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Abstract

Let p be an odd prime number and E an elliptic curve defined over a number field F with good reduction
at every prime of F above p. We compute the Euler characteristics of the signed Selmer groups of E over
the cyclotomic Zp-extension. The novelty of our result is that we allow the elliptic curve to have mixed
reduction types for primes above p and mixed signs in the definition of the signed Selmer groups.
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1. Introduction

Let p be an odd prime. Let F be a number field and E an elliptic curve defined over
F. If E has good ordinary reduction at every prime of F above p, one can define the
p-primary Selmer group of E over the cyclotomic Zp-extension Fcyc of F. This Selmer
group is conjectured to be cotorsion over Zp[[Γ]] (see [13]), where Γ = Gal(Fcyc/F).
Under this conjecture, Perrin-Riou [16] and Schneider [17] computed the Γ-Euler
characteristics of the Selmer groups. The importance of the Γ-Euler characteristics
stems from the fact that their values are related to the p-part of the algebraic invariants
appearing in the formula of the Birch and Swinnerton-Dyer conjecture, which in turn
allows one to study the special values of the Hasse–Weil L-function of E via the so-
called ‘Iwasawa main conjecture’ (see [2, 3, 5, 13]).

In this paper, we consider the situation where the elliptic curve E may have good
supersingular reduction at some primes above p. In this case, one usually works with
the so-called signed Selmer groups of E in the sense of [7–10]. Our main result is
concerned with computing the Euler characteristics of these signed Selmer groups,
which we now describe. Suppose that E has good (not necessarily ordinary) reduction
at any prime of F lying above p. Denote by S ord

p (respectively, S ss
p ) the set of good

ordinary reduction (respectively, good supersingular reduction) primes of E above p.
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[2] Euler characteristics of signed Selmer groups 239

Suppose further that for each v ∈ S ss
p , one has Fv = Qp and av = 1 + p − |Ẽv(Fp)| = 0,

where Ẽv denotes the reduction of E at v. Our main result is as follows.

Theorem 1.1. Suppose that Sel(E/F) is finite and retain the settings described above.
Then Sel

−→s (E/Fcyc) is a cotorsion Zp[[Γ]]-module and its Γ-Euler characteristic is
given by

|X(E/F)(p)|
|E(F)(p)|2

×
∏

v

c(p)
v ×

∏
v∈S ord

p

(d(p)
v )2.

Here c(p)
v is the highest power of p dividing |E(Fv) : E0(Fv)|, where E0(Fv) is the

subgroup of E(Fv) consisting of points with nonsingular reduction modulo v, fv is
the residue field of Fv and d(p)

v is the highest power of p dividing |Ẽv( fv)|.

We give the definition of the signed Selmer group Sel
−→s (E/Fcyc) in Section 2. The

Γ-Euler characteristic of Sel
−→s (E/Fcyc) is the quantity

|H0(Γ,Sel
−→s (E/Fcyc))|

|H1(Γ,Sel
−→s (E/Fcyc))|

.

In the course of proving Theorem 1.1, we will see that the definition of the Γ-
Euler characteristic of Sel

−→s (E/Fcyc) makes sense. When the elliptic curve has good
supersingular reduction at all primes above p, the formula was first established by
Kim [8]. Our main result extends the result in [8] by allowing the elliptic curve to
have mixed reduction types for primes above p and mixed signs in the definition of the
signed Selmer groups. The proof of the theorem will be given in Section 2. In fact,
we consider a slightly more general situation than that stated above (see Theorem 2.3).
As an application, we show that if one of the signed Selmer groups vanishes, so do the
others (see Corollary 2.9).

It would be of interest to be able to provide examples illustrating our theorem. It is
not difficult to obtain examples of elliptic curves with mixed reduction types at primes
above p by arguments similar to those in [5, Proposition 5.4] or [13, Lemma 8.19].
The problem is that we do not know how to verify the finiteness of Sel(E/F) in these
examples. Until a (nice enough) theory of Euler systems has been developed in this
mixed reduction context, this does not seem tractable.

