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0. Introduction. Let A be a commutative Noetherian ring (with non-zero identity).
The Cousin complex C(A) for A is described in [19, Section 2]: it is a complex of
A -modules and /1-homomorphisms

QJL1+AJLUAO^A1 >. . . >AnJL+An^ >

with the property that, for each neN0 (we use No to denote the set of non-negative
integers),

A"= © (Cokerd"-2)p.
peSpec(/l)

htp=n

Cohen-Macaulay rings can be characterized in terms of the Cousin complex: A is a
Cohen-Macaulay ring if and only if C{A) is exact [19, (4.7)]. Also, the Cousin complex
provides a natural minimal injective resolution for a Gorenstein ring (see [19, (5.4)]).

Various more general Cousin complexes can be constructed. For an A -module M, we
can construct the Cousin complex C(M) for M as in [19, Section 2]: for that we
concentrate attention on prime ideals in Supp(Af), the support of M. More generally still,
we can, for any filtration SF [21,1.1] of Spec(i4) that admits M, construct the Cousin
complex C(&, M) for M with respect to 9 [21, 1.3].

Recently, K. R. Hughes [10] has introduced a grade-theoretic analogue of the Cousin
complex. We describe the construction of this now: it employs Rees's concept of the
grade of a proper ideal b of A. Recall [17] that grade b is the length of each maximal
^4-sequence in b (that is the length of each .,4-sequence which is maximal with respect to
the property of being contained in b). It will be convenient for us to adopt the convention
whereby the grade of the improper ideal A of A is regarded as °°. For each n e No, set

%n) = {b: b is an ideal of A and grade 6 2* «}.

Then ^(n) is a directed set under reverse inclusion and we can modify the ideas in
[20, 2.2] in an obvious way to produce functors

lim Hom/4(b, ) and lim Ext\(A/b, )

from the category of all ̂ 4-modules and A-homomorphisms to itself.
Set E° = A. It is also convenient to set D~2 = 0 and D~l = A, and to denote the zero

homomorphism from 0 to A by f~2. Suppose, inductively, that n eN0 and we have
constructed a complex
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174 R. Y. SHARP AND M. YASSI

an A-module E" and an exact sequence

D"~2 -?—> D""1 -^-> E" * 0.

(This is certainly the case for n = 0: take n0 to be the identity mapping of A to itself.)
For each ideal b e $(n + 1), the exact sequence

yields an induced exact sequence

E" * HomA(b, En) > ExtA(A/b, E") * 0;

since passage to direct limits preserves exactness, we obtain an exact sequence

En "" > lim HomA(b, E") *"*1 > lim ExtA(A/b, En)-+0.

We set

D" = lim HomA(b, E") and E"+1 = lim ExtA(A/b, E")

and define f-l:Dn~l-*Dn by f"~l = \in°xn. This completes the inductive step; the
construction yields a complex

0 * A -^U D°-^U Dl > . . . > D" -£-+ D"+1 *. . .

which Hughes calls the 'grade-theoretic analogue of the Cousin complex'.
In addition, Hughes remarks that his construction uses 'generalized modules of

fractions at the Gabriel filter generated by ^(n)' in the sense of J. Lambek [11].
Now the present first author and H. Zakeri introduced a concept of module of

generalized fractions in commutative algebra in [23]. Since that paper appeared, there
have been several further papers, such as [3], [4], [5], [6], [8], [9], [14], [15], [18], [22],
[24], [25], [26], [27] and [28], which have shown that this concept has many interactions
with topics of recent and current interest in commutative algebra, especially in
commutative Noetherian ring theory. In particular, there are strong links between Cousin
complexes and these modules of generalized fractions: it was shown in [18, (3.4)] that, for
an i4-module M such that Ass(M) has only finitely many minimal members and a
filtration & of Spec(i4) which admits M, the Cousin complex C(SF, M) mentioned above
is actually isomorphic to a complex of modules of generalized fractions in the sense
of [23].

In view of this result, of Hughes' description of his complex as a 'grade-theoretic
analogue of the Cousin complex', and of the relevance to his construction of generalized
modules of fractions in the sense of Lambek [11], it seems desirable that relationships
between his complex and the modules of generalized fractions of Sharp and Zakeri should
be explored. It is the purpose of the present paper to do just that.

