
Genet. Res., Camb. (1989), 53, pp. 63-70 With 3 text figures Printed in Great Britain 63

Effects of identity disequilibrium and linkage on
quantitative variation in finite populations
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Summary

Identity disequilibrium, ID, is the difference between joint identity by descent and the product of
the separate probabilities of identity by descent for two loci. The effects of ID on the additive by
additive (a * a) epistatic variance and joint dominance component between populations and in the
additive, dominance and a * a variance within populations, including the effects on covariances of
relatives within populations, were studied for finite monoecious populations. The effects are
formulated in terms of three additive partitions, 7]b, i)a and i)A, of the total ID, each of which
increases from zero to a maximum at some generation dependent upon linkage and population size
and decreases thereafter. ijd is about four times the magnitude of the other two but none is of any
consequence except for tight linkage and very small populations. For single-generation bottleneck
populations only 7ja is not zero. With random mating of expanded populations 7jb remains constant
and 9/a and rja go to zero at a rate dependent upon linkage, very fast with free recombination. The
contributions of joint dominance to the genetic components of variance within and between
populations are entirely a function of the ?/'s while those of a * a variance to the components are
functions mainly of the coancestry coefficient and only modified by the TJ'S. The contributions of
both to the covariances of half-sibs, full-sibs and parent-offspring follow the pattern expected from
their contributions to the genetic components of variance within populations except for minor
terms which most likely are of little importance.

1. Introduction

Random mating finite populations, populations that
have been through a bottleneck and experimental
populations initiated with a few parents or inbred
lines are generally treated as distinct entities. For
many characterizations including quantitative genetic
variation they all fit into the same framework, differing
only in details. In studying the quantitative genetic
variation within and between finite populations it was
found that a joint dominance contribution for a pair
of loci was determined entirely by identity dis-
equilibrium (Cockerham, 1984a). The question arises
as to the effects of identity disequilibrium on other
joint effects of loci, epistatic variance.

Identity disequilibrium (ID) is the difference be-
tween the joint probability of identity by descent and
the product of the separate probabilities of identity by
descent for two loci. It is never negative and occurs for
pedigree systems of mating for linked loci, increasing
as recombination decreases (Weir & Cockerham,
1969 a). It occurs in finite random mating populations,
even for unlinked loci when it is a measure of the

variation in inbreeding coefficients of members of the
population with varying pedigrees, and is further
enhanced by linkage (Weir & Cockerham, 19696).

In random mating finite populations, initially in
linkage equilibrium, ID is the principal agent for the
variation in actual inbreeding or heterozygosity
(Weir, Avery & Hill, 1980) and for the variation in
linkage disequilibrium (Weir & Hill, 1980).

We wish to extend the analysis to include the effects
of ID on additive by additive (a * a) variance in finite
populations. The a * a variance with self-fertilization
was studied in some detail with an emphasis on the
effects of ID on the covariances of relatives (Cocker-
ham, 19846). In this case ID was entirely a function of
linkage and the relative effect of ID on the covariances
of relatives decreased as the relatedness of the relatives
increased.

To extend the analysis to finite populations we
consider random mating monoecious populations as
in Cockerham (1984 a). The initial population is in
linkage and Hardy-Weinberg equilibrium and gives
rise to replicate finite populations of size TV each
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generation. At some time the replicate populations are
expanded, N = oo, and random mating is continued
in each. The purpose of the expanded populations is
to diagnose the effects of finite population history on
quantitative genetic variation and of continued
random mating to determine the permanency or
transient behaviour of the effects. Obviously, popu-
lations that have been through a bottleneck are
included in this framework. For the expanded popu-
lations we partition the a*a variance into portions
within and between populations and further subdivide
the portion within populations into portions that
behave as additive and a * a variances. The total ID is
also partitioned and the effects of the partitions on the
various portions of a * a variance are formulated for
the expanded population and for modifications that
occur with continued random mating. A parallel
partitioning is also given for joint dominance effects.
The contributions of the joint dominance and a * a
variance to the covariance of half-sibs, full-sibs and
parent-offspring within populations are formulated.

2. ID measures

The analysis is facilitated by measures of the prob-
ability of identity by descent. For two loci the double
identity by descent measures are for a pair of genes at
one locus and a pair of genes at the other locus. For
random mating monoecious populations only three
are required (Cockerham, 1984a): 6 for genes on two
gametes, y for genes on three gametes, and A for genes
on four gametes. The measures are the same for all
configurations within and between random indi-
viduals. Consequently, 6 is the joint inbreeding
coefficient F, and so on. Transition equations from
which these two-locus descent measures can be
obtained are given in Appendix A in Cockerham
(1984 a).