After the completion of this work, we were informed by Antonio Lei that he and
his coauthor have computed the Euler characteristics of the signed Selmer groups
over a Zd

p-extension (see [11]). However, they work with elliptic curves with good
supersingular reduction at all primes above p and with the same sign in their definition
of the signed Selmer groups. They also require that the prime p splits completely over
F/Q. It would be of interest to see if a similar computation can be performed for the
situation considered in Section 2 of our paper. One might even contemplate computing
these Euler characteristics over a noncommutative p-adic extension.
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2. Signed Selmer groups

In this section, we will prove Theorem 1.1. As the formula is well documented
when E has good ordinary reduction at every prime of F above p (see [2, Theorem
3.3] or [5, Theorem 4.1]), we may and will assume that our elliptic curve E has
some primes of supersingular reduction above p. In this situation, we shall consider
a slightly more general setting following [9]. As always, p will denote a fixed odd
prime. Let F′ be a number field and E an elliptic curve defined over F′. Fix a finite
extension F of F′. Let S be a finite set of primes of F′ which contains the primes
above p, the bad reduction primes of E, the ramified primes of F/F′ and the infinite
primes. Denote by FS the maximal algebraic extension of F which is unramified
outside S . For every (possibly infinite) extension L of F contained in FS , we set
GS (L) = Gal(FS /L). We shall write Sp (respectively, S ′p) for the set of primes of S
lying above p (respectively, not lying above p). Denote by S ord

p (respectively, S ss
p ) the

set of good ordinary reduction (respectively, good supersingular reduction) primes of
E above p. We make the following assumptions.

(S1) The elliptic curve E has good reduction at all primes in Sp and S ss
p , ∅.

(S2) For each v ∈ S ss
p , one has F′v = Qp and av = 1 + p − |Ẽv(Fp)| = 0, where Ẽv is the

reduction of E at v.
(S3) For each v ∈ S ss

p , v is unramified in F/F′.
(S4) For each w ∈ S ss

p (F), [Fw : Qp] , 0 (mod 4). Here S ss
p (F) is the set of primes of

F above S ss
p .

Denote by Fcyc the cyclotomic Zp-extension of F and Fn the intermediate subfield
of Fcyc with |Fn : F| = pn. Note that it follows from (S2) and (S3) that every prime
w ∈ S ss

p (F) is totally ramified in Fcyc/F. In particular, for each such prime w, there is
a unique prime of Fn lying above w, which, by abuse of notation, we still denote by w.
Following [7–10], we define the groups

E+(Fn,w) = {P ∈ E(Fn,w) : trn/m+1(P) ∈ E(Fm,w), 2 | m,−1 ≤ m ≤ n − 1},
E−(Fn,w) = {P ∈ E(Fn,w) : trn/m+1(P) ∈ E(Fm,w), 2 - m,−1 ≤ m ≤ n − 1},

where trn/m+1 : E(Fn,w) −→ E(Fm+1,w) denotes the trace map.
From now on, let I = {1, . . . , r}, where r = |S ss

p (F)|. We shall index the primes in
S ss

p (F) by w1, . . . ,wr. For each −→s = (s1, . . . , sr) ∈ {±}I , we write

H
−→s
n =

r⊕
i=1

H1(Fn,wi , E(p))
E si (Fn,wi ) ⊗ Qp/Zp

.

The signed Selmer group Sel
−→s (E/Fn) is then defined to be

ker
(
H1(GS (Fn),E(p)) −→H

−→s
n ×

⊕
w∈S ord

p (Fn)

H1(Fn,w, E(p))
E(Fn,w) ⊗ Qp/Zp

×
⊕

w∈S ′p(Fn)

H1(Fn,w,E(p))
)
,
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[4] Euler characteristics of signed Selmer groups 241

where S ord
p (Fn) (respectively, S ′p(Fn)) denotes the set of primes of Fn above S ord

p
(respectively, S ′p). We also recall that the usual p-primary Selmer group for E over
Fn is defined by

Sel(E/Fn)

= ker
(
H1(GS (Fn), E(p)) −→

⊕
w∈Sp(Fn)

H1(Fn,w, E(p))
E(Fn,w) ⊗ Qp/Zp

×
⊕

w∈S ′p(Fn)

H1(Fn,w, E(p))
)
.

The two Selmer groups fit into the commutative diagram

0 // Sel
−→s (E/Fn)

α

��

// H1(GS (Fn), E(p))
ψ
−→s

// H
−→s
n ×

⊕
w∈S ord

p (Fn)

H1(Fn,w, E(p))
E(Fn,w) ⊗ Qp/Zp

×
⊕

w∈S ′p(Fn)

H1(Fn,w, E(p))

��

0 // Sel(E/Fn) // H1(GS (Fn), E(p))
φ
//

⊕
w∈Sp(Fn)

H1(Fn,w, E(p))
E(Fn,w) ⊗ Qp/Zp

×
⊕

w∈S ′p(Fn)

H1(Fn,w, E(p))

with exact rows. Denote by ψ
−→s
ss the map from Sel(E/Fn) toH

−→s
n that is induced by ψ

−→s .
It is now straightforward to verify the following assertion.