In Section 1, we shall discuss a sort of 'generalized ideal transform' determined by a
system of ideals of A in the sense of [1]: such a system is a non-empty set <P of ideals of A
with the property that, whenever a,be<P, then there exists c € <P such that c c ab. It
should be observed that the set "$(«) (for n e No) of all ideals of A of grade at least n is an
example of such a system of ideals. The generalized ideal transform determined by 0 is
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the functor

D*: = lim HomA(b, )
be*

from the category of all .4-modules and /1-homomorphisms to itself. (Of course, 0 is a
directed set with respect to reverse inclusion.)

We shall use this idea to produce, for an A -module M and a family (0n)neN of
systems of ideals of A (here, N denotes the set of positive integers), a complex

which can be regarded as a generalization of Hughes' complex described above.
In Section 2, we shall review some of the basic properties of the modules of

generalized fractions introduced by Sharp and Zakeri in [23], and we shall show how a
chain of triangular sets on A in the sense of [14, p. 420] gives rise to a family of systems of
ideals of A, and therefore to associated 'generalized Hughes complexes'.

Section 3 contains the main results of the paper. In it, we compare some of our
'generalized Hughes complexes' with complexes of modules of generalized fractions. We
shall show, among other things, that every module of generalized fractions of an
A -module M is isomorphic to a term in a suitable 'generalized Hughes complex' as
described above. We shall also use our results, together with basic facts from the theory
of generalized fractions, to recover some of Hughes' results about his grade-theoretic
analogue of the Cousin complex.

Throughout the paper, A will denote a commutative Noetherian ring (with non-zero
identity). In some of the discussion, the Noetherian hypothesis will not be needed, and so
we shall use R to denote, again throughout the paper, a commutative ring (with non-zero
identity). Also, ^(R) will denote the category of all /?-modules and 7?-homomorphisms,
and, of course, ^{A) will have a similar meaning for A.

1. Generalized ideal transforms and generalized Hughes complexes.

1.1 DEFINITIONS. A system of ideals of R [1] is a non-empty set 4> of ideals of R such
that, whenever I,Je<P, there exists K e 0 such that K c //.

Such a system of ideals 0 determines the 0-torsion functor r#: <#(#)—><#(/?). This is
the subfunctor of the identity functor on <#(#) for which

= {m e M: Im = 0 for some I e 0}

for each R -module M.

Note that r# is denoted by L* in [1], and is referred to in that paper as the 'general
local cohomology functor with respect to 0'. (The underlying rings in [1] are all assumed
to be Noetherian, but we are not making such an assumption in this section.)

There are many examples of systems of ideals. One which is particularly relevant to
this paper is the set ^(n) (for n e No) of all ideals of our commutative Noetherian ring A
which have grade at least n. We shall provide other examples in Section 2.
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176 R. Y. SHARP AND M. YASSI

1.2 DEFINITION AND NOTATION. Let <P be a system of ideals of R. Since 0 is a
directed set with respect to reverse inclusion, it is straightforward to adapt the ideas of
[20, 2.2] in an obvious way to produce functors

D0: = lim Hom«(/, ) and / /* : = lim Extl
R(R/I, )

lei lei

from ^(R) to itself. The functor D<p is called the generalized ideal transform determined
by 0, or, more briefly, the 0-transform.

Note also that we can similarly define a functor

lim
lei

from ^(R) to itself, and that this is naturally equivalent to r&.
For each R-module M and each I e <P, the exact sequence

0—>/—>7?—

induces an exact sequence

0 —• Horn* (i? //, M) —»• Horn* (R, M) -^ HomR (/, M) —> Extort //, M) —• 0

(because i? is /?-projective). Since passage to direct limits preserves exactness, it follows
that there is an exact sequence

in ^(R). Furthermore, it is straightforward to check that, as M varies through the
category <#(/?), the r?*(M) and £<j>(M) constitute morphisms of functors

T)<p: Id —> D 0 and £#: D<p —> H&

from <€(R) to itself. (Of course, Id here denotes the identity functor from <#(/?) to itself.)
The reader should note the effect of r/*(Af) on an element x e M: if we let, for I e 0,

6(0,1)(M): Hom*(/, M) —*• D0(M)

be the canonical homomorphism, and X,X:I^*M the homomorphism for which
X,Jr) = rx for all r e /, then (JJ*(M))(X) = (6(0,1)(M))(XU).

