
tial for broadleaf weed control in wheat in China.

Concurrently, a research group at Stauffer, a legacy company of
ICI and now Syngenta, discovered the triketone-type HPPD inhibitor
in 1982 through a chemical ecology approach. Researchers at Reed
Gray observed that few weeds grew under crimson bottlebrush
[Callistemon citrinus (Curtis) Skeels] in the California chaparral.
Bioassay-guided isolation of crimson bottlebrush extracts led to the
identification of fractions that can induce bleaching in developing
seedlings. The active fractions contained the natural product lepto-
spermone, a natural inhibitor of HPPD (Dayan et al. 2007; Owens
et al. 2013). The herbicidal activity of leptospermone and a series
of synthetic triketone analogues were patented in 1980 (Figure 4).
Structure-activity relationship studies characterized the chemical tox-
ophore that is responsible for inhibiting HPPD (Ahrens et al. 2013).

Triketones were first introduced to growers in 1991 by Zeneca
(now Syngenta) with sulcotrione. Since then, a steady stream of tri-
ketones have been launched: benzobicyclon (by SDS Biotech in
2001), mesotrione (by Syngenta in 2002), tembotrione (by Bayer
Crop Science in 2007), tefuryltrione (by Bayer in 2009), and bicy-
clopyrone (by Syngenta in 2015; Beaudegnies et al. 2009). Kumiai
Chemical registered fenquinotrione (Figure 4), trademarked as
Effeeda, to control broadleaf weeds and sedges in rice in Japan.
The molecule’s 4-methoxyphenyl group confers resistance to rice
while maintaining weed control efficacy via selective metabolism
(Yamamoto et al. 2021). Kumiai collaborated with Certis to register
fenquinotrione in the European Union for weed control in cereals
and rice. Certis submitted a registration package in 2021. If suc-
cessful, it is expected that the product will be available around
2025. Ishihara launched lancotrione-sodium in 2019 for control
of broadleaf weeds and sedges in rice, including weeds that are
resistant to sulfonylurea herbicides. Originally invented at
Central China Normal University, benquitrione is the first in a
series of quinazoline-2,4-diones triketone herbicides from Guang-
Fu Yang’s laboratory, co-developed with Shandong Cynda
(Figure 4; Wang et al. 2015).

The first HPPD inhibitor was discovered serendipitously by
Japanese companies, with pyrazolynate discovered by Sankyo
and commercialized in 1980, and pyrazoxyfen discovered by
Ishihara in 1985 (Figure 4). Both were commercialized for weed
control in rice before their site of action was understood. It is
now known that these compounds were pro-herbicides that are
bio-activated into free hydroxypyrazole active pharmacophore,
which inhibits HPPD.

Studies carried out by Rhone-Poulenc (now Bayer Crop
Science) in the late 1980s led to the discovery of isofluxatole, an

Figure 1. Chemical structures of some herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD).

2 Jhala et al.: HPPD-inhibiting herbicides

https://doi.org/10.1017/wet.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2022.79


isoxazole heterocyclic proherbicide that is bio-activated to a dike-
tonitrile by soil and plant enzymes (Pallett et al. 2001; Figure 4).
The bleaching caused by the HPPD inhibitor is similar to that
observed with an inhibitor of phytoene desaturase (PDS), but
the mechanism by which this bleaching occurred eluded research-
ers. The link between triketone molecules and their inhibition of
HPPD was first elucidated using mammalian systems related to
tyrosine metabolism. Subsequent investigations in plant systems
established that HPPD catalyzes a key step in plastoquinone and

tocopherol synthesis (Schultz et al. 1985), and further studies dem-
onstrated that plastoquinone was an essential co-factor for phy-
toene desaturase (Norris et al. 1995). This established the link
between inhibition of HPPD and the bleaching symptoms that
can be observed in the foliage of treated plants. In brief, plants
treated with an HPPD inhibitor accumulate tyrosine and are
depleted in plastoquinone. Without plastoquinone, PDS cannot
function, which halts carotenoid biosynthesis, resulting in bleach-
ing of the new growth, which is known as the “triketone effect” (Lee
et al. 1997).

Use of HPPD Inhibitor in the United States

In a survey conducted by the United States Department of
Agriculture–National Agricultural Statistics Service (USDA-
NASS) in 2018, the use of HPPD-inhibiting herbicides, including
isoxaflutole, tembotrione, mesotrione, bicyclopyrone, and topra-
mezone, was estimated at about 193,000, 214,000, 1,898,000,
102,000, and 41,000 kg, respectively (Figure 5).

Mesotrione. Mesotrione belongs to the triketone family of
HPPD-inhibitor herbicides and represents one of the most used
active ingredients in corn (applied to about 42% of planted corn
in 2018) with an average of one application (75 to 150 g ha−1)
per year (Figure 6; USDA-NASS 2018). The Midwestern states,
including Iowa, Illinois, Kansas, Minnesota, and Nebraska, led
the use of mesotrione with an average annual use of >10,000 kg
in 2018 at the rate of >1.27 kg mesotrione per square mile in each
state (Figure 6). Increased use of mesotrione in recent years is pri-
marily attributed to increasing demand for controlling glyphosate-
resistant weeds (Chahal and Jhala 2018b; Ganie et al. 2015; Ganie
and Jhala 2017). Mesotrione is a systemic herbicide applied alone
or in mixture for selective PRE and POST control of grass and
broadleaf weeds in field corn, seed corn, yellow popcorn, sweet
corn, and grain sorghum (Abit et al. 2010; Armel et al. 2003;
Currie and Geier 2018; Janak and Grichar 2016; Stephenson
et al. 2004; Williams et al. 2005).

