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Abstract

Let X be a space of homogeneous type and L be a nonnegative self-adjoint operator on L?(X)
satisfying Gaussian upper bounds on its heat kernels. In this paper, we develop the theory of
weighted Besov spaces Bz:;m(X ) and weighted Triebel-Lizorkin spaces F ,‘j‘y‘(fw(X ) associated with
the operator L for the full range 0 < p, ¢ < 0o, @ € R and w being in the Muckenhoupt weight
class A. Under rather weak assumptions on L as stated above, we prove that our new spaces
satisfy important features such as continuous characterizations in terms of square functions, atomic
decompositions and the identifications with some well-known function spaces such as Hardy-
type spaces and Sobolev-type spaces. One of the highlights of our result is the characterization
of these spaces via noncompactly supported functional calculus. An important by-product of this
characterization is the characterization via the heat kernel for the full range of indices. Moreover,
with extra assumptions on the operator L, we prove that the new function spaces associated with L
coincide with the classical function spaces. Finally we apply our results to prove the boundedness of
the fractional power of L, the spectral multiplier of L in our new function spaces and the dispersive
estimates of wave equations.
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1. Introduction

Let X be a space of homogeneous type, with quasidistance d and p being a
nonnegative Borel measure on X, which satisfies the doubling property below. In
this paper, we assume that (X) = oo.

Forx € X and r > 0, we set B(x,r) = {y € X : d(x,y) < r} to be the open
ball with radius r > 0 and center x € X, and V (x,r) = w(B(x, r)). The doubling
property of w provides a constant C > 0 such that

V(x,2r) <CV(x,r) (1)

forallx € X and r > 0.
The doubling property (1) yields a constant n > 0 so that

V(x,Aar) < CA"V(x,r), 2)

forallA > 1,x € X and r > 0, and that

d(x,y)
r

Vix,r) < C(l + ) V(y.r), 3

forall x, y € X, r > 0 and for some 7 € [0, n]. See for example [24].

Let L be a nonnegative self-adjoint operator on L*(X) which generates a
semigroup {e~'L},.,. Denote by p,(x, y) the kernel of the semigroup e~'~. In this
paper, we assume that the kernel p,(x, y) satisfies a Gaussian upper bound, that
is, there exist two positive constants C and ¢ so that forall x, y € X and ¢t > 0,

2
e, )| < Lexp(—d(x’” )
W(B(x, 1) ct

The theory of function spaces associated with differential operators was
initiated in [2] where the authors laid out the foundation for the theory of Hardy
spaces associated with operators satisfying Poisson upper bounds. That work was
motivated by the fact that there was a number of operators which do not fall within
the scope of the Calderén—Zygmund theory of singular integrals. For example,

(GE)
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consider the Schrédinger operator L = —A 4+ V with 0 < V € L} (R") on
R" with n > 1. Without smoothness conditions on V, the assoc1ated kernel of
the Riesz transform VL~'/? might not satisfy the Holder continuity or even the
weaker Hormander integral condition. As a consequence, the Riesz transform
VL2 does not belong to the class of Calderén—Zygmund operators; hence,
it might not be bounded from the classical Hardy space H'(R") to L'(R").
However, the Riesz transform VL~'/? can be shown to be bounded from H, (R")
to L'(R"), where H} (R") is the Hardy space associated with the operator L. See,
for example, [44]. This shows the need for introducing new classes of functions.
After the work [2], the study of new function spaces including BMO spaces and
Hardy spaces associated with differential operators has received a great deal of
attention from many researchers. See, for example, [31, 32, 44-46, 62] and the
references therein.

The classical Besov and Triebel-Lizorkin spaces have played an essential
role in approximation theory and partial differential equations and have been
developed extensively on Euclidean spaces R". (See [4-6, 10-13, 34, 35, 55, 60,
61, 63].) Note that the classical Triebel-Lizorkin spaces can be considered as
generalizations of other classical spaces such as Lebesgue spaces, BMO (bounded
mean oscillation) spaces, Hardy spaces and Sobolev spaces. Motivated by the
above research direction, recently the theory of new Besov and Triebel-Lizorkin
spaces associated with differential operators L has been developed by many
mathematicians in various settings. See, for example, [9, 16, 17, 26, 28, 50-
52, 54, 64] and the references therein. We now list some bodies of work related
to this new research development.

(1) Using the existence of the approximation of identity, the authors developed
the theory of Besov spaces BY ».q and Triebel-Lizorkin spaces F ,.q for arange
1 < p,g <ooand s € (—0,0) for some 8 € (0, 1) on metrlc measure
spaces with polynomial volume growths [39] and on spaces with doubling
and reverse doubling measures [42].

(i1) In [54], the authors introduced new Besov and Triebel-Lizorkin spaces
associated with the Hermite operator with a full range of indices. Similarly to
the classical results, they proved the frame decompositions for these spaces
by making use of estimates of eigenvectors of the Hermite operators. Similar
results was also proved for the Laguerre operator in [51]. The theory of
these function spaces was further developed in [16, 17] where the authors
proved molecular and atomic decomposition theorems and square function
characterizations for these spaces.

(iii) In [9], the authors introduced the theory of Besov spaces Bls,i associated with

an operator L satisfying Poisson estimates on metric spaces with a measure
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enjoying a polynomial upper bound on volume growth. However, the indices
are only for 1 < p,qg < ooand —1 < s < 1. The restriction of indices is due
to some technical reasons and the absence of a suitable space of distributions.

(iv) Recently, under the assumption that L is a nonnegative self-adjoint operator
satisfying Gaussian upper bounds, Holder continuity and Markov semigroup
properties, the frame decompositions of Besov and Triebel-Lizorkin spaces
associated with L with full range of indices were studied in [26, 36, 50].
This theory has a wide range of applications from the setting of Lie groups
to Riemannian manifolds.

Our main aim in this paper is to conduct the theory of weighted Besov and
Triebel-Lizorkin spaces associated with a nonnegative self-adjoint operator. In
contrast to [36, 50], we assume the Gaussian upper bound (GE) but do not assume
Holder continuity on the heat kernels or the Markov properties (the conservation
property). This allows our theory to cover a wider range of applications including
regularity estimates for certain singular integrals with rough kernels which are
beyond the class of Calderén—Zygmund operators. In this article, in order to
introduce the weighted Besov and Triebel-Lizorkin spaces, we adapt ideas
in [55, 60, 61] to make use of spectral decompositions of nonnegative self-adjoint
operators. Our point of view and approach are motivated and influenced by a large
body of works in the classical setting, especially [8, 11, 12, 22, 35, 55, 58]. Our
development on the new theory of weighted Besov and Triebel-Lizorkin spaces
can be viewed as a generalization of the classical settings in R”. We would like
to point out that the extension of those relevant classical techniques and tools to
the current setting is highly nontrivial including new ideas concerning Calderén
reproducing formulas in our new setting with respect to new space of distributions
and a number of estimates related to maximal functions associated with functional
calculus of L. These are of interest in their own right and should be useful in future
research in the field. For convenience we list the main contributions of the article:

e Section 2 recalls the Fefferman—Stein maximal inequality and gives the
definition of a new class of distributions. More importantly, we prove a number of
Calderdn reproducing formulas and some maximal function estimates which play
a crucial role in the proofs of the main results.

e Section 3 gives definitions of the weighted Besov and Triebel-Lizorkin
spaces. Then we prove continuous characterizations including square function
characterizations via heat kernels of the new weighted Besov and Triebel-
Lizorkin spaces. A significant advance of our paper is in Theorem 3.6, where we
prove the characterization of the new spaces via noncompactly supported spectral
functional calculus. In particular, this theorem essentially solves in the current
setting a natural open problem raised in [9, Remark, pages 2480-2481], for an

https://doi.org/10.1017/fms.2020.6 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.6

H.-Q. Bui, T. A. Bui and X. T. Duong 6

important class of ‘kernel functions’ and for the full range of indices. Moreover,
we also study the Triebel-Lizorkin space F l‘j‘qu_w with p = oo, which does not
seem to be considered in this setting in the literature before.

e Section 4 establishes atomic decompositions of these new spaces where we
prove similar results to the classical function spaces in the Euclidean setting.

e Section 5 derives identifications of these new spaces with well-known spaces
such as Hardy spaces and Sobolev—Hardy spaces associated with operators.

e Section 6 compares our new spaces with classical Besov and Triebel-Lizorkin
spaces.

e Section 7 proves the boundedness of singular integrals including fractional
power of L and spectral multipliers m (L) on the new function spaces and some
dispersive estimates for wave equations. For some particular operators L, our
results recover a number of estimates in [48, 49].

We note that, after a preliminary version of the manuscript was completed,
we learned that the atomic decompositions have been obtained independently
in [37] by using a different approach. It is worth noticing that in comparison
with [37], our assumptions on the operator L and the underlying spaces X are
weaker than those in [37]. In our paper, L is assumed to be nonnegative, self-
adjoint and has a Gaussian upper bound, whereas apart from these conditions,
in [37], the operator L is assumed to satisfy some additional conditions such
as Holder continuity estimate and Markov semigroup property. Moreover, the
reverse doubling condition and noncollapsing condition for the underlying space
are additionally required in [37]. It is worth emphasizing that our approach
can be adapted to study the generalized Besov and Triebel-Lizorkin spaces as
in [66] or Besov and Triebel-Lizorkin spaces with variable exponents which are
associated with operators satisfying the Gaussian upper bounds of order m. We
believe that the ideas and techniques developed in the current work will stimulate
further research in harmonic analysis of function spaces associated with operators.
Throughout the paper, we usually use C and c to denote positive constants that are
independent of the main parameters involved but whose values may differ from
line to line. We will write A < B if there is a universal constant C so that A < CB
and A~ Bif A < Band B < A.

2. Preliminaries, a new class of distributions and related estimates

2.1. Muckenhoupt weights, Fefferman—Stein inequality and some estimates
on spaces of homogeneous type. To simplify notation, we will often use B for
B(xp, rp). Also given A > 0, we will write LB for the A-dilated ball, which is the
ball with the same center as B and with radius r,5 = Arg. For each ball B C X,
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we set ' '
So(B) =4B and S;(B)=2/B\2/"'Bforj >3.

For x,y € X and r > 0, we denote V(x A y,r) = min{V (x,r), V(y,r)} and
Vix vy, r)=max{V(x,r), V(y,r)}.

A weight w is a nonnegative measurable and locally integrable function on
X. Let w be a weight. For any measurable set £ C X, we denote w(E) :=
J; w(x)du(x) and V(E) = u(E). We denote

1
]ih(X)d//«(X) = @/Eh(X)dM(X)-

For 1 < p < o0, let p’ be the conjugate exponent of p, thatis, 1/p + 1/p’ = 1.
We say that a weight w € A,, 1 < p < o0, if the following holds true:

1/p (p—=1/p
[wla, := sup (][ w(X)dM(X)) <][ w(x) /Y dM(x)) <o00. (4
B:balls B B

For p = 1, we say that w € A, if there is a constant C such that for every ball
B C X,

][w(y) du(y) < Cw(x) forae.x € B.
B

Weset Ao =, A

p=lope
The reverse Holder classes are defined in the following way: a weight w €

RH,, 1 < g < o0, if there is a constant C such that for any ball B C X,

1/q
<f w(y)" du(y)) <c ][ wdp(x),
B B

The endpoint ¢ = oo is given by the condition: w € R H,, if there is a constant
C such that for any ball B C X,

w(x) < C][ w(y)du(y) forae.x € B.
B
Forw € A, and 0 < p < o0, the weighted space L? (X) is defined by
L [1roruwane < ool
with the norm

1/p
1A llpw = </ If(X)I”w(X)dM(X)> :
X

We sum up some of the standard properties of classes of weights in [58] in the
following lemma.

https://doi.org/10.1017/fms.2020.6 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.6

H.-Q. Bui, T. A. Bui and X. T. Duong 8

LEMMA 2.1. The following properties hold:

(i) Ay CA,CA forl <p<q< oo

(ii)) Ifw e A,,1 < p < 00, then there exists 1 <r < p < oo such that w € A,.
(i) Ifw € A,, 1 < p < oo, thenw'™" € A,,.

@iv) Ifw e A,, 1 < p < 00, then there exists C > 0 so that for any ball B and
any measurable subset E C B, we have

w(B) C(V(B))”. 5)
w(E) V(E)

(v) Ifw € RH,,1 < p < o0, then there exists 1 < p < q < oo such that
w € RH,.

(Vl) U1<p<oo AP - Ul<q<oo RHq

For w € Ay, we define g, = inf{g : w € A} and r,, = sup{r : w € RH,}.
Let w € Ay and 0 < r < oo. The weighted Hardy-Littlewood maximal
function M, ,, is defined by

1/r
Mr,wf(X)=ihelg< (B)/If(y)l w(y)du(y)) ;

where the sup is taken over all balls B containing x. We will drop the subscripts
r or w when eitherr = lorw = 1.
Letw € A and 0 < r < oo. It is well known that

M fFllpw S Wl (6)

forall p > r.
Moreover, let 0 < r < oo and p > r. Then we have

IM: fllpw S Il pw (N
forw e A,,.
The following elementary estimates will be used frequently; see, for

example, [21].

LEMMA 2.2. Lete > 0.
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(a) Forany p € [1, o], we have

—n—eAp 1/p
([(+252) " Jaum) s ves
X S

forallx € X ands > Q.

(b) Forany f € L. (X), we have

loc

1 d(x, y) —n—e .
AW“XA%Q<1+ p ) lfDldp@y) S Mfx),

forallx € X ands > Q.
We recall the Fefferman—Stein vector-valued maximal inequality and its variant

in[38,50]. For0 < p < 00,0 <g < 00,0 <r <min{p,g}andw € 4,,,, we
then have, for any sequence of measurable functions {f,},

H (Z |M,fv|q)w S H (Z w)w

For any measurable function F : X xR, — C with respect to the product measure
dp xdu,onehas,for0 < p < 00,0 <g<oo,weA,,and0 <r <min{p, g},

o0 d 1/q 0 d 1/q
H (/ M, (F(,u) ()] —u) S ” </ |(F (-, M))(')lq—u)
0 u pow 0 u

The Young’s inequality and (8) imply the following inequality: if {a,} € €4 N ¢!,

then e g
‘ Z(Z |a,_vM,fv|q) < H (Z w)

We will now recall an important covering lemma in [23].

®)

pw

.9

pw

(10)

J p,w

LEMMA 2.3. There exists a collection of open sets {Q’; CX:kelZ,tell}
where I, denotes certain (possibly finite) index set depending on k and constants
p € (0,1),a9 € (0, 1] and x( € (0, 00) such that

1) wX\U, 0% =0forallk € Z;
(i) ifi > k, then either Q% C Qf or Q' N Qf = ;

(iii) for every (k, T) and each i < k, there exists a unique T’ such QX C Q',;
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(iv) the diameter diam (Q*) < kop*;
(V) each Qf contains certain ball B(x g, agph).

REMARK 2.4. Since the constants p and a, are not essential in the paper, without
loss of generality, we may assume that p = ay = 1/2. We then fix a collection of
open sets in Lemma 2.3 and denote this collection by D. We call open sets in D
the dyadic cubes in X and x g the center of the cube Q% € D. We also denote

D,:={0'"" eD:1 e}
for each v € Z. Then for Q € D,, we have B(xg, co27") C Q C B(xg, ko27") =:

By, where ¢ is a constant independent of Q.

2.2. Kernel estimates. Denote by E; (1) a spectral decomposition of L. Then
by spectral theory, for any bounded Borel function F : [0, co) — C, we can define

F(L) = /OO FA)AEL (M)
0

as a bounded operator on L*(X). It is well known that the kernel Kz, of
cos(t+/L) satisfies

supp Kooy C {(x,y) € X x X 1 d(x,y) <t} (11

See, for example, [27].
We have the following useful lemma; see, for example, [44].

LEMMA 2.5. Let ¢ € L (R) be an even function with suppy C (—1,1) and
| ¢ = 2m. Denote by @ the Fourier transform of ¢. Then for every k € N, the

kernel K ;o1 Of (2LY @ (t+/L) satisfies

supp K 2100y C{(x, ) € X x X 1 d(x,y) < 1}, (12)
and
C
IK 2 praavm (6 W< Ve (13)

The following lemma gives some kernel estimates which play an important role
in the proof of our main results.
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LEMMA 2.6. (a) Let ¢ € S (R) be an even function. Then for any N > 0, there
exists C > 0 such that

C dix, )\ 7"
K <— |1 , 14
|K v (X Y V(x\/y,t)< + p ) (14)

forallt > 0andx,y € X.

(b) Let @1, ¢2 € . (R) be even functions. Then for any N > 0, there exists C > 0
such that

K <c— ! 14 ) 15
| wl(rﬁ)wz(sﬁ)(x’y”\ VixVvy,t) * ! ’ )

forallt <s <2tandx,y € X.

(¢c) Let ¢y, ¢, € L (R) be even functions with (pé") 0 =0forv=0,1,...,2¢
for some £ € Z*. Then for any N > 0, there exists C > 0 such that

s\* 1 dee, )\ Y
|K<m(zﬁ)¢2(sﬁ)(%)’)|§c ; V(x\/y,t) 1+ : y (16)

forallt >s >0andx,y € X.
Note that any function in . (R) with compact support in (0, 00) can be
extended to an even function in . (R) with derivatives of all orders vanishing
at 0. Hence, the results in each part (a), (b) and (c) hold for such functions.

Proof. (a) The estimate (14) was proved in [25, Lemma 2.3] in the particular case
X = R”, but the proof is still valid in the case of spaces of homogeneous type.
For the items (b) and (c), we refer to [21]. I
REMARK 2.7. (i) From (3), the term V(x Vv y,t) on the right-hand side of

estimates in Lemma 2.6 can be replaced by V(x Vv y, d(x, y)). (ii) We will
often use the following inequality:

-N -N -N
<1+d(xt,y)) (1+d(yt,z)) < (1+d(xt,z))

forall x, y,z € X and all £, N > 0. We may use these in the sequel without
stating any reasons.
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2.3. A new class of distributions. We fix xy € X as a reference point in X.
The class of test functions S associated with L is defined as the set of all functions
¢ € (), D(L™) such that

Poe(@) = sup(1 +d(x, x0))"|L p(x)| < 00, Vm >0,¢¢eN. a7
xeX
It was proved in [50] that S is a complete locally convex space with topology
generated by the family of seminorms {P,, , : m > 0, £ € N}. As usual, we define
the space of distributions S’ as the set of all continuous linear functional on &
with the inner product defined by

(f.8) = ()

forall f € S’and ¢ € S.