We show next how, given a family Sf=(G>j)ieN of systems of ideals of R and an
?-module M, we can construct a complex

which can be regarded as a generalization of Hughes' complex of [10].

1.3 CONSTRUCTION. Let y = (<P,),€N be a family of systems of ideals of R, and let M
be an /?-module. It will be convenient to write K~2 = 0, K~l = M, and to use
h~2:K~2^K~x to denote the zero homomorphism. Set E° = M, and let jfoiK"1-*/?0 be
the identity mapping of M to itself.

Suppose, inductively, that n e No and we have constructed a complex
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an R-module E" and an epimorphism nn :K
n~l-*E" for which the sequence

Kn-2 h-1 „ frn-l nn > £n > Q

is exact. This is certainly the case when n = 0.
To construct the next term and the next homomorphism, we apply the ideas of 1.2 to

the system of ideals 4>n+1 and the /?-module E". We obtain an exact sequence

0.

We define K": = D^JE") and En+1: = H\+l(E
n); also, we set

hn-1 = ritPn+XEn)°nn:K
n-1^Kn

and ;rn+1 = Un+£En):K"^>E"+l. Since

hn-l°hn-2 = r)4,n+(En)°nn°hn-2 = Q

by the inductive hypothesis, and we have an exact sequence

K"-1 - ^ - > K" - ^ - > £"+1 > 0

because nn is surjective, the inductive step in the construction is complete.
We shall call the complex

0 >M-^K°-^K1 >... >K'-0UK'+1 >...

that results from this construction the generalized Hughes complex for M with respect to
the family of systems of ideals W; we shall denote it by %!(y, M).

1.4 REMARK. It should be noted that, if we let ^ denote the family of systems of
ideals of our commutative Noetherian ring A given by <@=((3{n))ntiN, where, for each
n € N, the system ^(n) is the set of all ideals of A of grade at least n, then the generalized
Hughes complex $fCS, A) for A with respect to <& is just the grade-theoretic analogue of
the Cousin complex which Hughes constructed in [10].

In the next section, we shall give more examples of generalized Hughes complexes;
these will be defined using families of systems of ideals of A that come from chains of
triangular sets on A.

2. Some basic results about generalized fractions. In this section, we shall work
over our commutative ring R. We begin with a brief review of some of the main elements
of the theory of modules of generalized fractions.

Let M be an i?-module. The construction of a module of generalized fractions of M
requires a (positive integer n and a) triangular subset (see [23, 2.1]) UcR"; the
construction produces a module U~"M, called the module of generalized fractions of M
with respect to U, whose elements, called generalized fractions, have the form

m

( " i > - • • , " „ ) '

where me M and {ux,. .. ,un)=:ueU; the above generalized fraction is also written
as m/u.
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Comparison and addition of generalized fractions involve n x n lower triangular
matrices over (that is with entries in) R: we shall use Ln(R) to denote the set of all n X n
lower triangular matrices over R, and for H e Ln(R), we shall use \H\ to denote the
determinant of H. Let x, x',y eM and u, u', v eU. Then x/u = x'/u' in U~"M if and
only if there exist w = (wlt . . . , wn) e U and H, H' e Ln(R) such that

n - l

HuT = wT = H'u'T and \H\x-\H'\x'e^, w,M.
1=1

(We use T to denote matrix transpose, and we use n-tuples (au . . ., an) of elements of R
and 1 x n row matrices (ax. . .an) over R interchangeably.)

The addition and scalar multiplication in U~nM are such that

x y\H\x + \K\y
U V W

for any choice of w e U and H, Ke Ln(R) such that HuT = wT = KvT (and there is bound
to be at least one such choice in view of the definition of triangular set), and

x rx
r— = —

u u

for re /? . The reader is referred to [23, Section 2] for more details of the construction.
Note the following.

2.1 REMARK. (See [23, 3.3(ii)].) Let u = (uu ... , un) e U (with the above notation).
n-i

If m € E UjM, then m/u = 0 in U~"M.