Mesotrione in a pre-mixture or tank-mixture with other herbi-
cides can provide effective control of ALS-, PS II-, and glyphosate-
resistant weeds (Chahal and Jhala 2018a; Ganie et al. 2015). In
addition to corn and grain sorghum, the use of mesotrione
applied PRE in spring cereals, including barley (Hordeum vul-
gare L.), durum wheat, oats (Avena sativa L.), and spring wheat,
has been found to be safe and provides adequate selective con-
trol of broadleaf weeds, including common lambsquarters
(Chenopodium album L.), common ragweed (Ambrosia artemi-
siifolia L.), and wild buckwheat (Polygonum convolvulus L.) in a
study conducted in Ontario, Canada (Soltani et al. 2011, 2014);
however, mesotrione use in those crops is limited (Walsh
et al. 2021).

Figure 2. Chemical structures of pyrazolone herbicides, a chemical family of herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD).

Figure 3. Timeline of commercialization of herbicides that inhibit 4-hydroxyphenyl-
pyruvate dioxygenase (HPPD), their respective chemical classes, and manufacturer.
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Figure 4. Chemical structures of triketone herbicides, a chemical family of herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD).
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Figure 5. Annual use of major herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) in corn production in the United States in 2018 (Source: USDA-NASS 2018).

Figure 6. Mesotrione use in agricultural land across the United States in 2018 (adapted from the U.S. Geological Survey by the U.S. Department of the Interior).
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Tembotrione
Tembotrione is a member of the triketone family of HPPD inhib-
itors that is used for selective POST control of grass and broadleaf
weeds in corn (Stephenson et al. 2015). Tembotrione is the second-
highest used HPPD inhibitor in the United States, with an annual
use rate of >200,000 kg (Figure 7; USDA-NASS 2018). Minnesota,
Illinois, Nebraska, Indiana, and Iowa were leading states for annual
use (>20,000 kg) of tembotrione in corn production in 2018
(Figure 7). Tembotrione (Laudis; Bayer Crop Science, St Louis,
MO) is applied alone or in a mixture from field corn emergence
to the V8 growth stage or V7 (sweet corn). More recently, meta-
bolic-based resistance (CYP-mediated metabolism) to tembo-
trione has been identified in several grain sorghum lines
(Pandian et al. 2020), indicating a future increase in tembotrione
use in other crops.

Isoxaflutole
Isoxaflutole was the first member of the isoxazole class of HPPD
inhibitor. Common brand names include Balance Flexx™ and
Corvus™, and were the first HPPD-inhibiting herbicides intro-
duced in North America in 1996 (Figure 1; Pallett et al. 1998).
It is a selective herbicide primarily used for PRE control of grass
and broadleaf weeds in corn, and recently in isoxaflutole-resistant
soybean (Mausbach et al. 2021). Isoxaflutole is commonly mixed
with PS II-inhibiting herbicides (e.g., atrazine) to improve weed
control efficacy and spectrum (Benoit et al. 2019; Chahal and
Jhala 2018a; Fluttert et al. 2022). According to the survey con-
ducted by the USDA-NASS (2018), isoxaflutole was the third-most
used HPPD inhibitor in corn (used in about 8% of planted corn)
with an average of one application (72 g ha−1) per year (Figure 8).
Iowa, Illinois, and Nebraska were the leading states for isoxaflutole
use among various corn-producing states in 2018 (Figure 8).
Isoxaflutole has been widely used as a part of herbicide-resistant
weed management strategies (including ALS-, PS II-, and glypho-
sate-resistant) in corn (Benoit et al. 2019; Chahal et al. 2015;
Stephenson and Bond 2012).

Isoxaflutole can also be used for weed control in fallow fields
depending on the subsequent rotational crop (Currie and Geier
2016; Kumar and Jha 2015). In this context, isoxaflutole-resistant
soybean has recently been developed in which isoxaflutole can be
used as a part of an herbicide strategy to control ALS- and

glyphosate-resistant weeds, including Palmer amaranth, water-
hemp, and Canada fleabane (Erigeron canadensis L.; Ditschun
et al. 2016; Mausbach et al. 2021; Smith et al. 2019a).

Bicyclopyrone and Topramezone
Bicyclopyrone and topramezone are two other HPPD-inhibitor
herbicides (via an active ingredient of an individual product or
various premixtures) that are commonly used for grass and broad-
leaf weed control in field corn, seed corn, silage corn, yellow pop-
corn, sweet popcorn, and sugarcane (Sarangi and Jhala 2018).
Topramezone belongs to the pyrazolone family with an annual
use of >41,000 kg, whereas bicyclopyrone belongs to the triketone
family with an annual use of >100,000 kg in corn production
(Figure 9).

According to the USDA-NASS (2018) survey, Illinois, Iowa,
Kansas, Missouri, Nebraska, andWisconsin were the leading states
for annual use of bicyclopyrone with an estimate of >5,000 kg in
corn crops, whereas Illinois and Iowa were the top states in annual
use of topramezone (>5,000 kg) for weed control in corn
(Figure 9). In addition to corn, topramezone and bicyclopyrone
are known to provide effective weed control in other crops, includ-
ing turf, sweet potato [Ipomoea batatas (L.) Lam.], wheat, chickpea
(Cicer arietinum L.), and rice (Brosnan and Breeden 2013; Lindley
et al. 2020; Moore 2019).