The space of distributions S’ can be used to define the inhomogeneous Besov
and Triebel-Lizorkin spaces. However, in order to study the homogeneous version
of these spaces, we need some modifications. Following [36], we define the space
S as the set of all functions ¢ € S such that for each k € N, there exists g, € S
so that ¢ = L¥g;. Note that such an g, if exists, is unique; see [36]. The topology
in S, is generated by the following family of seminorms:

Prok(@® =Puio(g), ¥Ym>0;¢keN

where ¢ = L¥g;.
We then denote by S. the set of all continuous linear functionals on S..
In order to have an insightful understanding about the distributions in S, we
define
P,=geS :L"g=0}, meN

and set Z = J,, .5y P-
From [36, Proposition 3.7], we have the following.

PROPOSITION 2.8. The following identification is valid S'/| & = S.,.

It was proved in [36] that with L = — A, the Laplacian on R”, the distributions
in 8’/ = S, are identical with the classical tempered distributions modulo
polynomial.

From Lemma 2.6, we can see that if ¢ € .%(R) with supp ¢ C (0, 00), then we
have K, /1) (x, ) € S and K, 7, (-, ¥) € Sw. Therefore, we can define

@(NL)f(x) = (f, K oy (X, ) (18)
forall f € S...
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The support condition suppe C (0, 00) is essential to be able to define
e(tv/L) f with f € S... In general, if ¢ € .(R), then we have K,oyp(x,) €S
and K, 5, (-, y) € S. In this situation, it is possible to define go(t\/f)f when
f € &, but it is not clear how to define ¢(t+/L) f when f € S.,.

LEMMA 29. Let f € & and ¢ € . (R) be an even function. Then there exist
m > 0 and K > 0 such that
(tviehHm

K
Vo) (1 +d(x, x0))". 19)

lo(tvV'L) f(x)| <

The similar estimate holds true if f € S, and ¢ € .7 (R) supported in [1/2,2].
Proof. Since (p(t\/Z) (x,-) € S, we have

lo(tN'L) f ()| S P e (K oy (5, )

for somem’ € Nand £ > 0.
Using the kernel estimates in Lemma 2.6 and simple calculations, we can find
m, K > 0 so that

(rviehHm "
Pt Kooy (0 ) S i (L4 d G, xo)"™

This implies (19).
The proof is similar when f € S/ and ¢ € ./(R) supported in [1/2, 2]. We
omit the details. O

2.4. Calderén reproducing formulas. In what follows, by a ‘partition of
unity’, we shall mean a function ¢ € S(R) such that suppy C [1/2,2],

J¥@ % #0and
D ;00 =1 on(0,00),

JEL
where ¥; (1) := ¥(27/1) for each j € Z.

PROPOSITION 2.10. Let v be a partition of unity. Then for any f € S, , we have

f=Y_v,VL)f inS,.

JEL
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Proof. By duality, it suffices to prove that for each f € S,

f=Y_v,VL)f inS.

JjEL

Indeed, since f € S, for each k € N, there exists gy € S so that f = L¥g,.
Form > Oand ¢, k € N, we have

Pr (W (VL) f) = sup(1 + d (x, x0))"|L Y; (VL) ge (x)].

xeX

If j > 0, then we have
(1 +d(x, x0)"|L"Y%; (VL) f ()] = (14 d(x, x0))" 127§ ;(vVL) L™ g (x)],

where §/ (§) = £y (£).
This, along with Lemmas 2.6 and 2.2, implies that

(1 +d(x, x)"ILY (VL) f (x)]

S 27 (1 +d(x, x0)"

1 dix,y)\ ' "
(1+ x y)) L g ()| di(y)

x Vi(x,277) 2-J
_0i 1 d(x’ y) -N
< 2 m £+1
2 / V.2 ) (1 + ) (1 4+ d(y, x)"IL ge (D) de(y)
—2j 1 d(x7 }’) -
< 272
~ 2 ,Pm,e-l—l (gk)/X V(x’ 2_]) (1 + 2_] ) dM(y)
S’ Z_ZjPr:,lJrl,k(f) (20)
as long as N > n.
Hence, A
P s (VD)) S2HP k(). V=0, (21)

If j < 0, then we have
(14d (x, x0))" |LW; /L) f (x)| = 22D (1 d (x, %0))" ;L) grgmir (X1,
where (L) = A2EHkFmEDy (),
Arguing similarly to (20), we obtain
Pr (VD ) S 2P iimn () Y <O (22)

From (21), (22) and the fact that S, is complete, we deduce that there exists
h € Sy so that

h=Y y,(VL)f inSs.

JeZ
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On the other hand, by spectral theory, we have

f=>"%,L)f inL*X).
J€EL

Therefore, f = h, and this concludes the proposition. O

PROPOSITION 2.11. Let yr € /(R) be such that suppyr C [1/2,2] and [ ¢
# 0. Then for any f € S, we have

f=c¢/ W(t«/Z)f? inS.,, (23)
0

where ¢y, = [ [ W ()%]7".
Moreover, if f € S', then there exists p € & so that

*© dt
f—p= cw/ W(t«/Z)fT inS'. (24)
0
Proof. We first show that
*© dt
f= c¢,/ W(tx/Z)fT in Sa.
0
Arguing similarly to the proof of Proposition 2.10, we can prove that
. YN dt . o dt _
lim v (VL) f— = lim VvV f— =0 inSy,
N—>oo 0 t N—o0 N t

and, consequently, by using the completeness of S, and the spectral theory as in
the proof of Proposition 2.10, we obtain the representation

f=cy /oo x/f(t\/Z)f% in S...
0

It follows by duality that
o dt
f=cy / YaVD =~ inSL.
0

For the second part, we note that for g € S, we have

o0 1 00
/ w(sﬁ)gd—s=/ w(sﬁ)gd—s+/ w(sx/z)gd—s
0 S 0 s 1 s
1
ds -
:/ w(sﬁ)g§+¢(ﬁ)g,
0
where ¥ (x) = T v®E = [0,
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Hence, forany £ € N, k > 0 and x € X, we have

L ( / w(sJZ)g(x)%)‘
0

1
< et [ wevDree e
0

(1 +d(x, xo))"

+ (1 +d (@, xo)! [ (VL)L g(x)]
1
< (1+d(x,x0) / sN|<s¢Z>*2Nw<s¢Z>L”Ng<x>|ds—s
0

+ (1 +d(x, x) |y WL)L g (x)|
= 1,(g) + L(g),

where N is a fixed number which is greater than k + n.

Note that x2Vy(x) is a function in .#(R) supported in [1/2,2]. Using
Lemma 2.6 and arguing similarly to the proof of Proposition 2.10, we can show
that

L(g) < Pk,E+N(g)-

For the same reason, since v is an even function in .¥(R), we also have

I (g) 5 Pr.e(8)-

As a consequence,

(1 4+ d(x, x0))*

o0 d
L (/ W(S\/Z)g(x)?s)‘ S Pk,l+N(g) + Pk,e(g)
0

forall{ e N,k > 0and x € X.
This implies that [~ ¥ (sv/L)g% € S whenever ¢ € S. By duality,
fooo V(svVL)f% € S whenever f € S'. This, along with (23) and the fact

N

that S, = &'/, implies that there exists p € Z so that

0 d
f—p=cw/0 YV

inS'.

This completes our proof. O

LEMMA 2.12. Let ¢ € . (R) be an even function such that ¢(§) # 0 on (=2,
—1/2) U (1/2,2). Then there exist a, b, ¢ > 0 and even functions ¥, € . (R)
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with supp ¥ C [—a, a], supp ¥ C [—c, —b] U [b, c] so that for every f € & and
every j € Zandt € [1,2], we have

f=wQ VD [+ ¢ @Iy @ VL f in S

k1

Proof. Tt is well known that there exists an even function ¥ € (R) with
supp ¥ C [—c, —b] U [b, c] for some ¢ > b > 0 so that

Y s vt =1, va#o.

k=—00

See, for example, [58]. Define ¥ € Y(R) by ¥(0) = 1, and ¥ (1) =
Zk<0¢>(2‘kk)x//(2"‘k) for A # 0. Then it is easy to see that supp¥ C [—a, a]
for some a > 0 and that

YR+ dQF VY@ N =1, VaeR.

k>1

Using the above identity and arguing similarly to the proof of Proposition 2.10,
we conclude that

f=0Q VLW IV f+) ¢ VL@ “ VL) f inS.

k>1
(A close inspection of the proof in [58] shows that we can take ¢ = 2, and 1/2 <

b<c/2<1) O

2.5. Maximal function estimates. We begin with some technical estimates.

LEMMA 2.13. Let ¥, ¢ € S (R) be even functions. Assume that 0 < a < b < 00
and A > 0. Then there exists C > 0 such that

dx, —
supW(sJZ)go(tﬁ)f(yn(H (x,y )>

yex t

die, »\
< Csup|§0(f\/z)f(J’)|(1 + ) (25)

yeX t

forall f € S, x € X and s € at, bt]. If both functions  and ¢ are supported
in [1/2, 2], then (25) holds for all f € S...
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Proof. From Lemma 2.6, for N > n and f € &', we have

d
w(sf)go(rf)f(yn(u . y))
_N-a
S <1+d(x’y)) / : (1+d(ys’Z)) 9V (Do)

! X V()”S)
dee, )\ [ 1 d(y, 2\ "™
<]+ t > /XV(y,t)<]+ : ) lotvV'L) f(2) du(z)
! d(y,2)\" d(x 2)
: /X V(y, 1) <1 T ) (1 + ) lotvVL) f (D) du(z).

This, along with Lemma 2.2, implies the desired estimate.

Note that in the case that both functions v and ¢ are supported in [1/2, 2], then
we can define ¥ (s+/L)g(t+/L) f forall f € S!.. The above argument also gives
(25) in this case.

This completes our proof. 0

LEMMA 2.14. Let ¢ € ./ (R) with supp ¥ C [1/2,2] and f 1//% % 0. Then for
anyr > 0and N > 0, we have

WV f @)
00 1 d , —Nr Nr d
s[5 (1 44 ”) (f A 5) VD FOI du(m) =
o Jx Vix,s) N r s s
(26)
forall f €S, ,x € Xandt > 0.
Proof. By Proposition 2.11, we have
YwNL)f =cy / Y (uv/ L)y (svVL) fi—s pointwise,
0
) d -1
where ¢, = [fo w(g)g]
This, along with the fact that supp ¥ C [1/2, 2], yields
4u d
vavDf =y [ vavDyeVDF<. @7)
u/4

Applying Lemma 2.6, we deduce that, for N > 0,

d(y. —N
Il/f(u«/_)f(y)|</ / 54 Z))
/4 u

d
+ IW(S«/Z)f(z)IdM(Z)TS

V(y, u)(
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4u N N
<[] <1+d(“)) (5) WeVD OIS, 28)
u/4 XV(y,s) $ u ’

If r € [1, 00), then using (28) for A + N, where A > n, together with Holder’s
inequality and Lemma 2.2, we obtain (26).
We now consider the case r € (0, 1). For each x € X and ¢t > 0, we define

N
;}*(t\/Z)f(x) = sup sup M( A ) ‘
yeX s>0 (1 4 })) )

Note that by Lemma 2.6, (28) holds with V (y, s) replaced by V (z, s). It follows
that

( y) \"
[y VL) fFO)I[ 1+ =2 AL

t u

NTAES L
4 Jx V(z,s) s u I ou

x Iw(sx/f)f(z)ldu«(z)T

. 1 d(y,z) - d(x,y) -N s P N
/u/4/xV(z,s)(1+ B ) <1+T> (;/\;>

d
x |9 (sv/L) £ (2)] du(z)f

4u _N N
5/ /v1 <1+d(x’1)> (EAE) WV FOldn© S
u/4 JX (Z,S) Ky t s s
B 4u 1 d(X,Z) —Nr s ¢ Nr
ok 1—r s t
S UTaVD @) /u/4/xv<z,s)<1+ - ) (rAs)

d
x Il/f(h/z)f(z)l’du(z)?s. (29)

By (19), there exists Ny > 0 such that ¥y, (t\/_)f(x) <ooforall N > Ny
and x € X. For any such N, taking the supremum over # > 0 and y € X in the
left-hand side of (29), we obtain

" , du 1 d(x,z) —Nr s t Nr
ot seum [ (+452) ()

d
x IW(S«/Z)f(z)I’dM(z)TS
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oo 1 d(X,Z) —Nr s t Nr
<C“"M/o /Xm,s)(” 5 ) (?Az>

d
x |x/f(s«/Z)f<z>|’du<z)§.

Consequently,

[y (VL) f ()|

< C( N)/Oo/ ! (1+d(x’Z)>_Nr(fA5>Nr
s ¢ o Jx V(z,9) s t s

d
x |w(sﬁ)f<z)|’du(z>§. (30)

Since the integral on the right-hand side of the above gets larger when N gets
smaller, (30) holds true for all N > 0 and all x € X. It follows that

i 00 1 d(y,z) —2Nr s u 2Nr
WD O < C(, N)/ / . (1 + ) (_ N _)
0 X (Z,S) N u N

d
x |w(sﬁ>f(z)|’du(z>§

0 —Nr 2Nr
<c(f. N)/ / 1 <1+d(“)> <5Aﬁ)
o JxV(zs) s u s

d
x |w(sﬁ>f<z)|’du(z>§ 31)

foral N > 0,u >0and y € X.
Using the obvious inequalities

and

—Ar —Ar Ar —Ar
() (1) (1) <00
N u u N N

where A = N +n/r, we obtain

¥ @vLD) f)I (g R 5)"’
<1 + M)” t u
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oo 1 dx, )\ (s \"
gC““N’”/o /Xm,s)(” 5 ) (?Az>

d
x |w<sﬁ>f(z)|’du(z>§.

Taking the supremum over all # > 0 and y € X gives

. . °° 1 dx, 2\ V(s 1\
(L) f(x) <C(f,N,r)/0 /XV(Z’S)<1+ . ) (;/\;)

d
x |w(sﬁ>f<z)|'du(z>§

o0 1 dx, 0\ V(s \V
ccuwn [ [ 5o (+552) (645)

d
x |w<sﬁ>f(z>|’du(z>§

forall N > 0,x € X and ¢ > 0, where we use (3) in the last inequality.
Therefore, if the integral on the right-hand side of the above is finite, then
Nepi/r (tv/L) f(x) < oco. In this case, we repeat the arguments in the first part
of the proof and obtain the required inequality (26), where the constant in the
inequality depends on N and r (but independent of f). On the other hand, if this
integral is infinite, then (26) holds trivially. Thus, we have proved (26) for all

N > 0. L]

REMARK 2.15. Actually, we have proved a stronger statement:

*k , o 1 d(x,z) —Nr s t Nr
l/’N-w‘z/r(t\/z)f(x) < CN,r/O /X Virs) <1 + . ) <; A E)

d
x |x/f(s~/Z>f(z>|’du(z)§ (32)

forall N > 0, f € S, x € X and t > 0. Moreover, a close inspection of the
proof of the lemma shows that we also have

" . *© 1 dx, o2\ V(s 1\
VDI ch,,/o /;(V(z,s)(lJr s ) (?A§>

d
X Il/f(sx/z)f(z)lrdﬂ(z)f (33)

foral N >0, f €S, ,x e Xandt > 0.
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For A > 0, j € Z and ¢ € .#(R), the Peetre-type maximal function is defined,
for f € &', by

o1 VD) F(8) = sup BWDIOL 34)

vex (1427d(x, y)*’

where ¢; (1) = @(2774).
Obviously, we have

9L (VL f(x) = lo;(VD) f(x)], xeX.

Similarly, for s, A > 0, we set

) _ qup J£EYDI O
¢; (VL) f (x) = ek (L +d(x, y)/s)

We note that in the particular case when ¢ is supported in (0, co), these maximal
functions can defined for f € S, via (18).

Due to (19), ¢} (s\/Z) f(x) < oo for all x € X, provided that X is sufficiently
large.

fed. 35)

PROPOSITION 2.16. Let € . (R) withsupp ¥ C [1/2,2] and ¢ € #(R) be a
partition of unity. Then for any .. > 0 and j € Z, we have

j+3
sup YrVD) F) S D e, (VL) f(x), (36)
se[2-i—1,2-J] =j—2

forall f €S, andx € X.

Proof. Fix j € Z and s € [27/~!, 27/]. First note that

Jj+3
YV = Y Y(VDaVL).

k=j-2
Since 27/ ~ s, by Lemma 2.6, we have, for y € X and N > n,
j+3
W VI DI < Y W VDo) f()]
k=j—2
j+3 |
j —N-A
N Z /X Vo.2) (1+27d(y, 2)) lo VL) f () dp(z). (37)

k=j-2
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It follows that

VDI § / 1 . o
T S ) _(1+2/d(y,
(I +d@ /s~ =, x V. zoh L 240, 2)

L oD@
(1 +27d(x, y))*
Jj+3

1 .
< - —N
S /Xv(y’z_j)(1+2fd(y,z>>

k=j-2

du(z)

loe (VL) £ (2)]
(1 +27d(x, y)*(1 +2/d(y, 2))*
j+3

1 .
S / Vo HYde ™
k=j—27 X ’

L aVD @)
(1+2/d(x, 2))*

du(z)

du(z). (38)

Using the fact that 2% ~ 2/, we obtain

W (VL) f ()
(I+d(x, y)/s)*

Jj+3
1 , v WD) f (@)
2 / v,z A0 ) T oy Y9

k=j—2

N

Jj+3
* 1 j —N
Y e WD) /X VoL T 240 due)

k=j-2

N

Jj+3
S D e WDf), (39)

k=j—2

where, in the last inequality, we use Lemma 2.2. Taking the supremum over y € X,
we derive (36). O

PROPOSITION 2.17. Let v be a partition of unity. Then for any A,s > 0 and
r > 0, we have the following:

) 1 WGVD Q@I v
Wsﬁ)foc)s[ /X Ve A de D/~ du(z)] . (40
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. 1 [yGsVDf@I r
W,\Jrﬁ/r(s\/z)f(x) S [/X Vir.s) L+ d(x.2)/s)" d,M(Z)i| 41)

forall f €S, andx € X.