The next lemma will be needed in Section 3. It shows that, if (/consists entirely of poor
M-sequences, then the converse statement to 2.1 is true. It is a consequence of the
Exactness Theorem for generalized fractions, proved in full generality by L. O'Carroll in
[14, Theorem 3.1] after Sharp and Zakeri had proved it, in a very complicated manner, in
the special case in which the underlying ring is Noetherian in [25, Theorem 3.3]. (We say

/

i-i

E cijM for

each i = 1 , . . . , n; it is an M-sequence if, in addition, M =£ E aM.)

2.2 LEMMA. Assume that (with the above notation) the triangular subset U of Rn

consists entirely of poor M-sequences. Let meM and u = (w1; . . . , un) 6 U be such that,
in U-"M,

m =0.
u (uu ... ,un)

n-l
Then m e E utM.

1=1

Proof. By the construction of U~"M reviewed at the beginning of this section, there
exist v = ( v j , . . . , vn) e U and H = (hy) e Ln(R) such that

n - l

HuT = vT and \H\ m e £ v,M.
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Let H* denote the top left (n - 1) x (n - l)-submatrix of H. We now deduce from the
above displayed relations, from [14, Theorem 3.2], and from the facts that
H*(uu . . . , Mn_i)r = (vu . . . , vn_i)T and (vu . . . , vn_x) is a poor M-sequence, that

n-i

hnnm e 2 M,M.

However,
ff* ft

1» • • • . Un-l, KnY = ("l , • • • , Vn)
T,

\hnl. . . hnn_1

and so it follows from [14, Theorem 3.2] again that (ult.. . , wn_x, hnn) is a poor

A/-sequence. Hence m e E ",Af, as claimed.

2.3 DEFINITION AND NOTATION. (See [14, p. 420].) By a chain of triangular sets on R,
we mean a family "tt = (Un)neN of sets such that:

(i) (/„ is a triangular subset of Rn for every neN;
00 (l)etf,;

(Hi) for each neN and each (uu .. . , un) e Un, we have (ult . . . , « „ , 1) e C/n+1; and
(iv) for each neN with n > 1, and each (« ! , . . . , « „ ) e (/„, we have (uu . .., u n _ j ) e

£/„->•
Such a chain % de te rmines , for each R-module M, a complex

in which e\m) = m / ( l ) for all m e M and

\(«1, . . . , Un)/ («!, . . . , Un,

for all n e N, m e M and (uj, . . . , un) e £/„; we shall denote this complex by C(%, M).

2.4 REMARK. It should be observed that, if M is an R-module and U is a triangular
subset of R" for some n e N , then (an isomorphic copy of) the module of generalized
fractions U~"M can be incorporated as a term in a complex C(°U, M) for a suitable chain
°U of triangular sets on R. To see this, let Un be the expansion [23,3.2] of U, let Um for
meM with m<n be the restriction [23,3.6] of Un to Rm, and, for <? e N with q >n, let

Uq = {(«,, . . . . u , , , 1 , . . . . 1) e fl*: («„ . . . , un) e (/„}.

Then % = (Uj)ieN is a chain of triangular sets on R, and, by [23, 3.2], there is a natural
isomorphism U~"M = U~"M.

2.5 LEMMA. (See M. H. Bijan-Zadeh [2].) Let U be a triangular subset of R", for
some neN. Then

:= f t /?«,:(«!,..., un)eu]
w=i J

« a system of ideals of R.
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2.6 REMARK. It follows from 2.5 that a chain % = (Un)neN of triangular sets on R
determines a family (^((/n))n£^ of systems of ideals of R, and so the generalized Hughes
complex for an R-module M with respect to this family can be constructed. It is one of
our aims for the next section to show that, in the case when R is Noetherian, this
generalized Hughes complex is isomorphic to the complex C(°U, M) of modules of
generalized fractions of 2.3.

The next result is a technical lemma which will be of assistance in the next section. Its
proof is omitted: it can be proved by routine arguments using generalized fractions, based
on [23, 2.2 and 2.3]; alternatively, the reader might like to consider the argument given
by Gibson and O'Carroll in [6, 3.3].

2.7 LEMMA. (See Gibson and O'Carroll [6, 3.3].) Let M be an R-module.
(i) Let U be an expanded triangular subset of R1. Then U X {1} is a triangular subset

of R2, and there is an exact sequence

M-^U~lM^^(Ux {I})"2M *0,

in which e is the natural homomorphism and co(m/(u)) = m/(u, 1) for each meM and
(u)eU.