Pyrasulfotole and Tolpyralate
Pyrasulfotole is amember of the pyrazolone family of HPPD inhib-
itors and is registered for use on cereal grains, including wheat, bar-
ley, rye, triticale, and grain sorghum (Kumar et al. 2014; Reddy
et al. 2013; Torbiak et al. 2021). Pyrasulfotole is an active ingredient
of Huskie™ (a premixture of pyrasulfotole and bromoxynil; Bayer
Crop Science, Saint Louis, MO) that is used for broadleaf weed
control in sorghum. In contrast, tolpyralate is a new HPPD inhibi-
tor that came to the market in 2020 and controls several annual
grass and broadleaf weed species with a low use rate (30 to 50 g
ha−1) in corn (Tsukamoto et al. 2021; Willemse et al. 2021c).

Benzobicyclon
Benzobicyclon, a pro-herbicide, is amember of the triketone family
of HPPD inhibitors. It was first registered for use in rice crops in
2021 under the tradename Rogue® (Gowan Company, Yuma, AZ),
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Figure 7. Tembotrione use in various corn-producing states in the United States (Source: USDA-NASS 2018).

Weed Technology 5

https://doi.org/10.1017/wet.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2022.79


mainly for control of aquatic weeds, sprangletop species
(Leptochloa spp.), and suppression of weedy rice biotypes when
applied post-flood. This is the only HPPD-inhibiting herbicide
available for use rice production in the United States.

HPPD-Inhibitor-Resistant Weeds and Their Mechanisms of
Resistance

Although HPPD-inhibitor herbicides have been in use for more
than two decades, the evolution of HPPD-inhibitor-resistant
weeds is relatively less widespread and slower than some other her-
bicide sites of action (Jhala et al. 2014b; Kaundun 2021). As of 2022,
three broadleaf weeds (Palmer amaranth, waterhemp, and wild
radish) have evolved resistance to HPPD-inhibitor herbicides
across the globe (Heap 2022). Several populations of HPPD-inhibi-
tor-resistant Palmer amaranth and waterhemp have evolved across
the Midwestern United States (Jhala et al. 2014b; Hausman et al.
2011), while HPPD-inhibitor-resistant wild radish has been docu-
mented in Western Australia. The first case of resistance to these
herbicides was reported in a population of waterhemp from a corn

field in Illinois that had a history of repeated HPPD-inhibitor use
(Hausman et al. 2011). The resistance in Palmer amaranth
(Thompson et al. 2012) and wild radish (Lu et al. 2020) were
not selected with HPPD-inhibitor herbicides; rather, these popu-
lations exhibited cross-resistance with the mechanisms that bestow
resistance to different herbicide sites of action (Lu et al. 2020;
Nakka et al. 2017).

Mechanisms of Resistance to HPPD Inhibitors

Palmer Amaranth
The first case of Palmer amaranth resistance to the HPPD inhibitor
(also found to be resistant to PS II- and ALS-inhibitor formulas)
was confirmed in a field in central Kansas where there was no his-
tory of HPPD inhibitor use, though there was a long history of use
of herbicides that PS II and ALS (Jhala et al. 2014b; Thompson et al.
2012). This population was originally found to be resistant to
Huskie®, a premix of pyrasulfotole (an HPPD inhibitor) and bro-
moxynil (a PS II inhibitor). Furthermore, this Palmer amaranth
biotype was resistant to several HPPD inhibitor herbicides,
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Figure 8. Isoxaflutole use in major corn-producing states in the United States (Source: USDA-NASS 2018).
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Figure 9. Bicyclopyrone and topramezone use in various corn-producing states in the United States (Source: USDA-NASS 2018).
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including mesotrione, tembotrione, and topramezone (Thompson
et al. 2012). Later, a Palmer amaranth population from a corn field
in Nebraska that had a history of HPPD inhibitor use was found to
be resistant to these herbicides (Jhala et al. 2014b). Populations of
Palmer amaranth in Kansas and Nebraska exhibited up to 18-fold
resistance to mesotrione, tembotrione, or topramezone (Jhala et al.
2014b; Nakka et al. 2017; Thompson et al. 2012). In both popula-
tions, the mechanism of resistance to the HPPD inhibitor was due
to neither differential herbicide uptake/translocation nor muta-
tions or amplification of the HPPD gene (Küpper et al. 2018;
Nakka et al. 2017). The Kansas Palmer amaranth biotype metabo-
lized more than 90% of mesotrione at 24 h after treatment com-
pared with sensitive plants (Nakka et al. 2017). Additionally, a
4-fold to 14-fold higher HPPD gene expression was found in this
population (Nakka et al. 2017). Similarly, the rapid metabolism of
tembotrione was attributed to the resistance in Palmer amaranth
population from Nebraska (Küpper et al. 2018). Although 4-
hydroxylation of tembotrione followed by glycosylation was iden-
tified in both resistant and sensitive plants, the time taken to form
metabolites was shorter in resistant plants compared with sensitive
plants (Küpper et al. 2018). More recently, a population of Palmer
amaranth from Kansas (Riley County) was resistant to mesotrione
and tembotrione (Shyam et al. 2021). The mechanism of resistance
in this population is being investigated.

Waterhemp
Resistance to HPPD inhibitor herbicides has been documented in
several populations of waterhemp across the Midwestern United
States, including Illinois, Iowa, and Nebraska (Heap 2022). A bio-
type of waterhemp known as MCR (for McLean County resistant)
from Illinois was the first reported case of resistance to an HPPD
inhibitor (Hausman et al. 2011). This biotype was previously con-
firmed to be resistant to atrazine and ALS-inhibiting herbicides.
MCR waterhemp had 10-fold and 35-fold resistance to mesotrione
compared with two susceptible populations from Illinois
(Hausman et al. 2011). The mechanism of mesotrione resistance
in MCR waterhemp was not due to reduced herbicide absorp-
tion/translocation nor because of alterations in the HPPD gene
sequence or expression. However, compared with sensitive plants,
MCR waterhemp rapidly metabolized mesotrione via hydroxyla-
tion of the cyclohexanedione ring of mesotrione (Ma et al.
2013). Importantly, the time required to metabolize 50% of the
absorbed mesotrione was ~11.7 h in MCR compared with 25.4
to 27.8 h in the susceptible plants. Application of the cytochrome
P450 inhibitor (malathion) increased the susceptibility of MCR
plants to mesotrione, suggesting that the metabolism of meso-
trione was mediated via P450 activity in this population (Ma
et al. 2013).