One single-locus measure, the coancestry coefficient
8, which is also the inbreeding coefficient F, is needed,
and dt= 1 —(1 —1/2A01-

It was found useful (Cockerham, 1984a) in par-
titioning the joint dominance contributions for two
loci for finite populations to partition the total ID,
if = 6 — 62, into three parts associated with different
variance components.

7)f., = A — d2 : between population variance
rj& — 2(y — A) : additive variance
7)a = 6 — 2y + A : dominance variance

These sum to the total
The descent measures for the expanded population

will be determined by t, the number of generations
before expansion, and Â , the number of individuals in
the replicate populations. With further random
mating of the expanded populations the descent
measures 6 and y will change in time measured now by
T with T = 0 for the initial expanded populations.

To facilitate the presentation, we speak of gametic,

<S, and non-gametic, J/~, pairs of genes. The status of
^ changes over time. In terms of a = (1 +A)/2 where
(1— A)/2 = r, the recombination fraction, ^T+1 =
a ^T + (l—a) JVT, i.e. gametic genes were gametic in
the previous generation with probability a and non-
gametic in the previous generation with probability
1 —a. In contrast in an infinite population Jf7+X = JfT

since genes on two gametes trace back to genes on
one gamete with probability zero. From the definitions
of 6, y and A, 0T+1 = a2OT + 2a(\ -cc)yT + (\ -a)2Ar;
Yr+i = a7r + (l - a ) AT;andAT+1 = AT. In terms of initial
values 6T = ay0 + 2a'(\ -of) y0 + (1 - O 2 A o ; yT =
aTy0 + (l — a7)Ao; and AT = Ao. Thus, in time, all
two-locus descent measures are the same, 0X =

yOT = K = K
Except for j)b = Ao — 62, the identity disequilibriums

go to zero in time: i/ar = a^ar_, = aTija0 and i/d7 =
^ d r - i = a27Vao- The rate of approach to zero per
generation for each is a constant, 1 — a = r for rja and
1—a2 = r(2 —r) for 7/d. With free recombination the
rates are fast, 1/2 for ?/a and 3/4 for t]A.

To obtain some notion of the magnitude of ??'s in
relation to N, t and A some values are plotted against
t in Fig. 1 for N = 4, 20, 100 and A = 0, 0-5, 0-9. Each
line in the figure that can be distinguished from zero
is labelled according to A, N values.

Each of the i?'s is zero initially, builds up to a
maximum and eventually goes to zero at fixation.
There is considerable similarity in the shape of the
curves among the T/'S. i/d reaches its maximum quickest
and »/a next. An increase in A increases the time
required to reach the maximum. Note the difference in
scale for •)/„ which is about four times that for the other
two. While linkage increases the T/'S A must be near
0-9 for the increase to be of much consequence. With
A = 0 the i/'s are due to the variation among inbreeding
coefficients (Weir & Cockerham, 1969*) and of little
consequence except for i/d in extremely small popu-
lations. In fact, with N ^ 20 it would appear safe to
ignore 7/b and i/a, particularly when viewed over many
pairs of loci where A on the average is probably very
small, and in this case even 7?d will be very small.

3. Partitions of the a * a variance and joint
dominance effects

For a genotype formed from the union of gametes
Ak Bk and A, B, the a • a effects in the model for the
genotypic value may be symbolized as (ak bk) + (a, b,) +
(akb,) + (a,bk) where overbars indicate non-gametic,
pairs of genes. In the initial equilibrium population
for which these effects are defined each has mean zero
and <f(ab)2 = a2^ where $ denotes expectation. The
effects are uncorrelated so that the total a • a variance
among individuals in the population is 4 ^ = a2^ for
a pair of loci. With inbreeding the effects become
correlated and it was shown in Cockerham (1984 A)
that the a * a variance in the total variance cr\ among
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and A = 0, 0-5, 0-9. Plots that can be distinguished from
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zero are labelled with values of A, N.

unrelated but inbred individuals is (1
since 6 = F and 0 — F.

Procedures were also established in Cockerham
(19846) for evaluating the a*a variance in the
covariance, ^xv, between individuals X and Y, in-
cluding relatives. This variance is (̂ XY + yxY + 7xv +
ASy)<r|j where an overbar indicates non-gametic
genes. Thus, it is necessary to evaluate the double
identity measures for the configurations of pairs of
genes for X with those for Y.

If X and Y are random members within our finite
populations the a*a variance in t?XY is 0+2y +
^)f |a- We partition the total variance into that be-
tween populations, a\ = t>XY, and that within popu-
lations <r%, = 4 - ^ i v These partitions for o ^ are
given in Table 1.