(ii) Let °U = (Un)neN be a chain of triangular sets on R. Choose neN. Then
Un+X x {1} is a triangular subset of Rn+2, and there is an exact sequence

U-nM ^ U U'lT'M - ^ (f/n+1 x {1})—2M > 0,

in which e" is as defined in 2.3 and (on+1(m/v) = m/(v, 1) (with an obvious notation) for
each meM and v e Un+1.

3. The isomorphisms. In this section we shall work over our commutative
Noetherian ring A.

3.1 LEMMA. (Recall that A is Noetherian.) Let neN, let U be an expanded (see [23,
3.2]) triangular subset of An+l and let 0 be the restriction [23, 3.6] of U to A". Let M be an
A-module, let meM and let u = (w1; . . . , Mn+1)e U. Note that 0x {1} is a triangular
subset of An+1. Since A is Noetherian, there exists t e N such that

(AUl + ...+Aun :Au'n+i) = (Au, + ... +Aun :Au'n
+

+\).

For such data, there exists an A-homomorphism

for which

S (
°m,u,t\ ZJ "iUi + "n + l M n + l I , TT

\/=l / ( « ! , . . . , U n , \ )
for all au . .. ,an+leA.

Proof. Let a1}. . . , an+u bx, . .., bn+1 eA be such that
n n

2 a,«, + an+lu'n
+

+\ = 2 b^ + bn+lu'*+\.
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Then, by choice of t,

1=1

\-n-lifor some cu . . . ,cneA, so that, in (U x {1}) "~1M,

an+lu'n+lm bn+lu'n+1m
(« , , . . . , Un, 1) (U,, . . . , Un, 1)

in view of 2.1. It follows that there is indeed a mapping <5m u , given by the formula in the
statement of the lemma, and it is clear that <5mUi, is an .,4-homomorphism.

3.2 REMARK. Note that, if, in the situation of 3.1,

(Aux + . . . +Aun :Au'n+l) = (Aux + ... +Aun :Au'n
++\)

then

(Aux + . . . . + A u n :Au'++\) = (Aux + . . . + A u n : Au'n
+

+\+1)

for all keN.

The next theorem provides the key to the main results of this paper. It establishes a
relationship between the modules of generalized fractions of Sharp and Zakeri on the one
hand, and the generalized ideal transforms introduced in 1.2 on the other. It should be
noted that the Noetherian hypothesis on A is used in an important way.

3.3 THEOREM. (Recall that A is Noetherian.) Let the situation be as in 3.1. Thus we
let n e N, we let U be an expanded triangular subset ofAn+1, we let U be the restriction of U
to A", and we let M be an A-module. We denote by <P((/) the system of ideals of A
determined by U (see 2.5).

There is an isomorphism of A-modules

)((U x {l})"""^).

Here D^u) denotes the &(U)-transform (see 1.2). The isomorphism TV(M) is described as
follows.

For each be<P(U), let

6(<P(U), b):HomA(b, (0x {1})-"-^)^D0W((Ux

be the canonical homomorphism. For u = (ult . . . , un+1) e U', it will be convenient to write
n + l n

u = (uu . . . , un)eU and u = (u, wn+1), and to denote E u{A by Au and E UjA by Aii.
/=i /=i

For such a u and for m e M,

Tu(M)(z r) = 6(<P(U), Au+Au'n
+

+\)(dm,UJ) e D*(U)((U x

for any teN such that (Au:u'n+i) = (AH:u'*+r). (The homomorphism 6m „, was defined in
3.1.)
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Proof. For the purposes of this proof, we shall drop '£/' and 'AT from the notation
when this can be done without causing confusion. Thus, we shall abbreviate ^ ( M ) to T,
4>(£/) to <P, D^u) to D& and, in the same spirit, we shall abbreviate 0(4>(i/), b) (for
b e <*>({/) = <P) to 0(6).

First note that, for u e U and m e M as in the statement of the theorem, it is easy to
see that 6{Au + Au'^+^)(dmu,) is independent of the choice of teN such that
(Au:u'n+1) = (Au:u'n

+
+\).