The HPPD-inhibitor-resistant waterhemp from Nebraska
known as NEB showed a 2.4-fold and 45-fold level of resistance
to mesotrione applied PRE and POST, respectively, compared with
a known susceptible population (Kaundun et al. 2017). Similar to
MCR waterhemp, mesotrione resistance in the Nebraska popula-
tion was primarily due to higher levels of mesotrione metabolism
via 4-hydroxylation (Kaundan et al., 2017). Furthermore, the
metabolites of mesotrione were identified as 4-hydroxymesotrione
and AMBA [2-amino-4-(methylsulfonyl) benzoic acid; (Kaundan
et al. 2017)]. No duplication, alteration, or over-expression of the
HPPD gene that can confer resistance was found in this population
(Kaundan et al. 2017). Moreover, mesotrione-resistant waterhemp
population from Illinois and Nebraska were also resistant to top-
ramezone, which belongs to the pyrazolone subfamily of HPPD

inhibitors. Both populations rapidly metabolized topramezone,
and the metabolic profiles indicated two different putative
hydroxylated forms of topramezone (hydroxytopramezone-1
and hydroxytopramezone-2), although hydroxytopramezone-1
was more abundant in the Illinois waterhemp population (Lygin
et al. 2018). When metabolic profiles at 48 h after treatment were
compared with naturally tolerant corn, the waterhemp population
from Illinois had more hydroxylated metabolites, whereas corn
plants produced desmethyl and benzoic acid metabolites of topra-
mezone, suggesting that waterhemp initially metabolizes toprame-
zone differently than corn (Lygin et al. 2018).

More recently, the mechanism of resistance to syncarpic acid-3,
a nonselective, noncommercial HPPD inhibitor, was investigated
in an Illinois population of waterhemp (Concepcion et al. 2021).
Although the Phase I metabolite, likely produced due to P450-
mediated hydroxylation was detected in this population, this
metabolite was not found to be responsible for resistance; rather,
the glutathione-syncarpic acid conjugate that formed as a result of
Phase II metabolism was associated with resistance to syncarpic
acid in the waterhemp population (Concepcion et al. 2021).

Wild Radish. A population of wild radish from a Western
Australian grain field with no prior history of HPPD inhibitor
use is resistant to these herbicides (Lu et al. 2020). This population
is also resistant to other herbicides such as PS II inhibitor, ALS
inhibitor, and synthetic auxin (Lu et al. 2020). This wild radish
population exhibited 4-fold to 6.5-fold resistance to mesotrione,
tembotrione, and isoxaflutole (Lu et al. 2020). The resistant plants
were able to metabolize mesotrione approximately 8-fold faster
than the sensitive plants (Lu et al. 2020). It was also confirmed that
the resistance was not due to reduced uptake/translocation of mes-
otrione, and no target site alterations were detected (Lu et al. 2020).

Although resistance to HPPD inhibitor herbicides has currently
been reported in three weed species across the globe, if selection
pressure continues, new cases of resistance evolution to HPPD
inhibitor will increase. More importantly, the predominance of
metabolic resistance to HPPD inhibitor herbicides, was found in
all three weed species (Jugulam and Shyam 2019; Yu and
Powles 2014). Therefore, prudent strategies, including integration
of nonchemical methods, need to be designed for sustainable weed
management.

Management of HPPD-Inhibitor-Resistant Weeds

As of 2022, Palmer amaranth and waterhemp are the only two
weed species in the United States that have evolved resistance to
HPPD-inhibitor herbicides (Heap 2022; Jhala et al. 2014b).
Therefore, strategies described here focus on the management of
HPPD-inhibitor-resistant Palmer amaranth and waterhemp pri-
marily in corn and soybean production systems. Although the evo-
lution of herbicide resistance in weed species cannot be completely
averted, it can possibly be delayed by implementing diversified
weed management practices (Norsworthy et al. 2012). Mixing her-
bicides that have different sites of action is often recommended to
delay the evolution of herbicide-resistant weeds (Diggle et al. 2003;
Evans et al. 2016). In corn, HPPD-inhibiting herbicides are mixed
with PS II-inhibiting herbicides due to their synergistic activity for
controlling triazine-resistant weeds (Chahal et al. 2019; Hugie et al.
2008; Woodyard et al. 2009c). However, continued use of this mix-
ture to control atrazine-resistant weeds in corn has resulted in the
evolution and widespread occurrence of Palmer amaranth and
waterhemp populations resistant to PS II and HPPD inhibitors
(Jhala et al. 2014b).
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Herbicide options to control Palmer amaranth and waterhemp
in corn and soybean crops include inhibitors of ALS, PS II,
HPPD, protoporphyrinogen oxidase (PPO), very long chain fatty
acid (VLCFA), glyphosate, glufosinate, and synthetic auxins.
However, Palmer amaranth and waterhemp populations with
multiple resistance to ALS, PS II, HPPD, and PPO inhibitors,
and glyphosate are increasingly common in the Midwestern
United States (Heap 2022; Jhala et al. 2014b; Schultz et al. 2015;
Shyam et al. 2021; Varanasi et al. 2018). This has reduced herbicide
options to control weeds in corn and soybean production systems
(Sarangi et al. 2019). Therefore, herbicide programs containing
diverse herbicide sites of action and detoxification pathways are
required to manage HPPD-inhibitor-resistant Palmer amaranth
and waterhemp.