Proof. We start with the proof of (41). Similarly to (27), we have
4s dI/l
VeV f=¢y | v@VDY VL) (42)
s/4

Ifr € (0, 1), then using Lemma 2.6 and the fact u ~ s, we see that, for A > 0 and
x,y€eX,

¥ (VL) f () </ 1 (H_d(y,z)>A W (VL) f(2)
(I4+d(x, y)/9)" ™ Jx V(z,9) ) (L+d(x,y)/s)"
</ 1 [Y6VD)f @)

T x Vs A +d(x, 2)/9)*

1 YYDl

< * 1—r
SV f(x)] /X Vo) 04 dG. sy 1@

By (19), there exists A > 0 such that w;‘(s«/Z)f(x) <ooforallA > Ap, s >0
and x € X. Using a bootstrap argument similarly to the proof of Lemma 2.14 (see
(32)), in which (29) is replaced by the above inequality, we deduce the required
inequality (41) in this case. We omit the details.

On the other hand, if r > 1, we similarly have

[ (sv/L) f (V)]
(1+d(x, y)/s)+r
< / ! (1 n d(%z))"m/r | (sv/L) £ (2)]
I x Viz,s) s (1 +d(x, y)/s)-+i/r
< / ! (1 N d(m))‘" Y sVD £ @)
~ Jx Vizs) s (1+d(x, z)/s)+/r
We now apply Holder’s inequality, Lemma 2.2 and (3) to deduce that

¥ VL) f ) <[/ I WeYDfI d(z)}”’
(U +dCe /o7~ L Ve s) T+ das /s

1 |‘/’(S\/Z)f(z)|’ 1/r
<
~ [/X Vx,s) (1 +d(x,z)/s)* d#(z)} .

This implies the required inequality (41) when r > 1.

du(z)

du(z)

du(z)

dp(z).

https://doi.org/10.1017/fms.2020.6 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.6

Weighted Besov and Triebel-Lizorkin spaces 25

The proof of (40) can be done in a similar fashion, but slightly simpler, where
(3) is not used. I

PROPOSITION 2.18. Let i be a partition of unity and ¢ € . (R) be an even
function such that ¢ # 0 on [1/2,2]. Then for any A > 0, j € Z and r > 0, we

have
1Y, (VL) f ()] < (/
2

2—Jj+2

—j-2

ds 1/r
|¢:<sﬁ>f<x)|’7) 43)
forevery f € §.

Proof. Since ¢ # 0 on [1/2, 2], there exists ¢ € . (R) supported in [1/2, 2] so
that

= — #0.
Co.0 /O <p(§)¢(%‘)€ 7

It follows that, for each j € Z,

o d
WL f =c,}, / w(tx/f)rb(t«/f)%(«/f)f;
2J+2

d
=Cp / | w(rﬁw(zﬁ)wﬁ)f?’.
2/-2
Hence, for any r > 0,

WD F@I S sup eV DoUVDY, VL) F). (44)

te[2=/-2,2-7+2]

Fix t € [27/72,27/%2]. By Lemma 2.14 and the fact that supp¢ C [1/2, 2], we
have, for A > 0,

lp (VLYo L)Y, (VL) F1(x0)|"

//V(x s>< d(xsy)) <?A£>M

d
x |¢(sﬁ><p<sﬁ)wj(ﬁ>f(y)|’du(y)f

2-J+2 —Ar Ar
< / / Lo e\ (s o
iz Jx V(x,s) s t s

d
x |¢<sﬁ>¢<sﬁ>w_f(ﬁ)f<y)|’du(y)f

/ /+2/ a’(x,y) —Ar
2-i—2 Vix, s)( K )
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d
x |¢<s~/Z>go<s«/Z)1/f_,(ﬁ)f<y)|’du(y)f.

Note that s /4 < 27/ < 4s when 27772 < s < 27772, Hence, applying Lemma 2.13,
we see that

dix, -
(1+ (xs y)) 6V DeVII, (VD) f )

d(x, Y
5sup|¢<sﬁ>f<y>|(1+ (x ”) —: g (VD) F ().

yeX S

Asa consequence,

2—i+2

. d
sup (VL)Y VLY, (VL) f@)I" < / | |w:(sﬁ>f<x>|’§.
te[2-i=2,2-i+2] 0—j-2
This and (44) yield (43). O

3. Besov and Triebel-Lizorkin spaces associated with L: properties and
characterizations

3.1. Definitions of Besov and Triebel-Lizorkin spaces associated with L

DEFINITION 3.1. Let v be a partition of unity. For 0 < p,qg < oo, @ € R and

w € Ao, we define the weighted homogeneous Besov space B‘;‘g'uf (X) as follows:

BV i(X) = {f €St 1 f o, < 00,

p.q,w P.q.w

where )
1/q
Vgt = | QWD 1|
JEZL
Similarly, for 0 < p < 00,0 < g < 00, € R and w € A, the weighted

homogeneous Triebel-Lizorkin space F ¥ v (X) is defined by

Felb(X) = {f € Skt 1 f gt oy < 00},

p.q,w

where

1/q
[Z(sz,-(«/f)fw]

JjEL

p,w
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We now claim that v; (VL)f =0forall j € Zif and only if f € Z. Indeed,
since & = |,y P, it is obvious that if f € 2, then ¥;(v/L) f = 0 for all j.

For the reverse direction, we assume that v/; (VL)f = 0for all j € Z. Since
feS, =8/, wehave f = fs + fo forsome fs € S and fp € Z. 1t
follows that, for every j € Z,

v, (VL) f =9, (VL) fs + ¥; (VL) fo = ¥, (VL) fs.

Therefore,
Y vWDf =Y v,Dfs
jez jez
which implies
Y vV fs =0.
jez

On the other hand, arguing similarly to the proof of Proposition 2.11, we can find
0 € £ such that

Y VWL fs=fs—p inS.

JEZ
From the last two identities, we obtain fsr = p € & and hence f € &. The
statement is proved.

Therefore, each of the above spaces is a quasinormed linear space (normed
linear space when p, g > 1). Note that like the classical case, the Triebel-Lizorkin
spaces for p = oo would be defined in a different way. See Section 3.5.

From Proposition 2.16, we have the following.

PROPOSITION 3.2. Let v, ¢ be partitions of unity and assume supp ¥, supp ¢ C
[1/2,2]. Let w € Ay, @ € R and A > 0. Then the following norm equivalence
holds: for all f € S,

(a) ) 1/q
{Z<2W||w;ik(~/f)f||p,w)q}

JEL
1/q
~ {Z(zf”||¢;ik(ﬁ>f||,,,w>q} . 0<p.g<oo;
JEL
(b) ) 1/q
’ [Z(zmwmﬁ)ﬂ)q]

JjEZL

p,w

, 0<p<o00,0<g <00
p.w

1/q
~ ’ [Z(zf“kp;:k(x/f)fuq]

JEZL
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We next prove the following result.

PROPOSITION 3.3. Let i be a partition of unity. Then we have

(a) For0 < p,q < oo, a € Rand » > ng,/p,

1/q
{Z(zja”'ﬂb‘;)b(\/z)f“p,w)q} ~ ”‘f”BZ:ZI.’qu(X)'

JEL

(b) For0 < p <00,0 <g <00, a € Rand . > max{n/q, nq,/p},

1/q
‘ [Z(zf“w;(ﬁ)fw]

JEZL

pow

Proof. We will provide the proof for (b) since the proof of (a) is similar and even
easier. Observe that from Proposition 3.2, it suffices to prove that

Indeed, taking » < min{p, q, p/q,} = min{q, p/q,} so that A > n/r and w €
A, then applying (40), we have

. 1 1, (VL) f )| ]1/’
* <
W/A(«/Z)f(X) ~ |:/X V2 (1 +2d(x.2)" du(z)

<M, (1Y, (VL) (%),

1/q
[Z(zf'“n/f;ik(ﬁ)fnq} (45)

JEL

1/q
< H [Z(szj(ﬁ)fm]
pw

J€EZ

p.w

where we use Lemma 2.2 in the last inequality. The desired inequality (45) then
follows by using the weighted Fefferman—Stein maximal inequality (8). O

As a consequence of Propositions 3.2 and 3.3, we obtain the following theorem.

THEOREM 3.4. Let ¥ and ¢ be partitions of unity. Then the following statements
hold:

(a) The spaces ngg”;ﬁ (X) and ngffi (X) coincide with equivalent norms for all

O<p,g<oo,axeRandw € Ay.

(b) The spaces F v (X) and F ¢ 2 (X) coincide with equivalent norms for all

O<p<oo,0<g<oo,xaeRandw € A.
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For this reason, we define the spaces B;‘:;w(X ) and F p"’:qL_w(X ) to be any spaces

pa, Y, L o, L . .. . .
Bp,q,w (X) and BM,w (X) with any partitions of unity 1\, respectively.

It is routine to show that the spaces B;’j:(jw(X ) and F I‘j‘qu(X ) are complete, and

each is continuously embedded into S/ . We omit the details.

3.2. Continuous characterizations by functions with compact supports.
In this section, we will prove continuous characterizations for new Besov
and Triebel-Lizorkin spaces including those using Lusin functions and the
Littlewood—Paley functions.

THEOREM 3.5. Let Y be a partition of unity. Then we have

(a) Forw € Ay, 0 < p,qg <00, ¢ € Rand ) > nq,/p,

00 dt 1/q
~ ( / [t‘“lll/f(t«/z)fllp,w]"T)
0

00 dt 1/q
~ < / [r—“||x/f:<rﬁ>f||p,w]‘17) 46)
0

L1 gt

p.q.w

forall f €S,

b) Forw e Ay, 0 < p<00,0<g <00, el and A > max{n/q, nq,/p},

~ H (/O [rwaﬁ)fuq?)
o d
~ H ( / [z—“w;‘an)f]‘f?t)
0

Il

Pqw

pw

(47)

p,w
forall f €S,
Proof. We give the proof of (b) only since the proof of (a) can be done in the

same manner.
We divide the proof of (b) into three steps.

Step 1: We first prove that

00 dt 1/q
H </ [t"‘|1ﬁ(t«/f)f|]q7> SIfllger, - (48)
0

P.q,w
pow
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Indeed, for t € [27/7!, 27/] with j € Z, from (36), we see that

j+3
sup  [YVD F@IS Y v (VD) f(x).
re[2=i—1,2-i] k)2

Hence, the estimate (48) follows from the above inequality and Proposition 3.2.

Step 2: We next show that

o0 dt 1/q
1l ger, < H ( / [t“wf(tﬁ)f]q7> (49)
0 pw
Using Proposition 2.18, we have
2-i+2 ds\ V4
(VD @) S (/ B |w:(sﬁ>f<x>|q?) :
2-i-
This implies the desired inequality (49).
Step 3: To complete the proof of the theorem, we need to prove that
o0 dt 1/q o dt 1/q
H ( / [t—“wz‘(rﬁ)f]'f—) S H ( / [z—“waﬁ)fuq—)
0 t pow 0 t pw
(50

To see this, taking r < min{p, q, p/q.} = min{q, p/q,} so that A > n/r and
w € A,,, then applying (40), we have, for all ¢ € [1, 2],

i , 1 Qe ItVL f@)I
WD [ s e S ).

Since r < g, we use Minkowski’s inequality to get the bound:

2 ) dl r/q
( / wa(Z"tx/Z)f(x)lq7>
1

. r/
) L (BwerDraes)”
~ /X V@2 (d+2d@ )

du(z).

By a change of variables,

2—J+l dt r/q
[ / (t“lwf(t«/f)f(x)l)qT}
2

—J
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—j+1 r/
LB emwavDropee]”
N / du(z).

x Vi(z,277) (1+2/d(x, )
Hence, applying Lemma 2.2, we obtain
2=+l dt 1/q 27J+l dt 1/q
(/ wa(tﬁ)f(x)qu) SMr[(/_ |w<tﬁ>f|q7) }(x)
2-J 2-J

as long as Ar > n. Using (8), we deduced the required estimate (50).
The proof of our theorem is thus complete. 0

3.3. Continuous characterizations by functions in .%,,(R). Foreachm € N,
we denote by .7, (R) the set of all even functions ¢ € .7 (R) such that ¢ (&) =
£2m¢ (&) for some ¢ € . (R) and p(£) # 0 on (=2, —1/2) U (1/2,2).

We have the following characterization for the new Besov and Triebel-Lizorkin
spaces via functions in .#, (R).

THEOREM 3.6. Let w € Ay, @ € R, m > «a/2 and let ¢ € .%,,(R). Then the
following statements hold:

(@) For0 < p,q <00, A >nq,/pand f €S/, there exists p € & so that

00 dt\'"*
(/ [f"‘||<p;‘(t\/Z)(f - p)”p,w]q7> SfNl ger
0

o0 de\'""
N (/ [t_a||90(t\/z)f||p,w]q7> . (51
0

(b) For0 < p < 00,0 < g < 00, A > max{n/q,nq,/p} and f € S, there
exists p € &P so that

00 dt 1/q
” (/ [t vV L)(f — P)]q7>
0

00 dt 1/q
<|([ueeavnrre)
0

Proof. In comparison with the proof of Theorem 3.5, the proof of Theorem 3.6
is much more difficult due to the lack of compact support condition for the
functions in .%, (R). A significant difference with Theorem 3.5 is that the results
are formulated for f € S’ (as opposed to f € S. ). The reason being that,

SN

Psq.w
p.w

(52)

pw
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as Kz, (x, -) may not be in S, for ¢ € .7, (R), @(t+/L) f may not be defined
when f € S.. Although each f € &, has an extension to an element in
&', the extension is not unique; that is, go(tﬁ) f will depend on the chosen
representative of f. Our theorem says that there exists a representative so that
the left-hand-side inequality in (51) (or in (52)) holds.

We will prove (52) only because the proof of (51) can be done in the same
manner. We divide the proof into a number of steps.

Step 1: Let v be a partition of unity. From Proposition 2.11, there exists p € &
so that

f—p=c /Oo wa)f‘i—s inS'.
0

We will show that

1/q
H(/O o VD) (f — p)7 )

First, note that the Calderén reproducing formula above implies the pointwise
representation

SIS g, - (53)

pw

o d
oGV ([ —p) =y / Y (54)
0

forallr > 0.
LetA > 0,7 € [27"7!,27] for some v € Z and M > m + A/2. For simplicity
of writing, we let ¢, = 1. We then have

o d
w(rﬁxf—p):/ «p(sﬁwwf)f—s
—Z/ NN AYe +Z wsf)w(rf)f—

jzv 2t

—Z/ ( ) LY VDEL o)

j=v

2m
+2 / (—) (s2L>'"w<sﬁ)(rer'"@(rJZ)f“i—s.

j<U

Setting ¥ (x) = (sx) My (sx) and ¥,,,(x) = (sx)*"¥(sx), we rewrite the
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above as
2M
e(VD(f —p) =Y / (;) (L)L), i (VL )f
j=v 27
2m 5 d
+> / (—) (rer'"w(rx/Z)ws,m(x/Z)ff.
j<v
Since £2M (&) is an even function in . (R), we use Lemma 2.6 to deduce that

|2 L)M ot LYy n (VL) fF (V)]
1 diy,2)\ "
< / (1+ ) 1Y v (VL) f ()] du(z),

x V(y.1) t

where N > n.
It follows that

| L)Y ot/ LYo n (VL) f ()
(I+d(x, y)/0)

</ ! <1+d(y,z>>‘N|wx,N<JZ>f(z>|
~ Jx V) t (I+d(x,z)/t)*

du(z)

forallx,y € X.
Hence, for j > v,t € [27"7!,27"]and s € [27/7!,27/], we have

[P L)" (1LY Yo VL) f ()]
(I+d(x,y)/0)*

<20, WD [ a1 ’Z))N dpu(y)
~ SN2 X V()’J)

t

< 2y (VL) f(x).

Since ¥ € .7, (R), x "¢ (x) € .#(R). Using Lemma 2.6 and an argument
similar to the above estimate for ¥, ;, we obtain, for j < v, t € [27V7!,27"]
ands € [27/71,277],
(L) "N L)Y, (VL) f ()]
(I+dx,y)/t)
Combining the above two estimates, we deduce that

oy (VLY(f = p)| < Y 27U qup g (VL) f

<UL D f().

> se@i=1,277)
+ Z 27D qup g, A(\/_)f
i se@=i=1,27)]
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This, along with Proposition 2.16, implies that

g VIY(f =) S D 27Uy VI f+ Y 27y (VI f

jzv—1 J<v+3

<Y 2 lys VI f (55)

JEZL

forallt € [27""!,27"] and M > m + A/2. Therefore, if g < 1, we have

27Y d ) ]
GG SR N D

e
JEZL

It follows that

N dr\"
(/ (t—al(p:(t\/Z)(f - ,0)|)q7>
0
1/q
(Z Z 2q(2ma)v./'l(zjal/,;‘.k(\/z)f)q)

VveZ jEL
< (
~Y

which, along with Proposition 3.3, yields (53).
On the other hand, if ¢ > 1, then we use Young’s inequality to get the bound:

A

1/q
Z(zf”w;gﬁ)f)q) :

JEL

00 d 1/q
( / (i (VI (f — p)w{)
0
q\ 1/q
< (Z[Z 2—<2"1—°‘>'“—f"2f“w/f;,lNZ)f} )

VeZ = jEZ
. 1/q
S (Z(z”x/fmﬁ)f)q) :
JEL
Hence, (53) follows from this and Proposition 3.3.