Next, we show that, if u = (ult. . . , un+1), v = (vu . . . , vn+1) e U are such that
there exists H = (/ii;) e Ln+I(y4) with HuT = vT, then, for meM,

OiAu+Au'^Xd^,,) = 004 i) +Av'n
+

+\)(dmm,v,,)

for any f e f̂l such that

(Au: MUI) = 04": «n+
+\) and C4D: w|,+1) = (Av: v1^).

(Of course, there does exist such a(.) We shall achieve this by showing that

Av+Av'++i ^Au +Au'n
++i and <5m,u,<|/,o+/4t1;ti = d\H\m,v,r

To see that this is the case, note first that the equation

n + l

vn + \~ ZJ K + \,juj

shows that
n

-,t+\ \ ^ J ,, I u'+l ..'+1
Un + 1 = Zl diU) + «n + l,n + l « n + l

for suitable du . . . , dn €A. Hence Av +Av'n
l'+1 cAu + Au'^. Note also that

« ! , . . . , vn eAii. Let H denote the top left nXn submatrix of H, and observe that
m/(u,l) = \H\m/(v,l) in (Ox { l})-"- 'M. It therefore follows that, for all
cu... ,cn+leA, we have

.uJz) civi + cn+1v'n
+

+\) = 6m,u,,(cn+1u|,"Vi

'

(«, 1)

However, we can write h'n+l n+iu'n+1 = v'n+1 + b for some b eAu, and so it follows from
2.1 that

, + 1 \ cn+xhn+Xn+lv'n+xr
Cn + \Vn + l) = TTTjT

CiVi
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because /in+1,n+1 \H\ = \H\. Thus

8(Au +Au'n
+

+\)(6m,u,,) = 6(Av + Av'H
+

+\)(dm „.„,,),

as claimed.
It is now an easy matter to deduce from the last three paragraphs that there is indeed

a mapping

T = Ty(M): U-"-xM^> £>„>((£/ x

given by the formula in the statement of the theorem. It is routine to check that x is an
./4-homomorphism. It only remains for us to show that x is bijective.

Let meM and u e U be such that m/ue Ker x. Let t e f̂  be such that (Aii:u'n+1) =
(Au :u'*+x). Then there exists vet) such that

AvcAu + Au'n
+

+\ and dm,uJAv = 0.

Since U is a triangular subset of An+l, there exist w eU and H, K e Ln+1(A) such that
HuT = wT = KvT. Choose t' e N such that t =£ t' and

By 3.2, (/1U:UJI'+I) = 04M:M«+I)- Let H denote the top left nXn submatrix of H. It
follows from the paragraph before last in this proof that

In particular, 6iHim,wAwnt\) = 0, so that

w'n+l\H\m _ Q

(wi, . . . , wn, 1)

in ((7 x {1})"""^. Since (/ is expanded, it follows easily from this that

w'nX\\H\m = w';+l\H\m _Q

(w,, • • . , wn+l) (wi, . . . , wn, 1)

in U~"~lM. Now use [24,2.1] to see that m/u = \H\ m/w = 0. Thus r is injective.
Finally, we show that x is surjective. Let a e D^,((U x {1})"""^); thus there exists

n + l
be 0, say b = E /4M,, where u = ( u j , . . . , wn+1) e U, and

1=1

P e HomA(b, (0 x

such that 0(b)(/3) = a.
Since b is finitely generated and finitely many generalized fractions in

can be put on a common denominator, there exists v eU such that

a submodule of (0 x {1})"""^. Furthermore, by use of the properties of triangular sets,
we can in addition arrange that Av c Au = b. Note that P(vj) = 0 for all i = 1 , . . . , n, by
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2.1. Set

... vnm

for an appropriate m e M. Now choose t e N such that

and observe that

and

or = 0(b)G8) = e ( t i4u? + Av'n\\)(.6Vl...v^, (v? «j,Un+l),r) 6 Im r

in order to complete the proof.

A similar result is available for triangular subsets of A1. As this is reminiscent of
work with ordinary modules of fractions, and as its proof is similar to, but simpler than,
the above proof of 3.3, we merely state the result here and leave the proof to the reader.

3.4 THEOREM. (Recall that A is Noetherian.) Let U be an expanded triangular subset
of A1, and let M be an A-module. We denote by <P(U) the system of ideals of A determined
by U (see 2.5).