When additive effects within populations are defined
in the usual least-squares manner, the variance of
these effects constitutes the additive variance, <r\,,
within populations as an average value over replicate
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Table 1. Coefficients of a* a variance, aj^, and joint dominance effect, 2hh', in the components of variance

"as
2

2hh'

l+20-2£-A 40-d-2y-A
l 2 0 3 A 4(dA)2

— 1-20 + 6

populations. Jiang and Cockerham (unpublished)
have shown that ( 4 0 - 0 - 2 y - A ) o - | a becomes a part
of <T\. and the remainder, o-|s., we designate as a • a
variance within populations (Table 1). Previously,
Cockerham & Tachida (1988) showed that 4(0 - A) o-jja
is a permanent part of a2

A. that is conserved between
ancestors and descendants. In the second row of
Table 1 the coefficients are formulated utilizing ?/a
and ?/d which are transient parts of the coefficients.

With complete identity equilibrium the coefficient
of o-jjj in <r\t would be 4(0 -d2). The percentage
reduction for the coefficient 4(0—A) due to permanent
identity disequilibrium is given by 100 r)b/6(l — 0).
These values are plotted against / for combinations of
N and A in Figure 2. There is a maximum of about
18 % reduction for A = 0-9 and N = 4 with a drastic
decrease in the reduction as A decreases and N
increases. For A = 0-9 and TV = 100 the maximum
reduction is less than 1 %.

The joint dominance effect which involves the
product of the inbreeding depressions, h and h', for
the two loci are also included in Table 1. It was found
in Cockerham (1984 a) that the joint dominance
contributions belonged in part in a\, which was
substantiated in Cockerham & Tachida (1988) and in
part in the dominance variance, a%,, within popu-
lations. The purpose of the inclusion in Table 1 is to
demonstrate the behaviour of the coefficients in an
expanded random mating population over time. The

coefficients are given in terms of rfs. Only the portion
between populations, reflected by i)b, remains constant
and the portions within populations go to zero.

4. Joint dominance and a * a variance in the
covariances of relatives

The covariance of relatives is based on the pairs of
these relatives being independent. For the covariance
of half-sibs within populations, for example, we must
correct for the covariance, ^vu-, between random
members of the population which are unrelated other
than the relationship brought on by the previous
restricted population size. The adjusted covariance is
^HS = ^HS~^UU-

 T n e contributions of a * a variance
and 2hh' to the covariances of half-sibs and full-sibs,
<g%s, are given in the Appendix and to the covariance
of parent and offspring, <g*o, in Cockerham & Tachida
(1988). To summarize the results, let Ga = 4(0-A)<r?a

+ i?a2hh' and Gaa = (1 - 2 0 + A)o- ŝ. Then (=> means
contains)
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Fig. 2. Percentage reduction in the coefficient 4(6 — A) due
to identity disequilibrium. Plots are labelled with values

of A, N.
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Table 2. Identity by descent (ibd) measures for one and two locr\

67

One

ibd*

F

e

locus

Gene arrangementj

(a | a')
(a) (a')

Two loci

ibd** Gene arrangement

(ab | a'b')
(ab)(a'b')
(ab)(a' 1 b')
(ab|a')(b')

ibd**

4s
44

Gene arrangement

(al
(al
(al
(al

1 b)(a' |
1 a')(b I

1 a')(b)

Ib')
Ib')

t Genes are represented by a and by a' for two distinct genes at the A-locus and b and b' for two distinct genes at the
B-locus.
| Genes separated by | are on different gametes in the same individual and those separated by () are in different
individuals.
* Probability that the two genes a and a' are identical by descent. Symmetrical arrangements are omitted.
** Probability that the two gene pairs, a and a' and b and b', are jointly identical by descent. Symmetrical arrangements
are omitted.

The descent measures are for the parental generation.
Note that the coefficients of Ga are the same as for
additive variance, of Gaa are the same as for a * a
variance and of i?d2hh' are the same as for the
dominance variance for these relatives in an infinite
equilibrium population. There are additional terms
involving cr\& and identity disequilibrium which are
always negative for ^*o but negative for "<f *s and ^ | s

only for large values of A and depending on ^a and
7)A. As noted previously i/a and ?/d disappear rapidly for
small A in which case these additional terms disappear.
Also, they are small except for very small N and large
A.

5. Other mating structures

We have considered only random mating monoecious
populations including selfing and there is a question
as to the extent to which the results are modified by
other mating structures such as separate sexes or
monogamy. Weir, Avery & Hill (1980) studied the
effects of mating structure on variation in inbreeding,
and Weir & Hill (1980) studied the effects of mating
structure on variation in linkage disequilibrium.
While they did not utilize the term 'identity dis-
equilibrium ', their results can be expressed in terms of
various functions of identity disequilibrium.