Fortunately, waterhemp biotypes with metabolic resistance to
atrazine, a resistance mechanism present in a majority of popula-
tions in the Midwest (Tranel 2021), are sensitive to other PS II-
inhibitor herbicides such as metribuzin (Jacobs et al. 2020).
Therefore, metribuzin mixed with an HPPD-inhibitor can control
populations that are resistant to an HPPD inhibitor and atrazine.
For example, atrazine at 4.48 kg ha−1 applied PRE provided 26%
control of PS II-inhibitor-resistant and HPPD-inhibitor-resistant
waterhemp at 4 wk after treatment (WAT), whereas metribuzin
560 g ha−1 provided 95% control of the same population (Evans
et al. 2019). Similarly, in a greenhouse study, waterhemp that
was resistant to PS II and HPPD inhibitors exhibited a synergistic
response to metribuzin at 191 g ha−1 þ mesotrione at 53 g ha−1

applied POST, indicating that this may be a viable option for con-
trolling atrazine- and HPPD-inhibitor-resistant waterhemp in
corn (O’Brien et al. 2018).

PRE herbicides serve as a foundation for herbicide-resistant
weed management; however, using a PRE and a POST herbicide
from the same site of action is not a recommended strategy because
it can potentially lead to an increase in the frequency of resistance
over time (Hausman et al. 2013; Wuerffel et al. 2015). Therefore,
herbicides from alternative sites of action should be included in
herbicide programs when HPPD-inhibitor-resistant weeds are
present in the field (Chahal and Jhala 2018b). For example, a
PRE application of isoxaflutole at 105 g ha−1 plus mesotrione
210 g ha−1 provided <65% control of HPPD-inhibitor-resistant
waterhemp at 4 WAT compared with >85% control by using ace-
tochlor 1,680 g ha−1 applied PRE in corn (Hausman et al. 2013). In
a similar study conducted in soybean, flumioxazin at 70 g ha−1, sul-
fentrazone 280 g ha−1, metribuzin 420 g ha−1, or pyroxasulfone 210
g ha−1 applied PRE provided >85% control of HPPD-inhibitor-
resistant waterhemp (Hausman et al. 2013). This strategy would
potentially reduce the number of survivors, thereby delaying the
selection of resistance alleles in the population (Wuerffel
et al. 2015).

Relatively fewer POST herbicide options are available to control
HPPD-inhibitor-resistant Palmer amaranth and waterhemp in
corn and soybean crops (Jhala et al. 2014a). Glufosinate, 2,4-D,
or dicamba are among the few POST herbicides that provide more
than 80% control; for example, Jhala et al. (2014b) reported that
glufosinate (450 g ha−1), 2,4-D ester (560 g ha−1), or dicamba
(560 g ha−1) provided >80% control of HPPD-inhibitor-resistant
Palmer amaranth 3 WAT. Similarly, 740 g ha−1 of glufosinate or
280 g ha−1 of dicamba provided >90% control of HPPD inhibi-
tor-resistant waterhemp at 3 WAT (Sarangi et al. 2019).
Glufosinate used at 595 g ha−1 applied alone or mixed with
dicamba at 280 g ha−1 provided ≥79% control of HPPD-

inhibitor-resistant Palmer amaranth 4 WAT in corn (Chahal
and Jhala 2018a). Additionally, Oliveira et al. (2017) reported that
mixing metribuzin (210 g ha−1) to a premix of mesotrione þ atra-
zine (650 g ha−1) applied POST in corn, controlled HPPD-inhibi-
tor-resistant waterhemp by >90% at 3 WAT.

Although herbicides such as metribuzin, pyroxasulfone, glufo-
sinate, or dicamba applied alone can control early- to mid-sea-
son cohorts of Palmer amaranth and waterhemp, a season-long
control of these weed species is rarely achieved due to their
extended period of emergence (Hager et al. 1997; Keeley et al.
1987). Therefore, multiple herbicide applications (PRE followed
by POST), specifically overlapping residual herbicides, are rec-
ommended to achieve a season-long control of HPPD-inhibi-
tor-resistant weeds. For example, a premix of acetochlor þ
clopyralidþ flumetsulam (1,190 g ha−1), or saflufenacilþ dime-
thenamid-P (780 g ha−1) applied PRE provided >90% control of
HPPD-inhibitor-resistant Palmer amaranth for 3 wk; however,
control was reduced to <70% later in the season (Chahal and
Jhala 2018b). In the same study, glyphosate (870 g ha−1) þ
dicamba (280 g ha−1) was needed to obtain >96% control.
Similarly, overlapping residual herbicide programs, including
pyroxasulfone (110 g ha−1) þ saflufenacil (75 g ha−1), or saflu-
fenacilþ dimethenamid-P (586 g ha−1) applied PRE followed by
glyphosate (870 g ha−1)þ diflufenzopyrþ dicamba (157 g ha−1)þ
pyroxasulfone (91 g ha−1), or glyphosateþ dicambaþ diflufenzo-
pyr (157 g ha−1) þ pendimethalin (1,060 g ha−1) applied POST
controlled HPPD-inhibitor-resistant Palmer amaranth >95% at
corn harvest (Chahal et al. 2018a). In a study conducted in a
conventional corn crop, herbicide programs including aceto-
chlor (2,130 g ha−1), or mesotrione þ S-metolachlor þ atrazine
(2,780 g ha−1) applied PRE, followed by dicamba þ diflufenzo-
pyr (196 g ha−1) applied POST, controlled HPPD-inhibitor-
resistant Palmer amaranth >95% (Chahal et al. 2018b).
Similarly, dicamba þ thiencarbazone-methyl þ atrazine or
dicambaþABMS (acetochlorþ bicyclopyroneþmesotrioneþ
S-metolachlor) applied PRE followed by ABMS alone or in a
mixture with atrazine, S-metolachlor, or mesotrione applied
early POST provided 85% to 6% control of glyphosate and mes-
otrione-resistant Palmer amaranth at 2 wk after early POST and
2 and 7 wk after late POST in glyphosate/glufosinate-resistant
corn in central Kansas (Liu et al. 2021).