Step 2: We next show that

00 d 1/q
1l ot SH(/ [t"fp;“(t«/z)f]q%)
0

p.q.w

pw
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Let ¢ be a partition of unity. By Proposition 2.18,

2—J+2

|w,«(~/Z>f(x>|qs/ |¢A(rf>f(x)|q—.

2-i=2
Hence, the desired inequality follows.

Step 3: This is the most elaborate step in the proof, where we will prove that

00 dt 1/q %) dt 1/q
H(/ [r“wi(rﬁqu) SH(/ [t"(p(tx/f)f]qT)
0 0

To this end, we apply Lemma 2.12 to find a, b, c > 0 and even functions ¢,
n € L (R) with supp¢ C [—a, al, suppn C [—c, —b] U [b, c], and so that for
every L € Z,t € [1,2] and f € &', we have

f=6@ VL f+Y 0@ VL@ VL) f inS.

pw

k>1
This implies that
Q@ VL) f
=¢Q VL@ VL) f + )o@ VD@ VD@ VL) f
k>1
pointwise.

Let .,A > 0. Put M = A 4+ A. Using the above pointwise representation
together with Lemma 2.6, we get

lo~ VL) F(0)| < /

+ Z2kM/ V(z Va1 +2d0 T “VD) f@)1dp)

k>1

¢
V( 25)(1+2d<y D) He@ VL) f ()| dp(z)

_ ZZ—kM/ e e)( _|_zfd(y,Z))‘A|<p(2_e_kl‘\/z)f(2)|dM(Z)

k=0

= 27N "ol / TeRE Z)(1+2fd<y DN e VL) f(2) dpu(z)

k>t

—jpHM (j—k)M 1 lp(2™ kf\/_)f(zﬂ
<2y 2 /V(z2k> (1 2d(y, 2y P

k>t
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where j, £ € Z and £ > j. It follows that, forany 0 < r < 1,
2Gi-0M I(D(Z_Zt\/z)f(.VN
(1 +27d(x, y)*
, 1 27 t/L
< 22(1—k>M/ y lep( \/_)f(§)| du(z)
= x V(z,27%) (1 +2%d(y, 2))*(1 + 2/d(x, y))*

- ! 9 /D) f(2)]
(j—k)M
) ;2 /X V(z,27%) (14 2id(y, 2)) (1 + 27d(x, y)* du(z)

. 1 e VL) f(2)
(j—k)M
<2 / Ve (1 2di. oy M@

k>t
< @, QL) F(0)

o 1 le@ VDI
<22 / V(.25 (1+2id(x, )"

du(z), (56)

kzj

where, for each j € Z and t € [1, 2], we define the Peetre-type maximal function
by

Goom 1927 kt\/_)f()’)|
@i QYD () _ili?igfzj (1+27d(x, y)*

By (19), 3, 27/ tv/L) f(x) < oo, for all sufficiently large A (depending on f),
all x € X and A > 0. Hence, for any such A, by taking the supremum of the
LHS of (56) over £ > j and y € X and using the obvious inequality (1 + 2/d(x,
) =271 + 2kd(x 7)) on the RHS, we obtain

O QL) f(x)

o 1 e VL) fF@)I
< (=l (M=2)r
<22 /XV<z,2k) (1 2d(r, oy @

k=j

— (j—k)Ar —
E '21 / T dr. ) du(z) (asM — i = A).

(57)

Since clearly (- --) f| < @3, (- - -) f, the above implies that

L , (oar 1 eV fRI
o VL) f ()] 5%2 / TG 4 12, oy e
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for all sufficiently large A, A > 0, y € X and £ € Z. But the right-hand side of
the above inequality increases as A decreases, and hence this inequality holds for
all A > 0and A > 0, with the inequality constant also depending on f. It follows
that, for ¢ > j,

So-om 0@ VD F I
(1 +2/d(x, y)*

< Y au-bar / 2O o) f I
o~ ¥ V(@275 (1 + 25d(y, ) (1 + 27d(x, y)»

= 220"‘)’“ / c— e VL) f @)1
= x V(2,275 (1 4+ 2%d(y, 2))*" (287 + 2kd (x, y))*"

< Zzwk)m“’/ L @D
V(z,27%) (1 +2kd(x, 2))™

du(z)

du(z)

du(z).

k) X

(Recall that M = A 4 A.) Taking the supremum over £ > j and y € X gives

» o 1 QR VL) f)I
*% r < (j—k)(A=M)r
D e / V@2 h (1125, oy O

k>j X

Therefore, if the right-hand side of the above is finite, then ¢}*, (277ty/L) fx) <
oo. Repeating the proof of (57), we obtain

» _ 1 QR VL) f)I
b r< (j—k)Ar
DI N;ZJ /XV(z,z—k) (125, oy MO

G=b(A—hr L le@ VD) fRI
S 22 J / V(Z, 2_k) (1 + zkd(x’ Z)))\r dl’l/(z)

k>j X

(with inequality constant independent of f). Since clearly ¢} < ¢, , it follows
that

N o 1 lp2*t/L) f )|
*(~J L r < E 2(/ k)(A=M)r
G T /XV(Z,M 1+ 2d (e, oy M@

(58)
provided the sum in the right-hand side is finite. Since (58) is obviously true when
this sum is infinite, we conclude that it holds forall A > 0, A > 0, j € Z,t € [1, 2]
and0 < r < 1.
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Assume now that » > 1. Let A > 0, A > 0 and N > n. Using the Calder6n
reproducing formula and Lemma 2.6 as at the beginning of this step, we see that,
forany j € Z,t € [1,2]and y € X,

y —oa [ A +2dG. ) [p@ VD) f2)]
2-J < 2(=kA
@ VL) F ()] N; / T A¥2do. o)y M@

5<22<J~_k>m / 1 e VD) f@I dﬂ(z))”’
X

£ V(z,277) (1+27d(y, )"

— r 1/r
<<Zz<j_k>m / 1 e VD) f(2) dﬂ(z)) ’
X

£ V(275 (14 2d(y, )"

where we have also used Lemma 2.2 and Holder’s inequality in the second last
inequality in the above. It follows that

lpQ~It/L) f (W
(1 +27d(x, y)/t)"

< Y auhw / 1 le VL) f(2)]" o
k>j X

V(z,27%) (1 +2/d(y, 2)* (1 + 2/d(x, y))™

< 220—")/"/ 1 lpQ* VL) @I
~ V(z,27%) (1+2id(x, )™

dp(z)

k> X
< Zzu—k)m—x)r/ I le@* VD f@I
- V(z,27%) (1 +2%d(x, 2)™

du(z). (59)

k>j X

Taking the supremum of the LHS over all y € X, we deduce that (58) also holds
for r > 1. Hence, (58) holds for all » > 0. Consequently,
(@7 ;@7 VD) f T

< Zz(j—k)(A—k-Hx)r/ L @D le@ VD FI
- V(@2 (1425, )

du(z).

k>j X
We now choose r > 0 such that max{n/p, n/q, nq,/p} = max{n/q, nq,/p} <

n/r < A and then choose A > 0 such that A —A 4« > 0. Minkowski’s inequality
and the above inequality then imply that

2 ) ) dl r/q
( / [<2Jr>“<p;‘<2/rﬁ>f(x)147)
1
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piwiasear ([HQ ) 0@ VD f1e4) "

S du(2).
~ ;/x Vi(z,27%) (1 +2kd (x, 2)™ r@)
By a change of variables, we get that

2+l dt rlq
[/ . (t“lwi(t«/f)f(x)l)"T}

2-J

—k+1 r/q
Uk A-Atar [fzz—k (f’“|<p(t«/f))f(z)|)q%]
du(z).  (60)

<
~ g/x V(z,27%) 1 4+ 2kd(x, 2))™

i 1/
Setting Fy = [ J2 1oV f D) d,—’] " and using Lemma 2.2, we deduce
that

2—j+l1 r/q
[ / (t“’lwi‘(t«/f)f(x)l)q?} S D 2UTRATR M, () (x)
2

- k>j
) r/q
5[Z2“‘"“‘““”%(F»(x)‘f] ,
k=)

where, in the last inequality, we use Holder’s inequality and the fact that A — A +
a > 0. Hence, by applying (10), we obtain the desired estimate

*° d *° d
H ( / [t—“|¢:<tﬁ>f|]qi> < H ( / [t—“w(tﬁ)fnq—t)
0 t )y 0 t

Combining the results in Step 1, Step 2 and Step 3, we complete the proof of the
theorem. [

p.w

REMARK 3.7. (a) Itis interesting to note that when L = — A, the Laplacian on
R", Z is the set of all polynomials. In this situation, Theorem 3.6 are in line
with findings in [11].

(b) The presence of the polynomial p in (51) and (52) can be omitted if f € L>.
Indeed, in this case, instead of (54), we have, by the spectral theory,

o(NL) f = Cy /OO <p(tx/Z)1//(s«/Z)fi—s (in L? and hence in S).
0

Arguing similarly to the proof of the first inequalities in (51) and (52), we get
the desired estimates.
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We denote ¥, (L) = (1*L)"e~""L fort > 0 and m € N. For A > 0, we define

|q/m t(L)f(y)l
v (D) f(x) =sup ——————— 61)
L)) X (L +d(x, y)/0* (
for f € S'.
Applying Theorem 3.6 and Remark 3.7 for ¢(§) = £*"e~%", we have the
following heat kernel characterizations for the new Besov and Triebel-Lizorkin
spaces.

COROLLARY 3.8. Letw € Ay, @ € Rand m > /2. Then the following norm
equivalences hold:

(@) For0 < p,qg <00, A > ng,/pand | € 8, there exists p € & so that

%0 dr\"
( / [z—anw,:,,,k(m(f—p)up,w]qT) S 1 s
0

g, w

oo dt 1/q
S (/ [t_a”lllm,t(L)f”p,w]qT) : (62)
0
(b) ForO0<p <0,0<gq <00, A >max{n/q,nq,/p}and f € S, there exists
p € P so that
) dt 1/q
” ( / [, (L)(f — p)]q7> S g,
0 p,w

(63)

00 1/q
< H < / [ m,t<L>f]q@)
0 t

Moreover, if f € L?, p can be removed in (62) and (63).

pw

REMARK 3.9. Note that in [36, 50], the authors proved (62) fors e R, 1 < p
<00,0<g<ooand(63)fors eR, 1 < p <00, 1 < g < oo forinhomogeneous
and homogeneous Besov and Triebel-Lizorkin spaces under additional conditions
of Holder continuity and Markov property of the heat kernel p,(x, y). Moreover,
their results are formulated for distributions in Séo‘ Hence, Corollary 3.8 can be
viewed as a significant extension of those results in [36, 50].

We end this subsection by a remark on an interesting extension of Theorem 3.6.

REMARK 3.10. The nondegeneracy condition of the function ¢ in the definition
of the class .7, (R), ¢(&) # 0 on (—2,—1/2) U (1/2,2), can be weakened
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to ¢(A) # 0 for some A > 0 (as ¢ is even, this implies also ¢(—A) # 0).
Then Theorem 3.6 holds under this weaker condition on ¢. The proof of this
stronger result can be done by modifying the proof for Theorem 3.6 and using the
following two observations:

(a) There exist a > 0, ¢ > b > 0 and even functions ¢, n € .¥(R), such that
supp¢ C [—a, a],suppn C [—¢, =b] U [b, c] and

o(A) + /OO go(s)»)n(s)»)i—s =1 VielR.
1

See, for example, [43, 58].

(b) Part (a) and an argument similar to the proof of Proposition 2.10 imply a
Calderdn reproducing formula

f =¢(f\/zf)+/oo<p(tsﬁf)n(tsﬁ)i—s inS,
1

forall f € S"and all t > 0.

We leave the details to the interested reader and also refer to [11, 12] for the
proof in the classical case.

Theorem 3.6 and this remark essentially solve in the current setting a natural
open problem posed in [9, Remark, pages 2480-2481], for an important class
of ‘kernel functions’ and for the full range of indices.

3.4. Characterizations for Triebel-Lizorkin spaces via Lusin functions and
the Littlewood—-Paley functions. For « € R,A,a > 0and 0 < g < oo, we
define the Lusin function and the Littlewood—Paley function by setting

. T d(x,y)\ du(y)dt]"
gk,qnx)—[/o /X(t |F(y,t>|>q(1+ t ) tv(m)} (64)

and

1/q
du(y)dt] 65)

SgﬁqF(X) - |:/0 /d(x-,y)<at(ta|F(y’ t)l)q ZV()C, t)

for every measurable function F, respectively.

When either « = 0 or a = 1, we will drop them in the notation of Sj‘ p and
gy ;- We now have the following result regarding the estimates on the change of
the angles for the function S .
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PROPOSITION 3.11. Leta > 1, w € A,,1 <r <00,0 <gq < o0, € R and
0 < p < oo. Then there exists a constant C so that

1%, Fllpow < Ca? PO SEF

for all F, where

n-+rn
YV pP=q
y(r,p,q) = ) (66)
n P
—(1 - —), P <gq.
q q

Proof. 1t suffices to prove the proposition for « = 0 and ¢ = 2; since in the
general case of  and ¢, we set F(y,t) = (t™“|F(y, t)[)?* and then apply the
result for the case @« = 0 and g = 2, we will get the desired estimate.

For the first case when @ = 0, ¢ =2 and 0 < p < 2, we can adapt the proof
of [1, Theorem 1] to our setting easily. Hence, we omit the details.

It remains to give the proof for the case « = 0, ¢ = 2 and p > 2. Indeed, for a
positive function g € L/?", we have, by using (3),

zdﬂ(y)dt
([Sa2F T, 8)w // /d(“km v, Img(x)w(x)d,u(x)

. d d
<d / / / |F(y,t>|2Mg(x>w<x)du(x)
X JO d(x,y)<at V( )

d
=d" // |F(y, )* Marw8(»)w(B(y, at)) M((y) )t

where

1
My wg(y) = m B(y,at)g(x)w(X) dp(x).

Assume, for simplicity of writing (involving some constants), that d is a metric.
We then observe that

XB(y,an (X) < XB(x,2an (D)W (2) dp(2).

w(B(y,1) Jep.
It follows
1

w(B(y, at)) Jpy.an
1 1

< — -
w(B(y, 1) Jpp.n w(B(y,at))

XB(y.an (X)g(X)w(x) dyu(x)
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X / X824 (2§ (V)W (x) dp(x)w(z) dp(z).
B(y.at)

Note that in this situation, we have d(y, z) < t and d(x, y) < at, and, hence,
B(y,at) C B(z,4at), B(x,2at) C B(z,4at) and w(B(y, at)) ~ w(B(z, 4at)).
As a consequence, we have
1
w(B(y, at)) Jpy.an
o1
UJ(B(Z, 4at)) B(z,4at)
S ng(Z)-

XBx2an) (2) g (X)w(x) du(x)

g@w(x)du(x)

This implies that
My w8(y) S Miuw[Mygl(y).

Hence,

(Su2F P g / / \F(y. )P My [Magl()w(B(y. a)) ‘;((y) )t

=ad" Foy. zw(B(y,at))du(y)dth )
¢ // /d(x;ml 0l w(B(y, 1)) tV(y, 1) g(x)w(x) dpu(x)

"+nr d/’L(y) l
/X/O /d(x>><z|F( V(1) Mugwx) dp(x)

— &[S, F T, Mog)y
< NS FP g ullMuglzyw S @™ ISF IR L llgl ey

Taking the supremum over all g € L{?/?" with ||g|l(,/2y.» < 1, we obtain
”Sa,ZF”p,w SJ a(;H—m)/z”SZF”p,w-
This completes our proof. O

We have the following corollary.

COROLLARY 3.12. Leta > 1, w e A,,1 <r <00,0 < g <00, € Rand
0 < p < oo. Then there exists a constant C so that

CUGE  Fllpw < IS8, Fllpw < CIGE, Fllp

for all F provided that > > y(r, p, q), where y (r, p, q) is defined by (66).
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Proof. Due to Proposition 3.11, we need only to prove the corollary for a = 1.
Since Sy F < Gy F for any A > 0, it suffices to prove that

1G , Fllpow S ISF ]

Indeed, it is easy to see that
Gy FIY <Y 27 (S5 F1°. (67)
k>0

Hence,
rlq
G:, 1" < [Z 2—’<‘”[S§k,qF1‘f} :
k=0
If p/q < 1, we then have
Gy FIP <) 27748y FIP.

k>0

This, along with Proposition 3.11, implies that

—kph —kpink WDs
IGs  FIID, < 27485 FIIb, < c ) 27 rakmeraysepr

k=0 k=0
S ISeFIL,

aslongas A > y(r, p, q).
If p/q > 1, then from (67), we have

I0GS  F1 W prgaw < Y 27 1SS, F1 Ml g

k=0

Applying Proposition 3.11, we get

pw ~v
k>0 k=0

SISCFIY,

—kqi —kqrnk, Ds
IGs FIIY, < D278y FIIY, S 27kt eraSsep|e

provided A > y (7, p, q).
This completes our proof of the corollary. O

We have the following characterization.
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PROPOSITION 3.13. Let ¥ be a partition of unity. Then for w € Ay, 0 < p,
q <ooanda € R, we have

1Nl por, ~ NG, EVL) Pllpaw ~ 1SEWEVL) )l poo

pg.w

forall f € S, provided that A > y(qy. p, q), where y(q., p, q) is defined by
(66).

Proof. We first prove that ||8;‘ W (t«/f) lpw S ek, First observe that

[ (VL) fF(»)] < ¥ivVL) f(x)
forall A > O and d(x, y) < t. Therefore,

dt
soeDpw<[ [T [ Doyl }
d(x,y)<t

1V(x,1)
1/q
s[/ (t‘“lw;‘(t«/z)f(x)l)qT} :
0
This, along with Theorem 3.5, implies that

1SS VL) Pllpow S N Fll ot -

Pq.w

Due to the above estimate and Corollary 3.12, it remains to show that

1l psr, S 1GE WAV Pl

By Proposition 2.17, we have

1 Y evD f@) Ve
[y (VL) £ (0] < [/x oD A 0. /0 du(z)]

forallx €e X,A >0andr > 0.
This implies that

00 d 1/q
H ( / (t“’ll/f(tx/z)fl)"Tt>
0

Using Theorem 3.5, we obtain the bound

1 g, S UGS WD) Py
as desired. O

SNGE, WAV )l -

pow
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We also have a similar square function characterization for the new Triebel—-
Lizorkin spaces via functions in .#,, (R).