In Weir, Avery & Hill (1980) and Weir & Hill (1980)
all measures are of non-identity by descent. For a
single locus P = 1-F and n = 1-0. The 10 two-
locus measures, required to accommodate the avoid-
ance of self-fertilization and separate sexes with
hierarchical or monogamous types of matings, are for
double non-identity by descent. We place a ~ on each
to denote double identity by descent and our descent
measures are listed in Table 2.

To accommodate these other mating structures as
well as monoecy, the coefficients, Table 1, of 2hh' are

f1 — A2 in trw, 2(f2 —A4) inA2 — F2 in <
6l — 2f 2 — A2 + 2A4 in a2

v.. The coefficients of cr
t X fin

and
are

1 - ( 9 2 - 2 f 1 - A 1 in

a%,, 4(6 — A3 + f2 — f3) in cr\, and the remaining part
of the coefficient for a2

w in o-?a,. The coefficients in
ar\, were found by the same method of covariance be-
tween ancestor and descendant utilized in Cocker-
ham & Tachida (1988). With monoecy all descent
measures in a category are equal, e.g. f 1 = f 2 =

In the initial expanded population these coefficients
are determined by the mating structure and the finite
history. With one generation of random mating,
either monoecious or dioecious, we find Fx = 61 = 60

where 60 is the ancestral population value, and

4 , i = A2,i = K.i = K,i = K.i = K.o
r i , i = r2,i = r3,i = af3i0 + (l-a)A5-0

©i.i = ®2.i = a202,o + 2a(l - a ) F3 0 + (l -a)% 0,

where X, T is for the rth generation. After that we need
only to substitute 6, 0 2 , f 3 and A5 for the initial values
of 6, d, y and A respectively to accommodate the finite
histories of other breeding structures. The identity
disequilibriums are i/b = A5 — d2, ^a = 2(f3 —A5) and
tja = 0 2 — 2f 3 + A5 where i)b remains constant and i?a

and 7jd go to zero at the same rate as before. Thus, the
formulations in Table 1 need only to be adjusted for
the initial values appropriate for the mating structure.

While the results of Weir & Hill (1980) and Weir,
Avery & Hill (1980) are functions of ID their
formulations and standardizations preclude exact
comparisons with ours. The main differences among
mating structures in Weir, Avery & Hill were related
to the degree of avoidance of mating relatives and
were proportionately larger as linkage decreased.

To inquire directly into differences due to mating
structure 7jb, 7/a and ija are plotted against t for
monoecy, M, monoecy with the exclusion of selfing,
Me, and monogamy, Mo, all with N = 4, in Fig. 3. We
chose N = 4 to exaggerate the differences in mating
structure. Even so the curves are very similar. There is
a slight shift to the right for Me and Mo, both of which
avoid self-fertilization. Near the maximum MB is

5-2
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M, Me, Mo).

intermediate to M and Mo reflecting an increased ID
due to a higher frequency of full-sib mating than for
Mo but a decreased ID due to no self-fertilization in
comparison to M. The greatest percentage differences
are for small A but then the ij's are of little consequence.

6. Discussion

We have utilized expanded populations, which was
done in Cockerham & Tachida (1988) and implied in

Cockerham (1984 a), as a means of diagnosing the
effects of finite population history on quantitative
genetic variation. Continued random mating of the
expanded populations was utilized to determine the
permanency or transient behaviour of the effects. The
effects of ID. on 2hh' are considerably different from
those on a * a variance.

The coefficients of 2hh' in the components in Table
1 are entirely a function of the i/'s. Those, i/a and i/d,
for components within populations go to zero with
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continued random mating while the variation i/b2hh',
between populations remains constant. The portion
7/a2hh' in o-\t contributes to permanent response in
descendants due to selection (Cockerham & Tachida,
1988) but is reduced each generation of random
mating before selection is practised.

The coefficients of cr?s in Table 1 are functions
mainly of 6 and A. The main component of interest is
<x2, and 4(0—A)<r£s does not change with random
mating of the expanded population and contributes
the same permanent response in descendants from
selection in any generation. The coefficient 4(6—A) is
reduced very little by ID, Fig. 2. There is a slight
change of er|a, within populations, and of the
coefficient of <r|s in cr\t with continued random mating
as 7/a and i/d go to zero, Table 1.

The differences due to mating structure are primarily
in terms of the initial descent measures in the expanded
population in Fig. 3 and these differences tend to
disappear when adjustment is made for effective
population size.