While sequential applications of PRE followed by POST herbi-
cides with multiple sites of action can control HPPD-inhibitor-
resistant Palmer amaranth and waterhemp, relying on a single con-
trol tactic would potentially enhance selection pressure for the evo-
lution of multiple-herbicide-resistant weeds. Therefore, diversified
weed management strategies, including cultural, biological,
mechanical, and chemical weed management (with multiple sites
of action), are needed to manage herbicide-resistant weed seed
banks. More specifically, multi-tactic strategies that target
multiple life stages of the weed, including understanding repro-
ductive biology and potential for pollen-mediated gene flow, are
required (Jhala et al. 2021a, 2021b). This can be accomplished by
using an effective multiple-sites-of-action herbicide program,
using cover crops, planting corn or soybean in narrow rows,
using a harvest weed seed control method, and adopting diver-
sified crop rotations (Mohler et al. 2021; Striegel and Jhala
2022). The increasing use of HPPD-inhibitor herbicides in agro-
nomic crops requires research on herbicide interactions and
alternative herbicides or methods for controlling multiple her-
bicide-resistant weeds.
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Interactions of HPPD-Inhibitor Herbicides with Other
Herbicides

The HPPD-inhibiting herbicides are commonly mixed with other
herbicides, particularly PS II-inhibiting herbicides, to increase
weed control and spectrum. The assumption of an herbicide com-
bination is that each herbicide acts independently when applied
together (i.e., additive); however, that is not always the case.
Weed control from a mixture of two herbicides may be greater
(synergistic) or less than (antagonistic) the combined effect of
the herbicides applied alone (Colby 1967; Hatzios and
Penner 1985).

Efficacy

The HPPD-inhibiting herbicides applied PRE with a PS II-inhibi-
tor herbicide can have both additive and synergistic effects. In
greenhouse studies, atrazineþmesotrione applied PRE were addi-
tive for control of velvetleaf (Abutilon theophrastiMedik.) and ivy-
leaf morningglory (Ipomoea hederacea Jacq.); however, several rate
combinations indicated synergistic control (Bollman et al. 2006).
In field experiments, isoxaflutoleþmetribuzin applied PRE exhib-
ited additive or synergistic control of Canada fleabane, common
lambsquarters, Amaranthus spp., common ragweed, velvetleaf,
Setaria spp., barnyardgrass [Echinochloa crus-galli (L.) Beauv.],
and fall panicum (Panicum dichotomiflorum Michx.; Ditschun
et al. 2016; Smith et al. 2019b). In contrast, control of a population
of HPPD-inhibitor-resistant and PS II-inhibitor-resistant Palmer
amaranth with mesotrione or topramezone applied PRE with atra-
zine was additive (Chahal and Jhala 2018a).

The literature is replete with observations of additive or syner-
gistic weed control when HPPD-inhibiting herbicides are applied
POST with a PS II inhibitor. Mesotrione þ atrazine (Abendroth
et al. 2006; Armel et al. 2005; Creech et al. 2004), mesotrione þ
bromoxynil or metribuzin (Abendroth et al. 2006) were consistent
for controlling several annual weeds as well as Canada thistle
[Cirsium arvense (L.) Scop.] compared to mesotrione applied
alone. Mixing atrazine with tolpyralate improved control
(Metzger et al. 2018) or reduced the biologically effective dose
of tolpyralate for control of weeds commonly found in corn pro-
duction fields in Nebraska (Osipitan et al. 2018). In research plots
throughout North America, mixing atrazine with tembotrione
reduced variability in weed control and sweet corn yield variation
(Williams et al. 2011a, 2011b). Similar findings were observed with
atrazineþ isoxaflutole, mesotrione, topramezone, tembotrione, or
tolpyralate for waterhemp control in field corn (Willemse et al.
2021a). Furthermore, atrazine improved the efficacy of pyrasulfo-
tole þ bromoxynil for weed control in grain sorghum (Reddy
et al. 2013).

Synergism between an HPPD inhibitor and a PS II inhibitor
applied POST can be observed in herbicide-resistant weed popu-
lations. Synergistic control with mesotrione þ atrazine has
been observed in PS II-inhibitor-resistant redroot pigweed
(Amaranthus retroflexus L.) (Hugie et al. 2008; Sutton et al.
2002) and PS II-inhibitor-resistant wild radish (Walsh et al.
2012), including temporally separated herbicide applications
(e.g., atrazine PRE followed by mesotrione POST; Woodyard
et al. 2009a). Palmer amaranth, including a PS II-inhibitor-resist-
ant population, exhibited synergistic control with atrazine þmes-
otrione or tembotrione, but not atrazine with tolpyralate or
topramezone (Kohrt and Sprague 2017). Synergistic control of
multiple-herbicide-resistant waterhemp was observed with meso-
trione þ bromoxynil or bentazon; and tolpyralate þ bromoxynil

(Willemse et al. 2021b). In contrast, activity of isoxaflutole or mes-
otrione applied POST with metribuzin on waterhemp populations
varying in herbicide resistance traits was mostly additive (O’Brien
et al. 2018).