PROPOSITION 3.14. Let w € A, 0 < p <00,0 < g <00, ¢ € R, A > y(qy,
p,q) and ¢ € .7,(R) withm > a/2. Then for each f € S, there exists p € &
such that

||g‘;q<<p<rf ) = PDllpw ~ 8L @ENLY(f = o)) po
S M g, SNGE (@UNL) Pllpw ~ IS @UVL) Pl

Moreover, the distribution p in the inequalities above can be removed if f € L*.

Proof. Arguing similarly to the proof of Proposition 3.13 and using Theorem 3.6,
we show that

IS2@UNLY(f — oD lpaw SN F gt

p.q.w

It remains to prove that

1f e, S NG @AV - (68)
To do this, we divide into two cases.

If g € (0, 1], then applying (60) with A replaced by A + /g, r = g and A —
A —n/q + « > 0 and using (3), we deduce that

2—i+l
Z/ Iw(t«/_)f(x)l)q

JEZ
Zz/z k+1 / 2~ lk=jl(A=r~ii/q+a)q (t"”|(p(t«/Z)f(z)|)q dﬂ(z)ﬂ
JjEZ kel V()C,l) (1 —I—d(x,z)/t))\q t
Hence,
a tlo(tvL) f(2)]) dt
/ (t Iw(t«/_)f(x)l)q— </ /V(x Sy do e HOT

Asa consequence,

00 d 1/q
[ / (r“w(tﬁ)f(x)nq{] < G2 (VD) ().
0

This, along with Theorem 3.6, yields (68).
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If ¢ > 1, then for a partition of unity function i, we have
0 ds . _,
f=c| ¥6VLosVL)f— inS.,.
0 N
It follows that, foreacht > O and x € X,

4t d
Y (VL) f(x) =c w(n/Z)wwL)qo(sﬁ)f(x)Ts.
t/4

Using Lemma 2.6, for A > Z‘i“(’l, we see that

[Y (tv/L) f ()]
" VL ds
/ / V(xVy,s) (s—{—d(x )) lp(s L)f()’)WM()’)T-

Holder’s inequality and Lemma 2.2 then imply that
Y (VL) f 0l

N ' ! a *‘1 VL 14 ds
~ //4/ Vix vy, s)<s+d(x y)> lp(sv L) f(¥)I /L(y)?
s 4 ds 19
[/ /V(xVy s)(s-l-d(x y)) d,u(y)?}

< s ) . ds
~ //4 /X V(x \/y,s) (s +d(x,y) (VL) fF (DI dpu(y) =

Consequently,

o d
/ (t‘“ll/f(tx/z)f(x)l)‘f%
0

0o pat 1 s Aq
<
N/ //4/ VixVvy, s)(s—l—d(x y)>

d
6 loGVD) FODT dun ds d1

rq
<
N/ //4/V(x\/y,s)<s+d(x )’)>

d
—“|<a(s~/_ DD dun’ d ds

5 —a ds
: /o /x Vi(x Vy,s) (s +d(x, y)) (s™“lp(sV/L) f (D) dp(y)—
S Qﬁ’,q&p(tﬁ)f)(x)q-

https://doi.org/10.1017/fms.2020.6 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.6

H.-Q. Bui, T. A. Bui and X. T. Duong 48

This, along with Theorem 3.5, yields (68).
This completes our proof. O

COROLLARY 3.15. Let w € Ay, 0 < p < 00,0 < g <00, ¢ € R, A >
v (quw, p,q) and m > o /2. Then for each | € S', there exists p € & such that

1G5 o Pt (LY = oD pow ~ 1Sy ot (LY = P pow
S llar, S NG Wt (L) Pl pow ~ NSg (P (L) Pl

Pqw

where ¥, (L) = (12L)"e "L,
Moreover, the distribution p can be removed if f € L>.

3.5. Weighted Triebel-Lizorkin space Fggf],w and its characterizations. In
this section, we will give the definition of the weighted Triebel-Lizorkin space

Fg" , and prove some characterizations for this space.

DEFINITION 3.16.. Let0 <g < oo, € Rand w € A. Let ¢ be a partition of
unity. The space F%-% is defined as the set of all f € S/ so that

- V(Q)/
1 s = Q?‘;Bls(w(QV 0

where the supremum is taken over all balls Q in X with radius ry, with the
interpretation that when ¢ = oo, one has

V(Q)
w(Q)?

oo 1/q
> (2f“|wj<ﬁ)f(x>|>4du<x>> ,

Jjz—logyro

Ifllpeye, = sup  sup (

Q: balls j>—log,rp

/ 2f“|wj(~/f)f<x>|du<x>).
0

PROPOSITION 3.17. Let 0 < g < 00,0 € Rand w € Ay. Let Y and ¢ be

partitions of unity. Then the spaces F!'" and F&%" are equivalent. Hence, we

define the space F:Oflw as any space Fgo% with ¢ being a partition of unity.
The proposition is a direct consequence of Lemmas 3.18 and 3.19.

LEMMA 3.18. Let0 < g < 00,0 e Randw € A, with1 < p < oo. Let  and
@ be partitions of unity. Then for each A > np/q + 2np*/q, we have

sup <V(Q)/
o:bas \W(Q)? Jo
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v 1/q
~QSI;H< @ / S @i, VI )f(x)l)"du(X)> .

2
IU(Q) /> logyro

Proof. The proposition follows easily from (36). O

LEMMA 3.19. Let 0 < g < 00,0 € Rand w € A,,1 < p < oo. Let ¢

be a partition of unity. Then for each . > np/q + 2np*/q, we have the norm
equivalence:

su (V(Q)/ S @yt VDl d (x))l/q~||f||- :
0 oms\(Q)? ' e

jz—logyro

Proof. We consider the case 0 < g < oo. It suffices to prove

Vv 1/q
5‘3&( 9 / S @y, VI )f(X)I)"dM(x)) < F e

2
w ( Q) Jj=—logyro

Indeed, fix a ball Q and let x € Q. For j > v, applying Proposition 2.17 with
r = q/p, we obtain

1 (WL q/p P
W;’A(@)f(xﬂqg[ / (D@ dw)]

x V(z,277) (14 27d(x, 2))4/7

1 |Wj(\/f)f(z)|f1/p p
< |:/Q V(z,277) (1 +27d(x, z))*a/» du(z)]

1 lv; (WL) f(2)|9/P ]p
’ [/xvtg V(z,277) (1 +2id(x, z))*/» dp(z)
= Ej1(x) + Ej2(x).

Using Lemma 2.2, we can bound E; ; as follows:

E;1(x) S IM (1 (VL) flxa0) ()17,

Therefore,

V(Q)/ Z 20 E;  (x) du(x)

2
w(Q) [> logyro

\%
S o / S M, (9, (VD) ) OF dia().

~ 2
w(Q) j> logyro
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Since M, is bounded on L?(X), the inequality above and Fefferman—Stein’s
inequality imply that

V(0) . »
@A Z 2] qu’l()C)dx

j=z—logro

V(Q)/ = A

S E 27y, (WL 1d

~ w(Q)? 4Qj2_10g2rg(| [ (VL) f ()N dpu(x)
T

We now use Holder’s inequality to dominate E;,(x) by

[/ 1 [y, VL) f(2))

vo V(z,277) (1 4+ 27d(x, )/

d,u(z):|

1 ) r/p
— (1 +2d(x,z)™"rd . 69
X |:/X\4Q V(z,z-f)( +2/d(x, 2)) M(Z)} (69)

Recalling Lemma 2.2,

’

1 ) r/p
———— (1 +2/d(x,2) " d <1
|:~/X\4Q V(z,2‘1)( +27d(x, 2)) u(z)} S

provided A > np/q.
Plugging this into (69) yields

r o < oo/ 1 ¥, (VL) f @)
PRI L [ o) Viz, 277) (14 27d (x, 2))H/P

du(z)

k=3

A
WK

/ 1
2</+kv)xq/p/ Y .
sio V(z,279) (VL) f@I dp(z)

~
Il
w

2—(j+k=v)(hq/p—n)
V(2¢0)

2—k(q/p—n)
7 V(20 Jso

where v is the integer part of —log,r, and in the last inequality we use the fact
that j > v. Hence, using (5), we deduce that

V(Q) / Z 2jaqu!2(x) du(x)
(Y]

2
w(@)* Jo T

A
NE

/ l¥ (VL) f(2)|? dju(z)
Sk(Q)

k=3

1Y, (VL) f(2)|* du(z),

A
NE

~
Il
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© —k(uq/p—n) V(Q)z/ o
= 27y (VL 74
~ = VERQ) w(Q) QQZ( [ (VL) f (D) dpu(z)

j=v
oo k
< 3 gtz VO / Z @Iy, WD) @D dp(z)
Z w0y Juo &=,

—k(rq/p—n—2
< Dokl gy
00,q,w

k>0
S %
00,9, w

as long as A > np/q + 2np?*/q. Combining the estimates for E;; and E;», we
conclude that

v 1/q
(Lo > VDI ) S s

2
'LU(Q) ]> logyro

which implies the desired result when g < oo.
The proof for the case ¢ = oo is similar with minor modifications, and, hence,
we leave it to the reader. O

PROPOSITION 3.20. Let0 < g < oo, e Randw € A,,1 < p < oo. Let  be
a partition of unity. Then for A > np/q + 2np?*/q, we have

Vix,t) t ds 1/q
7 xe5£?>o<m e /0 (s |‘/f(s\/z)f(y)|)"?du(y))
=t Nag.r(f)
Vix,t) » 1/q
xfﬁflo(w(zz(x 0)? /BM / (™13 VL )f(y)l)q—du(y))
= N)iot,q.L(f)

forall f €S,

Proof. As usual, we will only prove the proposition for 0 < g < oco. We first
claim that

1 et ) S NS gt () (70)
Indeed, from Proposition 2.18, we have, for every j € Z and x € X,

2—J+2

1Y, (VL) fFo)l? < / [y (sv/L )f(x)l"

2752
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Hence, for any v € Z,

Y@ VD F@D S /2

2—J+2 d
VD @D

N

jzv jzv

J
This implies that

V(Q) y
w(Q)>? /QZ@ 1 (VL) f)D? dpa(x)

2—v+2

d
(s*ﬂ«p:(sﬁ)f(x)wf

Jjzv
—v+2

V(Q) [? i ds
S w(Q)2/0 /Q<s |m<s~/Z)f<x)|>qdu(x>?

for every ball Q. Hence, (70) follows.
We next prove that

N)ta,q,L(f) 5 Na,q,L(f)‘ (71)
To do this, we employ Proposition 2.17 to find that

1 d , —Ar 1/r
[ (VL) f ()] < [ / <1 + (); Z)> W(sﬁ)f(zwdu(z)]
X

V(z,s)

where r = ¢g/p. Fix aball Q = B(x, t). Then the above implies that, for every
xeQ,

t ! —Ar
[wiovDron® < [[[ (1 202)
0 § o LJag V(z,5) s

q/r ds
XIS“W(S«/Z)f(Z)I’du(Z)} ~

’ 1 dx,2)\
1
- /0 |:/X\4Q V(Z,S)( * s )

q/r ds
Xls‘“l/f(sx/z)f(z)l’du(z)} —

Using the above estimates and an argument similar to the proof of Lemma 3.19,
we obtain (71).
It remains to show that

Nog.o(f) SISt - (72)

00.q.w
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Observe that for t € 277!, 27V with v € Z,

V(X,t) ' —o dS
wBE )Y s /0 (W VD F D! dy
V(x,2™)

v ds
w(B(x.2))? Y (sVL 43 4
~ w(B(x,27)) A<x,2.,>/o W VD f DT —dy

T [ P D o
~ w(B(x,27))? B(x2’“)2>: z—f—l(s WV DD s (73)

By Proposition 2.16, for A > 0 and s € [27/7!, 27/], we have

Jj+3

WGEVDfOIS D ¥ f), xeX.

k=j—2

Substituting this into (73) and using Lemma 3.19, we obtain (72).
The conclusion of the proposition follows immediately from (70), (71) and
(72). O

THEOREM 3.21. Let0 <g < oo, e R,m > a/2andw e A,,1 < p < 0. Let
¢ € Zn(R). Assume ). > np/q + 2np?/q.

() If p =1, then for each f € S/, there exists p € & so that

K;:,a,q.L(f_lO)
< Vx,t) / /
= sup
vexi>0 \W(B(x, 1)) /e
1/q
x (s~} (VL) (f —p><y>|)q§ du(y)) SUflljer . (74)

@Gi) If p > 1, then

s
Vix, 1) ro ds 1/q
< _ M) o ds
~ xes)?,go(w(B(x, )2 B(x,t)/o (s |§0(S«/Z)f(y)|)‘1 ; du(y))
K%q,L(f) (75)

for every f € S
Moreover, the distribution p in (74) can be omitted if f € L*(X).
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Proof. We will only prove the theorem for 0 < ¢ < oo, as the case ¢ = o0 is
similar and so we omit the details.

We prove (74) first. Recall from (55) that we can find p € &2 such that for each
uel[27V71,27") forsome v € Z and A > 0,

lruVDY(f =)l S D27y, (VD) 1.

Jj€Z

It follows that if ¢ < 1, then we have

o du oo
/ W lg; @/ LY(f = P! == S Y 271y, (VI f 1)
L 1=
(76)
for every v € Z. Therefore, for any ¢ > 0 so that ¢ € [27%~!,27), and x € X,
we have

Vix,t) L d_u
w(B(x,1)? B(xt)/(u |9} VL) (f = p))!— dp

< V(x 1) /

~ w(BG,0)? e
Vix,t) o

< Cm—a)|v—j| o *

S B0 Jyey 2o 22T WL R

vz jEZ

/ Wl D) (f p)l)"—du
2—u]

V>V

Vix,t) Vix,t) /
< 77
~ w(B(x, 1))? Jpn Z Z w(B(x, f))z B(x,1)

V210 j 2vo V210 J<Vo
= I] + 12.

Assume w € A; and A > n/g+2n/q. Choose p > 1 suchthat A > np/q+2np?/q.
Then, since w € A, using Lemma 3.19, we deduce that

LSS, 77)
For the term I,, we have
AL . / 3 grsen-aw-w $7 ga@n-wo-p)
wBGE O Sy 2

x Y1, (VL) ) dp

Vix,1) .
< em—a)wo—j) Y K1) -
ZZ 4 J w(B(x, 1))? /B(X!t)(ZJ W_,,x(\/Z)fquu. (78)

j<wo
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We now claim that
1

V(x, 1) Jpun
1
~Vi(x,29079t) [ i

Qs (VL) f1)! du(y)

@Y, (VD) f) du(y). (79)

Indeed, for any y € B(x,t) and y' € B(x,2" /1) with j < vy, we have d(y,
y') < 27/. Hence,

\ Dl 1V, (WL) £ (2)]
VDO =3 sy T T 20, 5 + 2d0 )y
1. (VL) f(2)]
SSUp—"———"—"7—"
cex (1427d(z, y)*
=y, (VD) ()
so that sup, g, Wi, (VL) F(0) S infyepe oo ¥ (VL) f(3). Thus, (79)

follows.
Using (79) and Lemma 3.19, for each j < v,, we have

V(x,1) _
s [ WD a
V(x,t)? 1

~ w(B(x,1))2 V(x,2077t) Jpua0-in

Vix, 2070 [ @Dy
B(x,2"07/¢)

@y}, (VL) f))? dpe

~ w(B(x,2%in)?
S 1M (80)
where in the second inequality, we used the fact that
Vix,t) < V(x,2"7 )
w(B(x,1)) ~ w(B(x,2%it))’

which is a consequence of the A;-condition (see Lemma 2.1). Inserting (80) into
(78) yields

12 S ”f”‘;—otL
00,q.w
The above estimate for I, and (77) imply (74).
If g > 1, using Young’s inequality and a similar argument, we also obtain that

Vix,t) N B d_u - .
DB P /B » /0 W@ wNL)(f — p)))? = dp () S I g -

This completes the proof of (74) in all cases.
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It remains to prove (75). We first show that
”f”FgoIqw 5 K)T,a.q,L(f)- (81)

To do this, let ¥ be a partition of unity. Assume that r € (27!, 27""2] with v € Z.
By Proposition 2.18, for any A > 0,

Y@y VD F@D S /
2

—j=2
j=v jzv /2

<
0
This clearly implies (81).
Therefore, to complete the proof of (75), it suffices to prove that

2—j+2

t“"fp;‘(s«/z)f(x)lqi—s

2—v+2

d
|t—“¢;‘(sﬁ>f<x>|q7s.