Lemma 2.1. We have the identification

Sel
−→s (E/Fn) = ker(Sel(E/Fn)

ψ
−→s
ss
−→H

−→s
n ).

Write
Sel
−→s (E/Fcyc) = lim

−−→
n

Sel
−→s (E/Fn) and H

−→s
∞ = lim
−−→

n

H
−→s
n .

It is not difficult to verify that Sel
−→s (E/Fcyc) is cofinitely generated over Zp[[Γ]]. In

fact, one expects the following conjecture, which is a natural extension of Mazur [13]
and Kobayashi [10].

Conjecture 2.2. Sel
−→s (E/Fcyc) is a cotorsion Zp[[Γ]]-module, where Γ = Gal(Fcyc/F).

When S ss
p is empty, the above conjecture is precisely Mazur’s conjecture [13], which

is known in the case when E is defined over Q and F is an abelian extension of
Q (see [6]). When E is an elliptic curve over Q with good supersingular singular
reduction at p, this conjecture was formulated by Kobayashi [10] (see [1] for some
recent progress on this conjecture). We shall prove the following result from which
Theorem 1.1 follows by taking F = F′.

Theorem 2.3. Assume that (S1)–(S4) hold and Sel(E/F) is finite. Then Sel
−→s (E/Fcyc)

is a cotorsion Zp[[Γ]]-module and its Γ-Euler characteristic is given by

|X(E/F)(p)|
|E(F)(p)|2

×
∏

w

c(p)
w ×

∏
w∈S ord

p (F)

(d(p)
w )2.
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The remainder of this section will be devoted to the proof of Theorem 2.3. We first
record two preparatory lemmas which are required for our calculation.

Lemma 2.4. Assume that (S1)–(S3) hold. Then E(F)(p) = 0 and E(Fcyc)(p) = 0.

Proof. For w ∈ S ss
p (F), a similar argument to that in [10, Proposition 8.7] yields

E(Fw)(p) = 0. Since we are assuming that S ss
p , ∅, this in turn implies that

E(F)(p) = 0. But, as Fcyc/F is a pro-p extension, it follows from [15, Corollary 1.6.13]
that E(Fcyc)(p) = 0. �

Lemma 2.5. Assume that (S1)–(S3) hold and Sel(E/F) is finite. Then

H2(GS (Fcyc), E(p)) = 0, H1(Γ,H1(GS (Fcyc), E(p))) = 0

and
H1(GS (F), E(p)) � H1(GS (Fcyc), E(p))Γ.

Proof. Since Γ has p-cohomological dimension one, the spectral sequence

Hi(Γ,H j(GS (Fcyc), E(p))) =⇒ Hi+ j(GS (F), E(p))

yields short exact sequences

0 −→ H1(Γ, E(Fcyc)(p))) −→ H1(GS (F), E(p)) −→ H1(GS (Fcyc), E(p))Γ −→ 0

and

0→ H1(Γ,H1(GS (Fcyc), E(p)))→ H2(GS (F), E(p))→ H2(GS (Fcyc), E(p))Γ → 0.

The final isomorphism of the lemma follows from the first short exact sequence and
Lemma 2.4. On the other hand, as Sel(E/F) is finite, it follows from [2, Proposition
1.9] that H2(GS (F),E(p)) = 0. Putting this into the second short exact sequence yields
H1(Γ,H1(GS (Fcyc), E(p))) = 0 and H2(GS (Fcyc), E(p))Γ = 0, where the latter in turn
implies that H2(GS (Fcyc), E(p)) = 0. This proves the lemma. �

Let w ∈ S ss
p (F). The next lemma is concerned with analysing the local map

gw :
H1(Fw, E(p))

E(Fv) ⊗ Qp/Zp
−→

(
H1(Fcyc

w , E(p))
E±(Fcyc

w ) ⊗ Qp/Zp

)Γ

.

Lemma 2.6. If (S1)–(S4) hold, then the map gw is an isomorphism for every w ∈ S ss
p (F).