The foregoing results pertain to a population that
continues to have a bottleneck for some time. There is
considerable simplification for a single-generation
bottleneck. For a single-generation bottleneck or an
experimental population initiated from N random
outbred parents, i/b = 9/a = 0 and t)A = (1 +A2 — l/N)/
4N (by simple probability arguments or by letting t =
1 in the expressions of Appendix A of Cockerham,
1984 a). This ID dissipates at the rate r ( 2 - r ) with
random mating. Also, for a population initiated with
n random inbred lines or homozygous parents the
only ID is i)a = (n— l)/n2 which soon dissipates
except for tight linkage. There are corresponding
simplifications in the covariances of relatives. Bryant
et al. (1986) let their experimental single-generation
bottleneck populations flush to normal size in about
five generations before estimating the covariance
between mid-parent and offspring which fairly well
insured that the estimates are affected little by identity
disequilibrium.

Finite population history can modify the genetic
components a\., a-2,, and craa.within populations
considerably, but linkage and concomitant identity
disequilibrium play very minor roles in the mod-
ifications, particularly after a few generations of
random mating of the expanded populations.

Drs B. S. Weir and C. H. Langley provided helpful com-
ments. Paper no. 11502 of the Journal Series of the North
Carolina Agricultural Research Service, Raleigh, N.C.
27695-7601. This investigation was supported in part by
Research Grant GM 11546 from the National Institute of
General Medical Sciences.
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Appendix

Here, we formulate the a * a variance in the covariance
of half-sibs, # J S = ^HS — ̂ vv- and in the covariance of
full-sibs, ^*s = ^FS — fDO., within populations where
H and F are a half-sib and full-sib of an individual S,
respectively, and U and U' are unrelated individuals
in the same generation, unrelated except for the finite
population history.

We will express the covariance in terms of the
descent measures, 6, y and A for the parental
generation. Consequently, <&vv, => (dvv, + yOu. + y u 0 . +
AOu0 o-fa = [a.26 + 2a(2 - a) y + (2 -a) 2 A] <r2

a when
translated to the parent generation, where => means
contains. For half-sibs let P be the common parent
and Q and R be the other parents of H and S
respectively. We expand the descent measures back to
those in the parent. A parental gamete in S from P is
parental or recombinant in P with probability a and
1 — a respectively. The same holds for R. Then, for a
random parental gamete for S, 6HS = [a(#HP + #HR)
+ (1 -a ) (y H p + yHa)]2"1. We further expand these
measures to include the parent Q

= [a2(0~Pp + 36) + 2a(l - a) (ypP + 3y)

+ ( l - a ) 2 (A P P + 3A)]2-2.

We made use of the fact that distinct parents are
random members of that generation. Descent meas-
ures involving the same individual require simple
probabilistic arguments 6VV = (1 +§)2~1, yp p = 0 and
ApP = (1 + 0)2~1. For yHg, note that one gene of the
recombinant gamete in S comes from P and the other
gene from R. Then, by an expansion, yHg = yHPR,
where the subscripts P and R denote that one gene is
taken from P and R, respectively. Using an expansion
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similar to the one used for a parental gamete in the
calculation of 0HS, this can be further expanded,

f HS = [<*f QPR + (1 - a) AQP^ + ay ppA + (1 - a) Agp^"1

= [«(7 + fpPB) + (1 - a) (A + APpft)]2-1.

Again we made use of the fact that distinct parents are
random members of that generation. With simple
probabilistic arguments, descent measures involving
the same individual are calculated to be yPP]j = APpA

= (d + y)2~1. Because of the symmetry, yfts is the same
as yHg. Finally, applying the expansion on each
recombinant gamete in H and S, we obtain Aft§ =
AQPPR- TWO genes from P are at the same locus or
different loci with probability 1/2 and independently
they come from the same gamete or different gametes
of P with probability 1/2. Therefore, making use of
the fact that distinct individuals are random members
of the parent generation, Asg = (0 + y + 2A)2~2. Com-
bining these and correcting for the contribution to
^vv. already calculated, we obtain the a * a variance in
the covariance between half-sibs within populations,

For full-sibs let the two parents be P and Q. Then,
utilizing the fact that any measure involving the same
parent twice is the same for P or Q,

a) (yPp + y)
(l-a)2(AP

f FS = f FS = + (1 - a) APPQ

With appropriate substitutions the a*a variance in
the covariance of full-sibs is obtained,

Ks = [2(0 - A) + (2 + A2) (1 - 26 + A + 7a)/8

The contributions of joint dominance effects to '
and ^pg were given in Cockerham (1984 a)

7*
'HS
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