K;:,a,q,L(f) 5 Kot,q,L(f)'

To this end, fix A > A + «. Then for each j > v and ¢ € [1, 2], recall that

By L |(p(2’kt\/z)f()’)|
ok = e
#IEIVDWf0) = supsup 2

Applying (58) with r = g/ p gives

_; =) (A= otV L) f ()]
* 2 J r < 2 (k—j)(A=1)r .
|§0A( t\/Z)f()C)| ~ ,;2}» /X V(Z, 2*]‘)(1 + zkd(x7 Z))M d/L(Z)

Since p = g/r > 1, it follows that

2 ‘ dt r/q
[/ |¢1‘(2"t~/L)f(x)|"7]
1

~wniawe [ [ o VD) f @)1 IR
(k—j)(A=M)r d
S 22 j {/1 |:~/X V(Z7 2_k)(] +2kd(x’ Z))Ar dM(Z)j| P } .

k>
(82)

Fix aball Q and let x € Q. The argument in the proof of Lemma 3.19 then shows
that

[ / lo2* /L) f(2)I" p (Z)]q/’
V@250 + 25dx, o) M
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< IM (19 VL) flxa0) ()1

. 2—tGq/p—n)

- 2—kﬁ qd .
TLVag) i PC YR @ON @

Inserting this into (82), we obtain

2 ‘ dt r/q
[ / |<p;‘(2"t«/f)f(x)|q7]
1

' 2 d r/q
< Zz«cMW{ / [M,<|<p<2kszmgxx)]q{}

kzj

+ Z 9~ k=) (A=2)r

k>j

2 X y—tlrg/p=n) dr )7
x T |<p(2"‘t~/z)f(z)|"du(z)—} :

{/1 ; V') s :
This implies that, for any v € Z,

o dt
> @ gy vVL) f))—

iz

g Z(Z 2—(k—j)(A—)~—a)r{/2

izv Nkzj :

—k+1

r/q\ 4/t
2"“’1[Mr(Iw(tx/z)flxw)(X)]"?} )

27K 0 5—t(rq/p—n)

N —
" 2:(222 J {/2" ,32:3: V2'O) Jsio

jzv Nkzj
dt r/gN\ a/r
x (2*|o(tv'L) f (2)])* dM(Z)T} ) .

We now use Young’s inequality to get the bound:

2—J+l

d
> [ apavDron
2-J

2—k+1

d
t“’"[Mr(|<p(t\/z)f|X4Q)(x)]qTI

27 0 5—t(rg/p—m)

- dt
“loVL a4 .
- Z/zk ; V(2LQ) S[(Q)(t lpvV L) f(2)]) M(Z)t
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It follows that

9—v+l dt
/ (t—“|<p;‘<z~/f)f<x)|>‘17
0

g+l

d
5/ [7014[Mr(|¢(l\/Z)f|X4Q)(x)]qTt
0
2—v+l 0o 27(()«1/‘07”) "
i V(Lo) r t«/Z a4 a
/0 132:3: V@2to) Se(Q)( otV L) f @)D Vv(z)t

Using the above estimate and arguing similarly to the proof of Lemma 3.19, we
deduce that K oL (f) S Kag,.(f). This completes the proof of (75), and, hence,
the theorem follows. O

REMARK 3.22. Itis natural to question if the estimate (74) holds true for w € A.

We note that when L = —A is the Laplacian on R", we show in Theorem 5.6
that the classical weighted BMO space BMO,, (R") coincides with Ffo zAw (R™) for

w € A; N RH,. In this case, the estimate (74) is known as the Carleson measure
condition and, to the best of our knowledge, the problem of obtaining the estimate
(74) on the classical weighted BMO space with all w € A is still open. In this
sense, the restriction w € A; is reasonable.

If we replace the definition of || f| fart in Definition 3.16 by the following
quantity

1/
i (w(Q) / > @ )f(x)l)qw(x)du(x)) B

Q: balls j> logaro

then by a similar argument, we can show that (74) holds true for w € A.

However, one of the main drawbacks of this definition is that when L = — A,
we have FOOo zAw (R™) = BMO(R") for every w € A. See, for example, [13].

We have the following results as a direct consequence of Theorem 3.21.

COROLLARY 3.23. Let0 <g < o0, 0 e R,m > a/2andw € A,,1 < p < .
Assume ). > np/q + 2np*/q. Let W,, ,(L) = (1*L)"e™""L and

|t (L) f (V)]
Wy (L) f(x) = sup —"C— (83)

)eX (I+dx, y)/t)

(i) If p =1, then for each f € S/, there exists p € & so that
( Vix,t)
sup

rex=0\W(B(x, 1))? Jpun

S Ml -

00,q,w

d 1/‘]
/ (s~ (L)(f — p><y>|>q§ dy)
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@{i) If p > 1, then

V(x,t)

. < e
Il e, < sup <w(B(x, 1)?

t dS 1/q
/ (s W s (L) fF DT — dy)
xeX, >0 B(x,t) JO s
forevery f € S'.

Moreover, the distribution p can be removed if f € L*(X).

4. Atomic decompositions

We now prove atomic decomposition theorems for our new Besov and Triebel—-
Lizorkin spaces. We first introduce the definition of weighted atoms related to
L.

DEFINITION 4.1. Let0 < p < 0o, M € N, and w € A,. A function a is said to
be an (L, M, p, w) atom if there exists a dyadic cube Q € D so that:

(i) a = LMb with b € D(LM), where D(L™) is the domain of L¥;
(i) supp L*» C 3By, k=0,...,2M;
(i) |L*b(x)| < £(Q)*M Pw(Q)""?, k=0,...,2M;

where By, is a ball associated with Q defined in Remark 2.4.

4.1. Atomic decompositions for Besov spaces B;‘:;w. Our first main result
in this section is the following theorem in which we show that each function in

Byl can be characterized in terms of atomic decompositions.

THEOREM 4.2. Let @ € R, 0 < p,qg < 0o, M € N, and w € A. Assume

fe B;’;w. Then there exist a sequence of (L, M, p, w) atoms {ag}oep, vez and

a sequence of coefficients {sg} gep, vez SO that
f= Z Z spdg inS..
veZ QeD,

Moreover;

q/pq1/q
(o) ] S 0

VEZL QeD,
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Proof. Let ¢ be a partition of unity and @ be a function as in Lemma 2.5. Due to
Proposition 2.11, for f € S., we have

f= c/mw(rﬁm(rﬁ)f?
0

-1
in &, where ¢ = [fooc 1//(&)@(5)‘%] . As a consequence, by Lemma 2.3, we

have

_cz/ L) DD VD 11

veZ
o—v

d
—c Y / LMD VDS xel 64

veZ QeD,

where V() = £72My (&).

Foreachv € Z and Q € D,, we set
-
o=w(Q)"” SUP/ Il/fM(t«/_)f(y)l—
yeQ J2-v-1

and ap = L"b, where

1 /¥ d
bo = — rW@(wL)wM(tﬁ)f.xQ]Tt. (85)
2—v—1

So

Obviously, we deduce from (84) that

f = Z Z Sodg in 8;0

veZ QeD,
Fork =0,...,2M, we have
k 1 B 2M—k) 1,2 7 \k dt
LFby(x) = S— K (2L) @(t\/Z)[QﬁM(t\/Z)f.XQ]T
0 Jo-

- d
- /2( VK e ryonyn (X, y)wM(t«/_)f(y)dM(y)—t

2—v—1

Using the finite propagation property in Lemma 2.5, we can see that

supp L*b C 3By,
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and

721)(M k)
A e P — / / — Y VD) f ()] du(y)—
2—v— 1 V( 2 )
< 2~ v(2M 2k) (Q) l/p.
It follows that a, is (a multiple of) an (L, M, p, w) atom. We now prove that

q/pl/q
[Zzwq<2|sg|"> } ~ I g,

veZ QeD,
Indeed, for any A > 0, we note that

.
o~ w(@"sup [ | NG
2

yeQ J2-v-1
1/p
< [/ IFL,A(«/Z)f(X)Ipw(X)dM(X)] ,
9

where -

Jood W GNVD) F )14
sup .
vex  (1+2%d(x, y))*

Fiy (WL f(x) =

As a consequence,
> lsol” < /|F;Ak<f)f(x)vw(x)du<x>
0eD,

On the other hand, fixing a m > «/2 and arguing similarly to (55), we obtain

|Fr WD) IS 27y (VL f.

JEZL

Therefore,

[Z » ( Z 5 |p>q/p] 1/q

veZ QeD,
qq1/q
<[Z(z )]
veEZ J€EZ p,w
q1/q
< [Z( S p-em-aliigioys (VL) f ) ] ' 86)
VEZ JEL pw
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Case I: p > 1. We have

[Z zmq( 3 |sQ|P)q/p}l/q

veZ QeD,

q11/4
Z(Z 2—(2m—a)|v—j\2ja ||1//;<A («/Z)f”p’w> } .
At this stage, if ¢ > 1, we then use Young’s inequality and Proposition 3.3 to

N

veZ “jeZ

further imply
q/p1/q ) q1/q
[szw<z |sQ|P> ] < [Z(zfﬂw;(ﬁ)fnp,w) ] ~ N st -
veZ QeD, JEL

Otherwise, if 0 < ¢ < 1, we then have

() T

VeZL
q1/q
g |:Z Z(z(2ma)|VJ21a”w;<’)L(«/Z)f”P,w> i|
veZ jeL
. q1/4
< {Z(zwnw/fmﬁ)fup,w) ] ~ W,
JEL

where, in the last line, we use Proposition 3.3.

Case 2: 0 < p < 1. From (86), we obtain

ze (g )]’

veZ QeD,
o q/pq1/q
< [Z(Zz‘0(2'"“)”J|2J5p||1/f7,x(\/f)f||[z;,w> ] )
veZ N jeL

Ifg/p > 1, we then use Young’s inequality and Proposition 3.3 to get the estimate

q/pl/q . e
[szq(z |sQ|P> ] < [Z(zfa||¢;k(\/f)f||p,w) ] ~ I g, -

veZ QeD, JEZL

Otherwise, if 0 < g/p < 1, we then have

[Z qu< 3 |sQ|P>q/p}w

veZ QeD,
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1/q
< |:Z Z(Z_Qm_a”v_j2ja||1ﬁ_}k,,\(‘/z)f||p,w)qi|

veZ jeZ

1/q
< [Z(zf“||t/f}ix<ﬁ)f||p,w>q] Sy

pgw’
Jj€EZ

where, in the last line, we use Proposition 3.3.
This completes the proof. O

Conversely, each atomic decomposition with suitable coefficients belongs to

> a,L
the spaces B .

THEOREM 4.3. Leta € R, 0 < p,q < oo and w € An. Assume that
f= Z Z Spdg inS.,
veZ QeD,

where {ag}oep, vez is a sequence of (L, M, p, w) atoms and {sg}gep, vez IS a
sequence of coefficients satisfying

[Z qu< Z |SQ|p>q/p}l/q < 00.

vEZ QeD,

Then f € B*L and

p.q,w
q/p1/q
Iz, 5 | 227 3 bor’)

veZ QeD,

H n 1 nquw
provided M > 3 + 5 max{«, TApna ol

Before coming to the proof of Theorem 4.3, we need the following technical
results.

LEMMA 4.4. Letw € A;, N > n,k € [0,1]andn,v € Z, v > n. Assume that
{fo)oep, is a sequence of functions satisfying

Vo) \" dx,xo)\ "
|foI < (m) <1+T> -

Then for % < r < 1 and a sequence of numbers {sg}gep,, we have

> Isollfo)l < 2"<”"><‘?/”>Mw,,( 3 |sQ|xQ)<x>.

QeD, QeD,
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Proof. In the particular case when k = 0, w = 1 and X = R”, this lemma was
proved in [35]. We adapt some of this argument to our present situation.
Fix x € X. We set

By={QeD,:dx,x0) <27, Q=[]0

QeBy
and
Bi={QeD,: 2" <d(x.xp) <2, o= J |JQ keN.
jij<k QeB;
Then we write
D lsol lfo@l = D" D Isol | fo()l
QeD, keN QebBy
V) \(, , dx.xp)\7"
PP Q'(V(x 2 ﬂ)) (H =8 >
keN QeBy
= ZEk
keN

For each k € N, we have

vl V@ Y N vie)y . 17
E.$) 2 (—V(XQ,z—n)> 5ol < 2 [;}{(—V(XQ’Z_O |sQ|}

QebBy

v )( r 1/r
S| () @ sl w e |
Ok QeBy ’

<2kN{ 1 [Z(W(Qk)>l/r
~ w(Qw) Jo, ocB w(Q)

V(Q) K r 1/r
e d . 87
X (v(xQ’ 2,7)) |SQ|XQ(y):| u(y)} 87)
It is easy to see that V(Qy) ~ V(x,27") ~ V(xp,27"**), for each Q € B,.
Therefore,

(MQU)”’( V(Q) >“<(V(Qk>>‘”’( V(Q) )
w(@ ) \V@e.2m) “\V(©@) ) \V(xg. 27

_< V(Qu )‘”’(vocg,z"))‘””
~ \V(xg. 2 V(Q)

5 okng/ron(v=m)(q/r—k)
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Inserting this into (87) gives

i i 1 r 1/r
E, 5 2kN2knq/r2n(un)(q/rK){_ [ |SQ|XQ(y)i| w(y)d,u(y)}
w(Qo) Jo, QXB:

5 271¢(1v7nq/r)2n(vfn)(t?/r*’()./\/lw,r ( Z |SQ|XQ> (x).

QeByi

Since r > ';\,—’?, we find that
Z E, S 2n(v—77)(¢7/r—K)Mw,r( Z |SQ|XQ) (x).
keN QeD,

This completes our proof. O

LEMMA 4.5. Let  be a partition of unity and let ag be an (L, M, p, w) atom
with some Q € D,. Then foranyt > 0 and N > 0, we have

\/z - ¢ v 2M—n U X d(x,xQ) —-N o8
V(v Lag(x)| S =N w(Q) t ooy, ) - (88)

Proof. We now consider two cases: t < 27" and ¢ > 27".

Case 1:t < 27". Observe that
Y (tvLyag = My, (VLY (LMay),

where ¥y (L) = A7y (L).
This, along with Lemma 2.6 and the definition of the atoms, yields

oM d -N
|w(tﬁ)aQ(x)|g/3 Viy t)(1+ ”;”) ILXag(n)dp(y)
BQ )

N 1 dox, )\
5(?”) o p/ggg V(y,r)<1+ : ) ann:

Note that, for# < 27V and y € 3B, we have

-N —N —N
(1+d(x,y>> . (1+d<x,y>> N (1+d(x,xg>) |
t 2 2~
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Therefore,
r\2M Y d(x,x0)\ " V(3By)
W(rﬁ)aQ(x)IS(z_v) w(Q) p(” 2 ) V(. 1)
2M—n -
< (ztv) w(Q)‘””(1 + w) ’

where, in the last inequality, we use (2). This leads us to (88).
Case 2: t > 27". We first write ay = LMb,. Hence,
(v Lyag =ty (tv/L)by,
where ¥y (L) = A2Myr (L).
This, along with Lemma 2.6, implies that

dix, )\ "
l¥ (tv/Lyag (x)| 5/3 e t)<1+ (xt y)> lbo (M) du(y)
‘BQ )

2\ 1 dx, )\
S( p ) w(Q) plBQm(lﬁ-T) du(y).

Note that for y € 3By and t > 27" ~ £(Q), we have

(12252~ 222)

Hence, the above inequality simplifies into

y-v\2M n d(x,x0)\ " V(3Bp)
IW(t«/Z)aQ(XNS(t) w(Q) p<1+ ¢ ) V(y,t)

—v\ 2M -N
,S(zt) w(Q)“/P<1+—d(x’th)) .

—2M

Hence, (88) follows. O
We are now ready to give the proof for Theorem 4.3.

Proof of Theorem 4.3. The proof can be done by using similar arguments to those
in [34, 35]. However, for the sake of completeness, we will provide the details.

Fix g € (qy, o0) and r < min{l, p, g} sothatw € A;jand M > n/2+ng/r—s.
We now fix N > ")—" Let ¢ be a partition of unity. Since

f = Z Z Sodg in Séo’

veZ QeD,
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we then, for each j € Z, have

YWD f =YY so¥;(VD)ag

veZ QeD,

= > s (VDag+ Y Y s (VLag.

viv>j QeD, viv<j QeD,

Using Lemmas 4.4 and 4.5, we see that

WD IS YD se¥i(Whag

veZ QeD,

=y 2<“f'><2M”"é/’>Mw,( >~ Isolw(@) ™" xe

viv>j QeD,
s 2—<2M—"><f—v>Mu,_,(Z |sQ|w<Q)—”PxQ). (89)
viv<j QeD,

Therefore,

1/q
11, - [Z(zmnm(x/—)fnpw)q}

JEZL

|:j€Z< viv>j

x (Z 2"“|sQ|w(Q)—‘/PxQ)

0eD,

o=

JjEL

x (Z 2”“|sQ|w(Q)-”PxQ>

0eD,
=: E\+ E,.

Z 2—(v—j)(2M—n—mj/r+a)er

)q:|l/q
pw

Z 2—(2M—n—01)(j—v)Mw .

viv<j
)q:| 1/q
p.w

N

If p > 1, then we have

e

JEZ “vivz=j

M( > 2““|sQ|w(Q>‘“’xQ)

QeD,

)ti]l/q
p,w
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We now apply Young’s inequality when ¢ > 1 and the inequality (Z la;|)¢
Z,- la;|* when 0 < g < 1 to simplify
>qj| 1/q
p,w

E S [ ( ‘MW(Z 2"[solw(Q)/"x )
VEZL QeD,
as long as 2M > nq/r — «.
On the other hand, since the maximal function M, , is bounded on L? (X) as
p > r, we have

HMW,)‘(Z 2V&|SQ|w(Q)1/pXQ> 5 Z zua|SQ|w(Q)7l/pXQ
QeD, p,w QeD, p.w
1/p
~ (Z 2”°fp|sQ|P> .
Q€eD,

As a consequence,

E < _Z<Z 2v0¢p|SQ|p>q/p']/q _ -22“‘”1<Z |sQ|”>q/p-1/q.

-veZ “QeD, -veZ QeD,
Similarly,
r q/p1/q r q/pq1/q
E, S Z(Z 2vap|sQ|p> — szaq<2 |SQ|P> .
-veZ “QeD, = -veZ QeD, -
Hence,
q/pq1/q
I Fllgse, < [szq(z |sQ|v) }
veZ QeD,
as desired.
If0 < p < 1, then we have
E1 5 [Z(Z 2—p(v—j)(2M—n—m}/r+a)
JE€Z “viv<j
P q/pq1/4q
-1
x Mw<z 2"|so|w(Q) /PXQ> ) ] .
€D, p.w

Arguing similarly to the case p > 1 by considering two cases ¢/p > 1 and 0 <
q/p < 1, we come up with

g (z) T

VEZ QeD,
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By the same manner, we have

q/rq1/q
Ezg[zz“aq<2|sg|f’> ] :

VEZ QeD,
Therefore,
q/pq1/4q
s, 5 | £ 3 ol') ]
veZ QeD,
as desired. O

4.2. Atomic decompositions for Triebel-Lizorkin spaces F;"’qL, »e Our
second main result is the following atomic decomposition theorem for the spaces
F l‘j‘,’;w. More precisely, we prove the following theorem.