Mixing an HPPD inhibitor with a PS II inhibitor does not
always result in synergistic weed control. Volunteer potato
(Solanum tuberosum L.) control with mesotrione, tembotrione,
or topramezone applied POST was not improved whenmixed with
atrazine, bentazon, or bromoxynil (Koepke-Hill et al. 2010).
Advances have been made in understanding the mechanisms that
account for synergistic weed control from mixing HPPD and PS II
inhibitors. Armel et al. (2005) reported that uptake, translocation,
and metabolism of mesotrione did not account for improved con-
trol of Canada thistle with mesotrione þ atrazine. Mesotrione
absorption in Palmer amaranth increased when it was mixed with
atrazine, partially accounting for observed synergism (Chahal et al.
2019). PS II inhibitors compete with plastoquinones for the D1
protein binding site, disrupting electron transfer in PS II. The
inability to transfer electrons creates triplet chlorophyll and singlet
oxygen that destroy plant membranes (Hess 2000). Armel et al.
(2007) showed that carotenoid biosynthesis inhibitor increased
the binding efficiency and efficacy of PS II inhibitor by reducing
the reformation of the D1 protein following initiation of photo
inhibition.

Several factors influence the synergism of an HPPD inhibitor
applied in a mixture with a PS II inhibitor. For both PRE and
POST applications, the herbicide rate influences the extent of syn-
ergistic weed control (Bollman et al. 2006; Hugie et al. 2008). In
addition to the application rate of the HPPD inhibitor, synergistic
weed control was observed more frequently with triketone herbi-
cides (mesotrione and tembotrione) compared to pyrazolone her-
bicides (topramezone and tolpyralate; Kohrt and Sprague 2017).
Adverse environmental conditions (e.g., inadequate rainfall) influ-
ence plant response to a mixture of HPPD and PS II inhibitors
applied PRE (Smith et al. 2019b) and POST (Woodyard et al.
2009b). Moreover, the time of POST herbicide application can
influence the plant response to HPPD and PS II inhibitors
(O’Brien et al. 2018).

HPPD-inhibitor herbicides can interact with herbicides other
than PS II inhibitors. The synthetic auxin triclopyr improved foliar
uptake of mesotrione and control of smooth crabgrass (Yu and
McCullough 2016). Conversely, a mixture of an HPPD inhibitor
and an ALS inhibitor can be antagonistic. For example, reduced
efficacy of sulfonylurea herbicides applied with mesotrioneþ atra-
zine for control of Setaria spp. (Schuster et al. 2008) was due to
decreased absorption, and in some cases reduced translocation
of nicosulfuron (Schuster et al. 2007). Not only can an HPPD
inhibitor antagonize an ALS inhibitor for annual grass control,
but an ALS inhibitor can also antagonize the HPPD inhibitor
(Kaastra et al. 2008).

Crop Tolerance

Field corn production systems rely extensively on a mixture of
HPPD and PS II inhibitors. Considerable field research demon-
strates excellent crop tolerance with their mixtures (Johnson
et al. 2002; Osipitan et al. 2018; Stephenson et al. 2004; Whaley
et al. 2006; Willemse et al. 2021a). Additional research shows that
the synergistic effect of HPPD and PS II inhibitors for weed control
was not observed on sweet corn response (Choe et al. 2014). Sweet
corn injury from tembotrione was influenced by the safener isoxa-
difen and the genotypic class at a P450 locus (Nsf1; Williams and
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Pataky 2010). The extent to which crops other than corn respond
to amixture of HPPD inhibitor and other herbicides has been stud-
ied. In an herbicide carryover study, a mixture of atrazine andmes-
otrione accentuated crop injury and yield losses in broccoli
(Brassica oleracea var. italica), carrot (Daucus carota L.), cucumber
(Cucumis sativus L.), and onion (Alium cepa L.; Robinson 2008).
Grain sorghum was not injured by pyrasulfotole þ bromoxynil
applied alone or with synthetic auxin; however, the mixing of car-
fentrazone, a PPO inhibitor, increased phytotoxicity (Besançon
et al. 2016). Isoxaflutole þ metribuzin applied PRE on isoxaflu-
tole-resistant soybean injured the crop in environments with the
most rainfall, and injury was often synergistic (Smith et al.
2019b). Sugarcane displayed transient injury symptoms when top-
ramezone was mixed with ametryn or metribuzin compared with
topramezone applied alone (Negrisoli et al. 2020).

Future of HPPD-Inhibiting Herbicides

HPPD-inhibitor herbicides continue to be researched, patented,
and commercialized by agrochemical companies. Benquitrione
is currently in development for use in sorghum. A new class of
HPPD inhibitor, azole carboxamides, were first disclosed by
Bayer Crop Science in 2011 (Koehn et al. 2011). While no mole-
cules have yet been commercialized, azole carboxamides have
come to dominate the HPPD-inhibitor patent literature, with con-
tributions from Syngenta, BASF, Nissan, KingAgroot, Nippon
Soda, and SSARD, in addition to follow-up inventions from
Bayer Crop Science. There have been more than 120 international
patent applications for azole carboxamides, which represent appli-
cations of more than 50% of all HPPD-inhibiting herbicides since
2012. Herbicides from this class are in development that are
expected to be available commercially around 2030. Azole carbox-
amides have different physical properties compared to the previ-
ously described classes with a different metabolism, which could
potentially overcome non-target-site resistance (Jugulam and
Shyam 2019). Patent applications that describe new herbicidal
active ingredients will typically include thousands of compounds.
However, companies will typically include a low number, often
one, of these molecules in additional patent applications for use
in mixtures with other active ingredients, for use in herbicide-
resistant crops, or for inventions in the synthetic process. These
additional patents hint to these specific molecules being of particu-
lar interest and likely candidates for further development
(Figure 10).