Proof. We essentially follow the idea in the proof of [7, Proposition 4.28]. Consider
the diagram

0 // E(Fv) ⊗ Qp/Zp

aw

��

// H1(Fw, E(p))

bw

��

//
H1(Fw, E(p))

E(Fv) ⊗ Qp/Zp

gw

��

// 0

0 //
(
E±(Fcyc

w ) ⊗ Qp/Zp
)Γ // H1(Fcyc

w , E(p))Γ //

(
H1(Fcyc

w , E(p))
E±(Fcyc

w ) ⊗ Qp/Zp

)Γ
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with exact rows. As seen from the proof of Lemma 2.4, E(Fw)(p) = 0, which in
turn implies that E(Fcyc

w )(p) = 0. Hence, bw is an isomorphism. Consequently, aw is
injective. By (S4) and [9, Corollary 3.25], (E±(Fcyc

w ) ⊗Qp/Zp)Γ is a cofree Zp-module
with Zp-corank [Fw : Qp]. But, by Mattuck’s theorem [12], E(Fv) ⊗ Qp/Zp is also
a cofree Zp-module with Zp-corank [Fw : Qp]. Hence, aw must be an isomorphism,
which in turn implies that gw is injective.

Since E(Fw)(p) = 0, it follows from local Tate duality that H2(Fw,E[p]) = 0, which
in turn implies that H1(Fw, E(p)) is p-divisible. Combining this with a standard
local Euler characteristic calculation (see [3, Section 3, Proposition 1]), we see that
H1(Fw, E(p)) is a cofree Zp-module with Zp-corank [Fw : Qp] . On the other hand,
from [9, Proposition 3.32], (H1(Fcyc

w ,E(p))/E±(Fcyc
w ) ⊗Qp/Zp)Γ is a cofree Zp-module

with Zp-corank [Fw : Qp]. Thus, gw is an injection between two p-divisible groups of
the same Zp-corank and hence it must be an isomorphism. This proves the lemma. �

Now consider the diagram

0 // Sel(E/F)

a

��

// H1(GS (F), E(p))

h

��

ρ
//
⊕

w|p

H1(Fw, E(p))
E(Fv) ⊗ Qp/Zp

×
⊕

w∈S ′p(F)

H1(Fw, E(p))

g=⊕wgw

��

0 // Sel
−→s (E/Fcyc)Γ // H1(GS (Fcyc), E(p))Γ

φ∞
//

(
H
−→s
∞ ×H

ord
∞ ×

⊕
w∈S ′p(Fcyc)

H1(Fcyc
w , E(p))

)Γ

with exact rows, where

Hord
∞ = lim

−−→
n

⊕
w∈S ord

p (Fn)

H1(Fn,w, E(p))
E(Fn,w) ⊗ Qp/Zp

.

We shall make use of the notation in the above diagram without further mention.

Lemma 2.7. Assume that (S1)–(S4) hold and that Sel(E/F) is finite. Then ρ is surjective
and H1(Γ,Sel

−→s (E/Fcyc)) = 0.

Proof. Since Sel(E/F) is finite, it follows from [2, Proposition 1.9] that coker ρ is
finite of order |E(F)(p)|. By Lemma 2.4, this implies that ρ is surjective, which proves
the first assertion of the lemma.

Combining [2, Lemma 3.4 and Proposition 3.5] with Lemma 2.6, we see that g is
surjective. Therefore, φ∞ is also surjective. Now consider the exact sequence

0 −→ Sel
−→s (E/Fcyc) −→ H1(GS (Fcyc), E(p))

φ
−→ B,

where B = H
−→s
∞ × H

ord
∞ ×

⊕
w-p H1(Fcyc

w , E(p)). Write A = im(φ) and C = coker (φ).
Taking the Γ-invariant of the short exact sequence

0 −→ Sel
−→s (E/Fcyc) −→ H1(GS (Fcyc)E(p)) −→ A −→ 0,
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and using Lemma 2.5 yields the exact sequence

0→ Sel
−→s (E/Fcyc)Γ → H1(GS (Fcyc), E(p))Γ τ

→ AΓ −→ H1(Γ,Sel
−→s (E/Fcyc))→ 0

with H1(Γ, A) = 0. Then, from the Γ-invariant of the short exact sequence

0 −→ A −→ B −→ C −→ 0,

we obtain a short exact sequence

0 −→ AΓ −→ BΓ −→ CΓ −→ 0.

Since φ∞ is given by the composition H1(GS (Fcyc), E(p)) −→ AΓ −→ BΓ and is
surjective, the injection AΓ −→ BΓ is also surjective and hence an isomorphism.
Under this identification, τ = φ∞ and its surjectivity in turn implies that
H1(Γ,Sel

−→s (E/Fcyc)) = 0. This completes proof of the lemma. �

We record a by-product of our argument, which is not required for the final proof.
It may also be possible to derive this result by the methods of [8, Proposition 3.10].
However, we include the following alternative proof, which might be of interest in its
own right. We should emphasise that our proof relies on the finiteness of Sel(E/F).