There is an isomorphism of A-modules

Here £>*(l/) denotes the &(U)-transform (see 1.2). The isomorphism Xu(M) is described as
follows.

For each be€>(U), let

6(0(U), b):HomA(b, M)

be the canonical homomorphism. For (u) e U and meM,

/iu)) = 6(<P(U), Au'^)

where teN is chosen such that (0:u() = (0:u'+1) and emu,:Au'+i^>M is such that
Emul(au'+l) = au'm for all aeA.

Next, we use Theorems 3.3 and 3.4 to show that, for a chain °U = (Un)neN of
triangular sets on A and an .A-module M, the induced complex C(°U,, M) of modules of
generalized fractions

0 *M -£-+ UT*M -=U . . . * U~nM -£-» U~ZxlM >. . .

is isomorphic to the generalized Hughes complex for M with respect to the family of
systems of ideals determined by °U (see 2.6).

3.5 THEOREM. (Recall that A is Noetherian.) Let °U = (Un)neN be a chain of triangular
sets on A, and let M be an A-module. Denote the complex C(°U, M) of modules of
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generalized fractions by

0 *M-^F0-^ Fl » . . . > Fn -£-> F" + 1 • . . . ,

(50 that F" = U~lTlM andf"~l = en for all n e No), and set F~l = M.
Let SPCU) = (<P(Un))neN be the family of systems of ideals of A determined by °U (see

2.6). Denote the generalized Hughes complex (see 1.3) d/C(Sf(°U), M) for M with respect to
Sr\% by

0 >M^K°-^Kl »... >K"^Kn+l >...,

and set K~l = M.

Then there is an isomorphism of complexes

W = (xp%^2:C(% M)-» %&{%, M)

such that xj)'1 :F~l—> K~x is the identity mapping on M. Moreover, for each n e No,

Coker/"-' = Coker A""1 = (Un+i x {l})-"-2M.
Proof. The isomorphism W = (V')is—2 is constructed by a straightforward inductive

process, and the details are left to the reader. Use 3.4 to define i//°, and use 2.7 and 3.3
for the inductive step.

3.6 REMARK. It is now immediate from 2.4 and 3.5 that, if M is an arbitrary module
over our commutative Noetherian ring A, and U is an arbitrary triangular subset of A" for
some neN, then the module of generalized fractions U~"M is isomorphic to the
(n — l)-st term in an appropriate generalized Hughes complex for M. We would argue
that this fact adds to the usefulness of the generalized fractions of Sharp and Zakeri (as
opposed to making them redundant in Noetherian situations), because the module U~nM
is constructed in one step, and calculations with its elements are a little like calculations in
ordinary modules of fractions, whereas the (n — l)-st term in a generalized Hughes
complex for M is arrived at after n direct limit constructions.

3.7 REMARK. In support of the comment made in 3.6 above, let us reconsider
Hughes' grade-theoretic analogue of the Cousin complex. By 1.4, this is just the
generalized Hughes complex W^, A) of A with respect to <S, the family of systems of
ideals of our commutative Noetherian ring A given by <3= (^(n))neN, where, for each
neN, the system "£(«) is the set of all ideals of A of grade at least n.

However, we can give another description of this complex. For each n e N, let

K = {(vu . . . , vn) eA":(vu . . . , vn) is a poor /4-sequence}.

By [23, 3.9 and 3.10], Vn is a triangular subset of A", and, in fact, it is easy to see that
T:= (Vn)neN is a chain of triangular sets on A. Therefore, by 3.5, there is an
isomorphism of complexes

from the complex C(T, A) of modules of generalized fractions to the generalized Hughes
complex %(Sf(V), A) for A with respect to the family <f(V) = (<P(Vn))nefi of systems of
ideals of A determined by V. However, for each neN, the system <b(Vn) is just the set of
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all ideals of A which can be generated by a poor A-sequence of length n, and so is a
connal subset of ^(n) (partially ordered by reverse inclusion). It is therefore easy to see
that Hughes' complex &{<§, A) is isomorphic to the complex 26(y(Y), A), and therefore
to C(Y, A).