THEOREM 4.6. Leta e R,0 < p <00, 0<qg < oo, M e N, andw € Ay. If
f e F]‘f,'(fw, then there exist a sequence of (L, M, p, w) atoms {ag}gep, vez and
a sequence of coefficients {sg} gep, vez SO that

f= Z Z spag inS..

veZ QeD,

Moreover,

SN, (90)

pw

q1/q
[ZW(Z w(Q)‘/P|sQ|xQ> }

veZ QeD,

Proof. Recall that in the proof of Theorem 4.2, we have proved the representation

f= Z Z spap inS.,

veZ QeD,

where

27 d
so = w(Q)"” sup/ |wM<rﬁ>f(y)|7’,
2

)’EQ —v—1
and ap = LMby is an (L, M, p, w) atom defined by

I d
by = — t2M¢(t«/f)[¢M(t~/f)f-xQ]7t-

So Jo—v-1
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It remains to prove (90). Indeed, for any A > 0, it is easy to see that

27Y d
w(Q) 75 xo = sup / |1/fM(r~/Z)f<y)|7t X0 S xoFy (WD) f,
2

yeQ Jo-v-1

where

* e VD) )
FM’;L(\/Z)f(-x) - ilel)li) (1 +2vd(x’ y)))‘ )

As a consequence,

> w(@ Isolxo S Fi (WL .

0eD,

On the other hand, fixing an m > «/2 and arguing similarly to (55), we show that

Fin WD 1S Y27y, (VD) f.

JEZL

Therefore,

q1/q
[ZW(Z w(Q)l“’|sQ|xQ) ]

VeEZ QeD, p,w
q1/4
5 H [Z yvaq (Z 2—2mU—j|w;A(\/Z)f> :|
veZ JEZ pw
q1/4
5 H [Z(ZZ—Zmlv—j+ot(v—j)2jaw;i)h(\/z)f) :|
veZ “jeZ p.w

We then apply Young’s inequality when ¢ > 1 and the inequality (3 jla;D? <
>_;la;|? when 0 < ¢ < 1 to find that

(2

0€D,

1/q
‘ [Z(zf“w;mﬁ)fv]
JEL

S Il

L b
pgw

q1/4q
w(Q)l/p|SQ|XQ) :|

p,w

N

p.w

where, in the last inequality, we use Proposition 3.3.
This completes our proof. O
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For the converse direction, we have the following theorem.

THEOREM 4.7. Leta e R0 < p <00,0 <g <ocoandw € Ay. If
f= Z Z spag inS.,
veZ QeD,

where {ag}oep, vez 1S a sequence of (L, M, p, w) atoms and {sg}pep,.vez IS a
sequence of coefficients satisfying

q1/q
‘[Z 2“‘”(2 w<Q>—‘/P|sQ|xQ) ]
veZ QeD,

then f € F*L and

p.q.w

< 00,
p.w

pgw

q1/q
[22”“"(2 w(Q>—”f’|sQ|xQ> }

VEZ QeD,

I lper, S ‘

pow

i noy 1 nqw
provided M > 3 + 5 max{a, TAend ol

Proof. The proof of this theorem is similar to that of Theorem 4.3. Hence, we just
sketch the main ideas. With the same notations as in the proof of Theorem 4.3,
from (89), we have

2UW,VDIIS Y 2<”f><2M"‘7/’“>Mw,r( > 2”“|sQ|w(Q>”"xQ)

vivj 0eDy
n Z Z(ZM“)(j”)MW,r< Z 2”“|sQ|w(Q)]/pXQ>'
viv<j QeDy

By using (10), we conclude that

1/q
1fll e, = H [Z(zf“|wj<ﬁ>f|>q]

ez p.w
q1/4
< H [ZW(Z w(Q)“"|sQ|xQ) ]
veZ QeD, p.w
This completes our proof. O

REMARK 4.8. By a careful examination of the proofs of Theorem 4.2 and
Theorem 4.6, it is easy to see that each atom ap = L*b,, defined by (85),
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belongs to the spaces of test functions S,.. As a direct consequence of the atomic
decomposition results in these two theorems, the test functions space Sy, is dense

in both B;;;w and Fg;w when 0 < p,q < oo.

We can mimic Definition 4.1 to define new molecules associated with L as
follows: Let0 < p < oo, N >0, M € N, and w € A. A function m is said to
be an (L, M, N, p, w) molecule if there exists a dyadic cube Q € D so that:

() m = LMb;

-N
(i) |L*b(x)| < z(Q)2<M—k>w(Q)—1/P<1 + —"‘,_,é;-’) k=0,....2M;

where B, is a ball associated with Q defined in Remark 2.4.

Then we can adapt the arguments in the proofs of Theorem 4.2 and Theorem 4.6
to obtain the molecular decompositions for our new Besov and Triebel-Lizorkin
spaces. However, we do not aim to present the results in this paper and leave the
details to the interested reader. We note that the molecular decomposition theorem
for the unweighted case was obtained in [37] under the additional assumptions (H)
and (C) by using a different approach. See Remark 6.3.

5. Identifications of our new Besov and Triebel-Lizorkin spaces with
known function spaces

5.1. Coincidence with L} (X) spaces. We have the following results.

THEOREM 5.1. For1 < p < ooandw € A,, we have

Yy, (X) = LI(X). (28]
Proof. Arguing similarly to the proof of [3, Theorem 7.2], we prove that for any
m e NT,
*© dr'”?
H [/ |Wm,t(L)f|2_j| ~ Cpull fllpw- 92)
0 t pw
This, along with Corollary 3.8, implies (91). O

5.2. Coincidence with the weighted Hardy spaces H f’w. LetO < p <1and
w € Ay. The weighted Hardy space H/ , is defined as the completion of the set

{(fel*:S.felL”)
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under the norm ||f||Hf = |8, fl »,.» Where

27 —tL? d“(y)dt
S.f() = [/ /dquL TR )]

The Hardy spaces HLI was initiated in [2]. See also [32]. The theory of Hardy
spaces associated with operators satisfying Davies—Gaffney estimates H; was
established in [44]. The weighted version for H; » Was investigated in [14]. From
Proposition 3.14, we obtain the following.

THEOREM 5.2. Let0 < p < l and w € Ay. Then we have

Hlf),w = FO L

p2w:*

Moreover, we have an interesting characterization for the weighted Hardy
spaces.

PROPOSITION 5.3. Let 0 < p < 1 and w € Ay, and let  be a partition of unity
and ¢ € S (R). Then for any f € L* N HL,w, we have

0 1/2 0 12
H [/ wfa«/Z)fF?] ~ H [/ |¢<rﬁ>f|2?]
0 pow 0

~ NG WAL Hllpw ~ 1S2 W EVL) )l
~ NG @(EN L) Pllpw ~ 1S @EVL) ) poos
where S, and G, , are square functions defined in (64) and (65).

IS ey

L.w

pw

Proof. The proposition follows immediately from Theorems 3.5 and 3.6 and
Propositions 3.13 and 3.14. O

REMARK 5.4. These equivalent norm estimates for weighted Hardy spaces H; ,,

are new. It is worth noticing that in the particular case when ¢(§) = £2¥¢~%" with
M > 1, the equivalent estimate in Proposition 5.3

00 dr 12
1 fllg, ~ H [ / |<o(tﬁ>f|2ﬂ
0

p.w

e dr'"?
‘ [/ |(t2L)Me—l2Lf|2_}
0 t pw

Note that this estimate was proved in [41] (see also [33]) for M = 1.

reads

I llap, ~

L,w
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5.3. Coincidence with the weighted BMO spaces BMO,, ,,(X)

DEFINITION 5.5. Let w € Aw. The function f € &' N L} (X) is said to be

in BMO, ,,(X), the weighted space of functions of bounded mean oscillation
associated with L, if

I.fllBmo,.,x) 1= sup —/ (I — e 3 f(0)|du(x) < 0o, (93)

B: balls W(B)

The unweighted BMO space BMO, (X) associated with operators L was first
introduced by [31]. The weighted version was studied in [19, 40].
It was proved [40, Theorem 5.5] that when L = —A on R”, we have

BMO_, ,(R") = BMO,(R") (94)

forall w € A, N RH,, where
BMO,,(R") = {f € Liy. : 1 fllemo,, == sup —/ |f = feldx < OO}
B: balls W (B)

We now prove the coincidence between the weighted BMO space BMO, ,,(X)
and the weighted Triebel-Lizorkin space F2E (X).

00,2, w

THEOREM 5.6. We have the following identities:

(a) BMO,(X) = F;gg(x.) in the sense that if f € BMO(X), then f € Fo'5(X);
conversely, if f € F&é(X), then there exists p € &P so that f — p €
BMO, (X).

(b) Let w € A; N RH,. Then we have BMO,,(R") = FooO zAw(]R”) in the similar
sense to that of (a).

Proof. (a) It was proved [47, Theorem 4.2] that

! _2L g2 ds 12
sup ( / |s2Le e Lf|2—d,U~(Y) ~ | fllemoy o (x)-
xexi>0\ V' (X, 1) Jpi.n Jo s

This, along with Theorem 3.21, implies the assertion.

(b) It was proved in [40] that

|B(x, 1) / / ey 1y o ds )1/2
(Rmy ™~ SU Ae* 21 —e* ) fI"—d .
I/ llemon e xEX,?>O<w(B(x )? S 8 /1 s Y

Using this and Theorem 3.21, we derive part (b). ]
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5.4. Coincidence with the weighted Sobolev spaces W;:ﬁ,. For s € R, we
define L% : S, — S, by setting

1 e dt
s2e - —s/2 m,—tL ¢“"
LV f = Fon —s/2) /0 1@ L))" e f ; 95)

foranym € N,m > s/2.
Arguing similarly to Proposition 2.10, we can prove that the right-hand side in
(95) converges in S,,. Moreover, by integration by part, we can see that

1 > dt 1 o dt
—s5/2 m,—tL 7" __ —s/2 L,—tL ="
F(m—s/Z)/o rraLye T f = F(E—s/Z)/O Ly e S

foranym,? e N,m, £ > s/2.
Therefore, L*/? given by (95) is well defined as an operator from S, into S,..
Moreover, it is easy to check that

LY[LPf1=L“"Pf, VfeS.. (96)

We now define the weighted Sobolev spaces W;:ﬁ, as follows: Let s € R,

1 < p <ooand w € Ay. The weighted Sobolev space W;’j) is defined as the
completion of the set

{f €Su I fllpw < 00}

under the norm || f |y = 152 F 1l oo

THEOREM 5.7. Lets e R, 1 < p < oo and w € Ay. Then we have

7s,L __ ps,L
Wp,w =F

p.2w*
Proof. From Remark 4.8, we need only to show that

Wit NS =Fy, NSx.

p.2.w

Indeed, let f € F*L NS, and ¥ be a partition of unity. Then by Theorem 5.1

p.2,w
/
p

wl=r"?

and the spectral theory, for g € L

(L f,8) =

* d
c];,// w3(tﬁ)Ls/2f(x)g(x)7tdu(x)
X JO

*© d
cy / / wz(t«E)Ls/zf(x)w(rﬁ)g(x){du(x)
XJO
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Scy

00 1/2
[ / w(tﬁ)zv/zflzﬂ
0

00 12
[ / Iw(t«/L)glz%]
0

-1
where ¢, = [ s w3(s)%] , and we use Holder’s inequality in the last

p.w

X

’

powl=r'

inequality.
On the other hand, since w € A, w'r e A, . By Theorems 5.1 and 3.5, we
have
o° ,dt 12
8l — ~ N8y wi=r' -
W (tvVLg| lgll
0 t p =

Therefore,

o0 1/2
[ / |w<r~/Z>L“'/2f|2$] (97)
0

LS8 S IIgII,,/,wl,/'

p.w

Using (95), we have
VAVDLP () = / WPy D)Ly e (Y V)
rm-—s/2) J, u

2 )
:/ —l—/ o=t Eq(x, 1) + Ex(x,1).
0 12

Fix A > max{n/q,nq,/p} and M > (A + s)/2. By Lemma 2.6, we have, for

N > n,
12 2\ M —N—-X
t 1 d(x,
Eenls [ fur(L 4 40
o Jx u V(x,u) u

d
< [W (VD) F ) du(y)Tt

2 o\ M=1/2 Y
< /Z /us/z t_ 1 1+ d(x,y)
~Jo Jx u Vix,u) u

d
X YD) £ (x) du(y)Tt

S VL) f ().
Similarly, we have
|Ex(x. )] S 1797 (VL) f (x).

Hence,

W2 (VL)L £ ()] S 79 (VL) £ (x). (98)
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Inserting this into (97), then using Theorem 3.5, we get that

o dt 12
[ / <z—“w;‘<rﬁ>f>27}
0

S gl L f o -

(L1 ) S Mgl v '

p,w

p.2,w
Conversely, let ¢ € . (R) so that ¥ is a partition of unity. Then for f € W;i N
Swo, by (96), we have

12
Il o= H [Z(z—”w%z—fﬁ)ﬂ)z]

JEZL

This implies [|L72 f || < 11 £ sor . Hence, Y, NSx = Wik NS,

p.w

5 ‘

1/2
[Z(z—m—sﬂw%z—fJZ)(L”ZW]

JEZ

pw
Arguing similarly to the proof of (98), we have, for each j € Z,

L™y @IVLILP ) S 209, (VDL ).
Therefore,

1/2
‘ [Z |x/f;iA(fL>(L-“/2f)|)2}

JEZ

. <
1fllpse S
p,w

This, together with Propositions 2.16 and 3.3, yields
wr < |\IL*2F) -
1t S UL Flljor .

On the other hand, from Theorem 5.1, we have ||LS/2f||I;~0,2L ~ L2 fl -
p2w

Hence,
2
I Nese, S NL -

This completes our proof. O

5.5. Coincidence with weighted Hardy—Sobolev spaces H S;fp For s € R,

0 < p < 1and w € A, the weighted Hardy—Sobolev space H S;”LU is defined as
the completion of the set

{feSx: ||LS/2f||H£w < oo}
under the norm || 1l ;5. = ||L5/2f||H[ _» Where H{ , is the weighted Hardy space

defined as in Section 5.2.
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THEOREM 5.8. Lets € R, 0 < p < land w € Ay. Then we have
os, L __ ps,L
HSpqw =F,5,

Proof. Since S, is dense in both spaces, we need only to verify that

as, L __ s, L
HS)W NS =F)5, NS

We first verify that F;éw NSy C HS;’,IZL N Sx. Indeed, if f € F;:iw N S, then
by Theorems 5.2 and 3.5, we have

’

pow

p.w

00 172
1 s = 1L f g, ~ H [ / W(r«/f)(L'*”f)q
0

where ¥ € .7 (R) so that v/ is a partition of unity.
At this stage, we argue similarly to the proof of Theorem 5.8 to obtain that

I Ngr, S WS Mgt

which implies F7, NSy C HSSE NS,

p.2.w
The converse direction is similar and we omit the details. O

6. Comparison with classical Besov and Triebel-Lizorkin spaces

DEFINITION 6.1. Let0 < p < 00, w € A, and € > 0. A function « is said to be
a (p, w, €) atom if there exists a dyadic cube Q € D, such that:

(i) supp a C 3By;
(i) la(x)| < w(Q)~"7;

d s €
(i) |a(x) —a(y)| < w(Q)””(%) ;

(iv) [a(x)du(x) =0.

LetO0 < p < 00, w € Ay and € > 0. We say that a function f has a (p, w, €)
atomic representation of Besov type if

f:Z ZSQ&Q inL2

veZ QeD,
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where {ap} is a sequence of (p, w, €) atoms and s := {sp} is a sequence of
numbers satisfying

q/pq1/q
[ZW(Z M) ] <.
QeD,

veZ

Then the weighted Besov space is defined as follows.

DEFINITION 6.2. Leta € (—1,1),0 < p,g < oo and w € Ay. The weighted
Besov space B¢, is defined as the completion of the set of all L>-functions

having a (p, w, €) atomic representation of Besov type under the norm

£ sy, , = inf{ [Z 2“‘”(2 |sQ|">W] ’ F=y3 sQaQ}-

VEZ QeD, veZ QeD,

1

Similarly, the weighted Triebel-Lizorkin spaces F, , is defined by replacing

the quantity
q/pq1/4q
DIERIO DI I
QeD,

VveZ

qq1/q
[ZW(Z w(Q)‘”'|sQ|xQ> }

veZ QeD,

REMARK 6.3. Up to now, we have stated and proved our results under rather mild
assumptions on L; namely, we have assumed that L is a nonnegative self-adjoint
operator for which its heat kernel p,(x, y) satisfies the Gaussian upper bound
(GE). In some applications below, we will require L also to satisfy one or both of
the following additional conditions:

p.w

(H) There exists §, € (0, 1] so that

_ dx, ©)\* 1 d(x,y)2>
— < —
|pt(~x’ Y) pt(xv Y)| ~ ( ﬁ ) V()C,\/E) exP( ct (99)

whenever d(x, ¥) < +/t. (Holder Continuity Property.)

© f v Pi(x, y)dp(x) = 1forall y € X and ¢ > 0. (Conservation Property.)

We have the following estimate.
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LEMMA 6.4. Let @ be a function as in Lemma 2.1. Also assume that L satisfies
(H). Then for any M € N, we have

d(x,i)>8° 1

|K(t2L)M¢(tﬁ)(x7 y) - K(tZL)M¢(tﬁ)(~i7 y)| 5 < P V(X, l)

whenever d(x, x) < t.

Proof. The proof of this lemma is similar to that of [57, Theorem 1]. We leave
the details to the interested reader. O

The following theorem is the main result of this section.

THEOREM 6.5. Assume that L also satisfies (H) and (C). Then we have

pa,L . pa

Bl =B, (100)
Jorall o € (=69,30),0 < p,q < 0o and w € A such that @ +n + 8 > %"
and . .