Future of HPPD-Inhibitor-Resistant Crops

Research and development of HPPD-inhibitor-resistant crop traits
began in the early 2000s. Traits were initially created that were use-
ful in PRE weed control programs. Due to the commercial success
of glyphosate-resistant crops, the impact of the early HPPD-inhibi-
tor-resistant crop traits were not as large as anticipated. In the last
decade, however, interest in developing HPPD-inhibitor-resistant

crop traits has re-emerged and is being driven by the impact of
wide-scale occurrence of glyphosate-resistant weeds. This has
led to the need for alternatives, and new HPPD-inhibitor crop
traits are actively being developed across the crop protection indus-
try, primarily for use in soybean and cotton.

Certain grass crop species such as corn are resistant to most
HPPD-inhibitor herbicides (Mitchell et al. 2001); therefore,
HPPD inhibitors such as mesotrione can be applied PRE and
POST in corn, POST in oats and sugarcane, but it is labeled only
for PRE weed control in sorghum. Nonetheless, HPPD-inhibitor-
resistant lines in dicot species [e.g., tobacco (Nicotiana tabacum L.)
and soybean that would be otherwise highly sensitive to these her-
bicides] have been developed. Tobacco transformed with anHPPD
gene from wheat showed resistance to mesotrione (Hawkes et al.
2001, 2019). Siehl et al. (2014) developed transgenic soybean that
is resistant to isoxaflutole, mesotrione, and tembotrione with
increased selectivity and a wide spectrum of weed control. In addi-
tion, isoxaflutole-resistant soybean has been developed and is
available for commercial cultivation in the United States; however,
its adoption is limited due to restriction in use of isoxaflutole (Alite
27) in certain counties in states such as Nebraska (Mausbach
et al. 2021).

Bayer Crop Science has a long history of involvement in the
development of HPPD-inhibitor-resistant crop traits, with efforts
mainly focused on the expression of an herbicide-insensitive bac-
terial HPPD enzyme from Pseudomonas fluorescens. A mutated
form of the gene that carries a mutation at amino acid position
G336W had increased tolerance to isoxaflutole. This gene is used
in the FG72 soybean in commercial use (Matringe et al. 2005).
Work initiated by the former Monsanto business (now part of
Bayer Crop Science) also focused on development of anHPPD trait
and a planned launch of this trait (HT4) in soybean is expected in
the late 2020s. Details of the trait gene used are unknown at the
time of writing. This trait is expected to be stacked with 2,4-D,
glyphosate, glufosinate, and dicamba. A further development
known as HT5 is expected to launch later, adding resistance to
PPO-inhibiting herbicides (Reither 2021).

BASF acquired much of Bayer Crop Science’s HPPD-inhibitor-
resistant crop technology during the crop protection industry con-
solidation period in the mid-2010s. As such, BASF is now bringing
to market products containing the HPPD trait from FG72 soybean
into other crops such as cotton (Steadman 2021). A further devel-
opment is the HPPD trait known as pfHPPD-4, which is expressed
in the GMB151 soybean line. This is a Pseudomonas HPPD gene
that carries four mutations compared to a single mutation that
occurs in the FG72 trait (Olson and Weeks 2020).

Syngenta’s involvement with HPPD inhibitor-resistant crop
traits dates to 2000, when several HPPD target genes, including
the wild oat (Avena sativa L.) gene were characterized. The
Avena sativa HPPD gene was later used to develop a soybean
(SYT-0H2) that is resistant to mesotrione applied PRE (Hawkes
et al. 2019). Syngenta has recently disclosed the invention of a

Figure 10. Examples of recently submitted patents for herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) from Bayer Crop Science, Nissan, and KingAgroot.
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series of further evolved Avena HPPD target site genes that have
much enhanced resistance to a broad range of HPPD inhibitors
including mesotrione and bicyclopyrone (Hawkes et al. 2019).
These genes are capable of providing resistance to POST applica-
tions of these herbicides (Hawkes et al. 2019). Plant Arc Bio has
applied for an exemption for an HPPD-inhibitor trait based on
a fungal (Trichoderma harzianum spp.) HPPD gene. The target
crops are soybean and cotton (PlantArcBio 2022; Shatlin 2021),
although the spectrum of herbicide resistance of this trait is
unknown as of 2022. An alternative technology has been described
by the NARO Institute in Japan, which involves the metabolic deg-
radation of certain HPPD-inhibitor formulas such as mesotrione.
The His-1 gene was discovered as a part of a project to study the
differences in herbicide sensitivity among rice cultivars. The met-
abolic nature of the gene means that this trait is likely to be nar-
rower in the resistance spectrum compared with target-site-
based approaches (Maeda et al. 2019). Given the renewed invest-
ment in the development of HPPD-inhibitor-resistant crops, it is
expected that HPPD-inhibiting herbicides will play an important
role in weed control programs in soybean and cotton from the late
2020s onward. If such traits can be combined with the next gen-
eration of HPPD-inhibitors, their usefulness will likely be extended
into the future. Management of multiple herbicide–resistant crop
volunteers might be challenging, and future research should focus
on this topic (Jhala et al. 2021c).
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