We next use the above ideas to obtain quickly some properties of the complex
SifC ,̂ A) constructed by Hughes. That listed in part (iii) of Corollary 3.8 below was
actually brought by Hughes into his construction in [10] (although with little indication of
proof); however, as we showed in 1.3 and 1.4, one does not need to use this property in
order to construct W^, A).

3.8 COROLLARY. (Recall that A is Noetherian.) Denote Hughes' grade-theoretic
analogue of the Cousin complex %!($, A) by

and recall (from the Introduction or from 1.3) the A-modules E"(neN0) used in its
construction: they are such that E" = Coker/""2 for all n e No. Then

(i) %(% A) is exact,
(ii) for each n e No, each non-zero element of D" has annihilator of grade exactly n,

and
(iii) for each n e No, each non-zero element of E" has annihilator of grade exactly n.

Proof. By 3.7, 3€(% A) = C(Y, A), where Y: = (Vn)neN is the chain of triangular
sets on A given by

K = {(vi> • • • > vn)€A":(vx,. . ., vn) is a poor /4-sequence}

for each n e N. Instead of working with W(^S, A), we work with C(Y, A), which has the
form

0 >A-£+ V^A-^+ .. . * V~nA-^ V'l^A * . ...

(i) It is immediate from the Exactness Theorem for generalized fractions (see [14,
Theorem 3.1] or [25, Theorem 3.3]) that C(Y, A) is exact.

(ii) Let n e No. By 3.7, D" = V~"~[\A. A non-zero element a of this must have the
form a/(vi,..., vn) vn+1) for some a e A and (vlt. . . ,vn, vn+l) e Vn+l. By 2.1, we must
have Y,?=iAvi=tA, and, by 2.2,

(0:a) = (Av1 + . ..+Avn:a).

It is easy to deduce from the theory of grade that the latter ideal has grade exactly n.
(iii) Let n e Ĵo- Since E" = Coker/""2, it follows from part (i) that E" is isomorphic

to a submodule of D", and so the result follows immediately from part (ii).

3.9 REMARK. NOW let M be a module over our commutative Noetherian ring A with
the property that Ass(M) contains only finitely many minimal members. (This latter
condition is, of course, satisfied if M is finitely generated.) Let ^ be a filtration of
Spec(/i) which admits M ([21, 1.1]). Then it follows from [18, (3.4)] that there is a chain
°U of triangular sets on A such that the Cousin complex C(^, M) for M with respect to 2P
is isomorphic to the complex C(°U, M) of modules of generalized fractions. Hence, by
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3.5, the Cousin complex C(?F, M) is isomorphic to the generalized Hughes complex
$f(#"(%), M) for M. Hence 'grade-theoretic analogue of the Cousin complex' is indeed an
appropriate name for the complex constructed by Hughes in [10].

Let us apply the above ideas to the Cousin complex C(A) for A mentioned in the first
few lines of this paper. In this case, °U : = (Un)neM is such that, for each n e N,

Un = {(ul, . . . , un) e A" :htO4u! + . . . + Au,) s* i for all i = l, . . . ,n}.

(We interpret the height of the improper ideal A of A as °o.) Thus #"(<&) = (®(Un))neN is
such that, for each neM,

Auj:(ult ...,un)eA" and

We can give another description of ^f(5^(^), A). For each n e N, set

9?(n) = {b: b is an ideal of A and ht b & n}.

For each neN, the set 9£(/i) is a system of ideals of A, and one can see by prime
avoidance arguments that ^(£/«) is a cofinal subset of @t(n) (partially ordered by reverse
inclusion). Let 0t denote the family of systems of ideals (@l(n))neN. It follows that we
have isomorphisms of complexes

C(A) = C(% A) = X(Sf(%, A) = X(9l, A).

Of course, when A is Cohen-Macaulay, 9i = <§ and Hughes' complex 'St^S, A) is
then $?(5?, A) and so is isomorphic to C(A). Thus, in view of [19, (5.4)], we recover the
fact stated by Hughes in [10] that his complex provides the minimal injective resolution
for A in the case when A is a Gorenstein ring.

It should be noted that we have made considerable use in this section of the
Noetherian property of A. Indeed, it is perhaps interesting to ask whether there is any
analogue of Theorem 3.5 for our commutative ring R which is not necessarily Noetherian.
Up to the time of writing, we have not found a complete answer to this question.
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