Foel — pe (101)

p.q,w p.q.w

forall o € (=8, 8),0 < p,qg < ooand w € Ay such that @ +n + 5y > %

Proof. We will only prove F o = F - ¢.0 Since the proof of B;‘:;w = B;‘, g CAN
be done similarly.
We split the proof into two steps.

Step 1: Proof of F;‘;;w NL? — F;‘,q,w N L2. To do this, we will employ the same
notations as in the proof of Theorem 5.6. If f € F @l , N L?, then repeating the
proof of Theorem 5.6, we can find a sequence of (L, M, p, w) atoms {ap} pep, vez

and a sequence of coefficients {s¢}gep, vez SO that
f = Z Z sQaQ in L2
veZ QeD,
where .
1 2 2, M dt
ap=— [ (@LeEVDYuaVD) fxol

SQ 2-v

and, moreover,
q1/q
‘ [Z 2”‘*‘1(2 w(Q>‘“’|sQ|xQ) }

VEZ QeD,
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We now claim that each (L, M, p, w) atom is also (p, w, &) atom. Indeed, it
is clear that each (L, M, p, w) atom satisfies (i) and (ii) in Definition 6.1. The
argument as in Lemma 9.1 in [23] implies that an (L, M, p, w) atom satisfies (iv)
in Definition 6.1. The condition (iii) in Definition 6.1 can be verified by making
use of Lemma 6.4, and, hence, we omit the details. This completes the first step.

Step 2: Proof of F¢ N L*> < F*L N L2 To do this, we need the following
estimates.

LEMMA 6.6. Let ag be a (p, w, 8y) atom associated with some dyadic cube Q €
D,,v € Z. Then, for any N > 0, we have the following:

N 27 o—t2L < —pf ) dxxp) ) Y —v.
(1) [t"Le™ Fap(x)] S w(Q) 7 1+ =5 Jorallt <277

.. 27 2L < (2 8 V(0) d(x,x0) - v
(i) [t°Le " ag(x)| S 1+ ,forall 277 < t.

1 V(xg.D) 2

Proof. We just sketch the main ideas. Denote by ¢, (x; y) the kernel of t Le™". (i)
If x € 6B, then from Lemma 2.6, we have

2
|t?Le " tagy(x)|

. 1 dx, y)\ 0 fd(x, y)\®
1/
< w(Q) p/ﬂ(y,z)(” t ) ( - ) du(y)

w(Q>‘/"(L)80
2—v

3o —N
~ w(Q)_l/”(%> <1 + %) (since y € 6By).

N

If x ¢ 6By, then we have d(x,y) ~ d(x,xg) = 27". This, together with
Lemma 2.2, implies that

P ) 1 d(x,y)
2 t°L < Y
[t"Le™ Tag(x)| < w(Q) p/33Q V(y, 1) (1 i !

8o —-N
< —p( L d(x’y)>
<@ () (144
1 d(x,y)>K
1 d
X/wg V(y,n( T H

8o —-N
(1 d(x,y)>
< w(Q) "(—z_u> (1+ =) .
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where, in the last inequality, we use Lemma 2.2.
This completes the proof of (i).

(i1) By (iv) in Definition 6.1, we can write

|t2Le*’2LaQ(x)| =

/ [gr2(x, y) — g2 (x, xp)]ap(y) du(y)‘.
SBQ

Since ¢g,(x,y) = 2fx qi2(x, ) piya(z, y)sdu(z), we see that g,(x, y) satisfies
(99). Hence,

2
[t?Le " "agy(x)|

d(y.xg)\* 1 dx, xg)\ "
/33Q( t ) V(xg, 1) <1+ P ) lag(Mdu(y)

_ 2-v\ % V(Q) d(x,xg) N
1/
w(Q) P< t ) V(xg,1) (1 t ) ’

AN

AN

This completes the proof of (ii). O

We now turn to the proof of Step 2. Using Lemma 6.6 and arguing similarly to
(89), we have

-2 —(v—j n—nq/r —
|t2Le ILf| ,E Z 2 v=j)(Go+ q/ )Mw,r<2 |SQ|w(Q) l/pXQ>

PR>Y 0eD,
+ 3 25°<fv>/\/lw,,( > |sQ|w(Q)1/PXQ).
viv<j QeD,

At this stage, the argument in the proof of Theorem 4.7 (see also Theorem 4.3)

shows that f € F}',, provided that o +n + 8 > 5. O

REMARK 6.7. Some comments for the condition o + n + 8y > ZqTLZ are in order:

(1) If 1 < p, g < oo, the identities (100) and (101) hold true for all & € (—&y, 8p)
and w € Ay with ¢, < min{p, g} x ¥,

(i1) If w = 1, the identities (100) and (101) hold true for all n+”—80 < p,q < 00
and —n—308) <a < d.

pAg
7. Applications

The theory of Besov and Triebel-Lizorkin spaces have a wide range of
applications. See, for example, [7, 20, 28] and the references therein. In this
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section, we just give two applications to the fractional power and the spectral

multipliers. Further application would be an upcoming project and will be
investigated in the future.

7.1. Fractional powers

THEOREM 7.1. Let s € R and let L*/* be defined as in (95). Thenfor a € Rand

w € Ay, the fractional integral L*/*> maps continuously from Bp 4w N0 Bg;swL
for 0 < p, g < oo and from F,‘j‘qu into Fl‘j‘;’“‘waorO <p<ooand0 < q <

Proof. Let v be a partition of unity and let ¢ € . (R) be supported in [1/4, 4]
such that ¢ = 1 on [1/2,2]. For f € FelL (X), using (95), we have

Pqw

1 * d
VVDL () =y / u oD L) ey (VD) )=
- 0

12 o0
:/ +/ o= hL(x, )+ L(x,1).
0 12

Fix A > max{n/q, nq,/p} and M > (A + s)/2. By Lemma 2.6, we have, for

N > n,
s [ [ (55
< YD F O dp()
L L) ()
V(x u) u
x Wf(t«/f)f(x)du(y)T
S 1YV £ (x).
Similarly,
L. D S Y VD) f ().
Hence,

[y (VL)L £ ()] S 79 (VL) £ (x).
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This, along with Theorem 3.5, implies
, o0 " dt 1/q
”L‘/ f”quu(X) (/ [t_"’”T//(l‘\/Z)L.s/ f”pw]q7>
0
o0 dt 1/q
< ( / [t“||w:<rﬁ>f||,,,w]‘17)
0

~ I g oo
Arguing similarly by using the item (b) in Theorem 3.5, we obtain

2
”Ls/ f”qu“(X) ~ ||f||F°‘+‘L

This completes our proof. O

7.2. Spectral multiplier of Laplace transform type. Letm : [0, c0) — Cbe
a bounded function. We now define

m(L) = / h tLe "tm @) dt (102)
0

to be the spectral multiplier of Laplace transform type of L. We have the following
result.

THEOREM 7.2. Leta € R and w € A. Then the spectral multiplier of Laplace
transform type m(L) defined by (102) is bounded on B;‘:;w(X)for 0<p,g<o©
and is bounded on F[‘j‘;;w(X)forO <p<ooand0 < g < oo.

Proof. We will provide the proof for the Triebel-Lizorkin spaces. The

boundedness on the Besov spaces can be proved similarly.

Let v be a partition of unity. For f € F ) qL »(X), we have

4s d
Y (sVLYR(L) f(x) = ¢y w(uﬁ>m<L)w<s~/Z)f—”

2 d d
—cw/ / m(t*)(t*L)e” wm«ﬂwsf)f(x) rau
s/4

o[l
s/4 J0 s/4 Ju

=: E(x) + F(x).
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Fix A > max{n/q, nq,/p}and N > n. From Lemmas 2.6 and 2.2, we have

’ ~N-x di d
|E<x>|<//ouzv(y u)< (xuy)) WGVDFO) A T2

dee )\ dt du
//4/ /usz,s)( +T> W VI f O dr(y)—-—
/ /_‘“(Sf)f<X>——~%<sf>f<x>

Similarly, for M > A/2,

d()c,y)>_N_A
F < 1
IFOIS //4/ () V(w)( =

x | (sv/'L )f(y)ldu(y)——

e de, )\ (L de )T
N///() V<yr><1+ ) (+57)

X ¢ (VL) f ()] du(y)77

4s o) 2M—x dt d
~[ () wevhreT
s/4 Ju t t

~ Yi(sVL) f(x).

Asa consequence,

1y (sv/Lym(L) f (x)| < ¥ (svV/L) f(x).

Therefore, the conclusion of the theorem follows immediately from Theorem 3.5.
O

REMARK 7.3. Theorem 7.2 only requires the Gaussian upper bound condition
for the operator L. This is a very mild condition and allows us to apply the
results to a large number of applications such as the sub-Laplacians on Lie
groups of polynomial growth, the Laplacians on the Heisenberg groups or the
Laplace—Beltrami operators on certain Riemannian manifolds. For further details
concerning examples satisfying this condition, we refer to [30, Section 7] and the
references therein. It is natural to ask the question on the sharp estimate for the
general spectral multipliers of L. This problem is more complicated and we leave
it as an upcoming project.
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7.3. Dispersive estimates and Strichartz estimates

7.3.1. Dispersive estimates and Strichartz estimates for abstract operators. In
this section, we assume that (X, d, i) further satisfies the following condition:

V(x,r) 2 r" forsomen > 1andforall x € X and r > 0. (103)

Let L be a nonnegative self-adjoint operator on L?(X) satisfying the Gaussian
upper bound (GE). In addition, we assume that the operator L satisfies the
following assumptions:

(D) There exists T > 0 so that L satisfies the standard L' — L dispersive
estimates for all |¢| < T

le"E FL < 11721 £ (104)

The dispersive estimate (D) plays an essential role in obtaining the Strichartz
estimate. See, for example, [48]. We now discuss some classes of operators which
satisfy conditions (D):

(a) It is worth noticing that the Laplacian on R” satisfies (D) with T = oo.
Moreover, the Hermite operators L = —A+|x|?> on R”, the twisted Laplacian
on R”

| , .
L= ;[(axj — iy + 0, —ix;)’]

and the second-order differential operators on Heisenberg groups considered
in [53] also satisfy the condition (D) with any T < w/2. See, for
example, [29, 53].

(b) Let L = —A + V be a Schrodinger operator in R® with the potential V
satisfying the following conditions:

/ VIV o
R3xR3 lx — )’|2

and

\%
Vi =: sup/ ﬂdy < 4.

ver3 Jre X — Y
Then, L satisfies (D). See [56, Theorem 2.3].

(c) Consider the following Schrodinger operator L = —A+V (x))+-- -+ V(x,)
on R". Assume that the potential V > 0 is a real-valued function satisfying
(1 + [x/»V(x) € L'(R). Then L satisfies (D) for T = oo. See, for
example, [55, Corollary 1.6].
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(d) Let L = —A+V be a Schrodinger operator on R” with V > 0. We state a set
of sufficient conditions for the operator L to satisfy (D) for T = oo (see [65]):
n>=3,py>n/2,8>3n/2+ 1,4, =0ifn =3 and ¢, = [(n — 1)/2] if
n>4,and V : R" — R satisfies

19 VillLro(x—y1<1y < Va| < £o. (105)

(1+ |x]?®’

(e) Apart from the above examples, the dispersive estimate (D) is satisfied for the
wide range of Schrodinger operators on product manifolds and for Laguerre
operators. For further details, we refer the reader to [15, 55].

Our main aim in this section is to study the dispersive estimates related to the
flow ¢"VL. It is well known that ¢V~ can describe the solutions to the wave
equation

Uy +Lu=0
via the following identities
eit\/z_i_efit«/z

eiu/f _ efitﬁ
cos(tv/L) = 5 , sin((vL) = —
l

We recall the following estimate in [15].

THEOREM 7.4. Assume that (X, d, ) satisfies (103). Let W € Cfo([l, 21). Then

nt+

ST fll 1t < T, f € L2, (106)

le™Ey; (WL flle S 27
where ; = ¥ (277-) forall j € Z.

THEOREM 7.5. Assume that (X, d, ) satisfies (103) and L satisfies the Gaussian
upper bound (GE) and (D). Then for |t| < T, we have

i _n=l
He™EFI e ST UL e (107)
Bnc,z BI,Z
i _nzl
e E fllim S 1T NS (108)
1,1
and
e”ﬁ n—1
ST (109)
‘ \/z L>® Bl,12 ‘
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Proof. We give the proof for (107) only, as the other two estimates can be verified
in the same manner. Let v € C2°([1/2, 2]) be a partition of unity, that is,

D 00 =1,¥2 > 0.

JjEL

Using the fact that ¥; = ¥; (¥, + ¥; + ;) for each j € Z and Theorem 7.4,
we have, for each v € Z,

19, (VL)™' £l
||(1/fv+1<f L) + ¥, (VL) + ¥ s WD) (VL) £ 1
S 2 1 1 (VL) £l

It follows
VY (WD) flle S 17T 27V [y WINL)E T f
which proves (107). O

The estimates in Theorem 7.5 lead to the following results concerning the
propagator e'VL.

THEOREM 7.6. Assume that (X, d, ) satisfies (103) and L satisfies the Gaussian
upper bound (GE) and (D). Then for2 < g < 0o, we have

; _n=lq_2
e Flle ST TDULN wrao20s (110)
q'.q
and
eitﬁ 2,
’ ﬁf ST D0r Clanslas2yn (111
L4 q'.q
forall |t < T.

Proof. We first note that
e flle < 1 £llia
Since L*(X) = BSZL (X) (see Theorem 5.1), this implies that

£l ~ £ 1o (112)

This together with (108) implies that

itN/L -5l
1™ Fllae,ro, S 1 ey
2 ll

0.9
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Taking 6 = 1 —2/q and using the interpolation theorem in [18, Proposition 3.18],

we get (110).
Similarly, from Theorem 5.7, we have
L= f e~ 11 ;20 (113)
which implies
itvL
< H—1/2,L .
vind PELALE
At this stage, using the real interpolation as above, we get (111). O
Another implication of Theorem 7.5 is the Strichartz estimates for the flow
VL on the new Besov spaces scale.

DEFINITION 7.7. For o > 0. We say that the pair of exponents (g, 6) is sharp
o-admissible if (¢,0,0) #(2,1,1),2<g= 3,60 €[0,1].

We say that the pair of exponents (g, 6) is o-acceptable if either g € [1, 00),
6 €[0,1]and g > = or (g,60) = (o0, 0).

THEOREM 7.8. Assume that (X, d, u) satisfies (103) and L satisfies the Gaussian
upper bound (GE) and (D) with T = oo. Then for all sharp "—;l-admissible pairs

(q,0) and (g, 6), the following Strichartz estimates hold true:

e Fllpm S N1 f Nz (114)
o0
/ e VEFs)ds| S IFy, (115)
0 12 ’
and
/ dNVEF(s)ds|  SIFLy, (116)
s<t L!B) re
COL M,L
where By = (B, , Bl_"; )o.2-

Proof. We first note that by Theorem 5.1, we have

its/L
le™E Flle < S llee 2 1S N o

Note that from the atomic decomposition theorem and the standard argument (see,
for example, [42, Theorem 8.11]), we can show that

_ntl g . ontl o ,
Boo,24 =(Bl,; )
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This and (107) imply

n—

1
FNFN wsr
BIZ

eV £ St

(8:5)
Hence, the statements of the theorem follow immediately by [48, Theorem 10.1].
O

REMARK 7.9. The inhomogeneous estimate (116) can be improved for all %—
acceptable pairs as in [59, Theorem 1.4]. We do not pursue this problem and leave
it to the interested reader.

7.3.2. Dispersive estimates for Schridinger operators with large rough
potentials. As in [28], we consider the following Schrddinger operator

L =—-A+ YV onR' n > 3. For a potential V, we say that V belongs to
the Kato class if y

lim sup / Ly)lz dy=0

r=0 yeRn lx—yl<r Ix - }’|"_

Moreover, the Kato norm of V is defined by

V)l
IVl = sup/ 0L gy

x€R",r>0J |x—y|<r |X - )’|”72 '

Note that all results in this section hold true for n > 3. However, for the sake
of simplicity, we consider the particular case n = 3.
As in [28], we assume the following conditions:

(a) V is areal potential which belongs to the Kato class;
(b) V =V, + V, satisfies

(i) Vi is compactly supported and has a bounded Kato norm, and
1) [1Vallic( + [IVillc/4m) < 4m;

©) IV_llx < 27 where V_ = min{V, 0};

(d) the integral equation f 4+ Ro(A + i0)Vf = 0 has no nontrivial bounded
solution for any A > 0, where Ry(z) = (—z — A)~', z € C.

Under conditions (a)-(d), L is a nonnegative self-adjoint operator satisfying
Gaussian upper bound, that is, the kernel p,(x, y) of e™'% satisfies

Cc Ix —yI?
pt(x,y)éﬁew(— po .

We now prove the following estimates.
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THEOREM 7.10. Assume that L satisfies (a)—(d). Then for all t > 0, we have

e flloe S M e (117)
1™l S 07 f e (118)
and
etve .
vl I (119)

Proof. Similarly to Theorem 7.5, it suffices to prove that for ¥ € Cfo([l, 2D,

le™E VL) flle S 2 S e, 0> 0 (120)

where ¢; = ¢ (27/+) forall j € Z.
Indeed, by an argument in [28, pages 74—76], we obtain that

Isin(t~/LYyr; (VL) flle <227 £l (121)
and

lleos(tv/LYy; (VL) flle < 2267 £l (122)
Hence, this proves (120). L]

Similarly to Theorem 7.8, we also obtain the Strichartz estimate for the flow
eVEL.

THEOREM 7.11. Ass~ume that L satisfies (a)—(d). Then for all sharp 1-admissible
pairs (q, 0) and (g, 0), the following Strichartz estimates hold true:

1™ Fllm S 1 f Nz (123)

o0
/ VERGs)ds| SN, (124)
0 L?
and
/ ei(l*S)x/zF(s)ds SFlag (125)
s<t LB t
where By = (B, B\’})s».
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