Proposition 2.8. Assume that (S1)–(S4) hold and that Sel(E/F) is finite. Then we have
the short exact sequence

0→ Sel
−→s (E/Fcyc)→ H1(GS (Fcyc),E(p))

φ
→H

−→s
∞ ×H

ord
∞ ×

⊕
w∈S ′p(Fcyc)

H1(Fcyc
w ,E(p))→ 0.

Proof. We retain the notation of Lemma 2.7. In the proof of Lemma 2.7, we obtained
a short exact sequence

0 −→ AΓ −→ BΓ −→ CΓ −→ 0

and showed that AΓ � BΓ. Thus, CΓ = 0, which in turn implies that C = 0. But recall
that C = coker φ and so this proves the proposition. �

We can finally prove Theorem 2.3.

Proof of Theorem 2.3. To prove the first assertion of the theorem, it suffices to show
that Sel

−→s (E/Fcyc)Γ is finite. By Lemma 2.5, h is an isomorphism. Therefore, by the
snake lemma, we are reduced to showing that ker g is finite. In fact, for w ∈ S ord

p (F),
ker gw is finite with order (d(p)

w )2 (see [2, Proposition 3.5] or [5, Lemma 4.4]). If
w ∈ S ss

p (F), then gw is an isomorphism by Lemma 2.6. Finally, for w - p, ker gw is
finite with order c(p)

w (see [2, Lemma 3.4] or [5, Lemma 4.4]). Hence, ker g is finite, as
required.

It remains to compute the Γ-Euler characteristic of Sel
−→s (E/Fcyc). By Lemma 2.5, ρ

is surjective. Taking the final isomorphism in the assertion of Lemma 2.5 into account,
it then follows from the above diagram that

|Sel
−→s (E/Fcyc)Γ| = |Sel(E/F)| | ker g|.
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[8] Euler characteristics of signed Selmer groups 245

By Lemma 2.7, the left-hand side is just the Γ-Euler characteristic of Sel
−→s (E/Fcyc).

Since Sel(E/F) is finite, |Sel(E/F)| = |X(E/F)(p)|. Also, as seen above, | ker g| is
given by

∏
w c(p)

w ×
∏

w∈S ord
p (F)(d

(p)
w )2. Combining these calculations, we obtain the

required formula, noting that |E(F)(p)| = 1 by Lemma 2.4. �

We record an interesting corollary of (the proof of) Theorem 2.3.

Corollary 2.9. Assume that (S1)–(S4) hold. Suppose that there exists −→t ∈ {±}I such
that Sel

−→t (E/Fcyc) = 0. Then Sel
−→s (E/Fcyc) = 0 for every −→s ∈ {±}I .

Proof. Suppose that Sel
−→t (E/Fcyc) = 0 for some −→t ∈ {±}I . Then, from the diagram

before Lemma 2.7, we see that Sel(E/F) = 0. In particular, Sel(E/F) is finite.
Therefore, by the argument in the proof of Theorem 2.3,

|Sel
−→t (E/Fcyc)Γ| = |Sel(E/F)| | ker g| = | ker g|.

Since Sel
−→t (E/Fcyc) = 0, it follows that ker g = 0. From the proof of Theorem 2.3, we

also see that ker g has the same common value for every −→s ∈ {±}I and hence is trivial.
Consequently,

|Sel
−→s (E/Fcyc)Γ| = 0,

which in turn implies that Sel
−→s (E/Fcyc)Γ = 0. The latter is of course equivalent to

Sel
−→s (E/Fcyc) = 0, as required. �

3. Concluding remarks

In Theorem 2.3, we assume that for each w ∈ S ss
p (F), [Fw : Qp] , 0 (mod 4) (this

is assumption (S4)). If all the signs appearing in the signed Selmer group are −, one
does not require this assumption (S4). However, if at least one of the signs is a +, we
are not able to prove that the local map gw is injective without this assumption. In fact,
tracing the proof of Lemma 2.6, it would seem that gw has a kernel which is a cofree
Zp-module with corank 2 (when [Fw : Qp] = 0 (mod 4)). This seems reminiscent of the
so-called ‘exceptional zeros’ phenomenon in the case of a split multiplicative prime
(see [4, 14]). We do not have a good explanation at present.
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