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DENSE SETS AND FAR FIELD PATTERNS FOR ACOUSTIC
WAVES IN AN INHOMOGENEOUS MEDIUM*

by DAVID COLTON

1. Introduction

In this paper, we shall obtain two results on the class of far field patterns
corresponding to the scattering of time harmonic acoustic plane waves by an
inhomogeneous medium of compact support. Although the problem of characterizing
the class of far field patterns is of basic importance in inverse scattering theory, very
little is known about this class other than the fact that the far field patterns are entire
functions of their independent (complex) variables for each positive fixed value of the
wave number. In particular, the class of far field patterns is not all of L2(df2) where dil is
the unit sphere and this implies that the inverse scattering problem is improperly posed
since the far field patterns are, in practice, determined from inexact measurements. The
purpose of this paper is to show that while the class of far field patterns corresponding
to the scattering of time harmonic plane waves by an inhomogeneous medium is not all
of l3(dQ), it is dense in L2(5Q) for sufficiently small values of the wave number. In
addition, a related result will be obtained for a special translation of the class of far field
patterns. Analogous results for the scattering of time harmonic acoustic waves by a
homogeneous scattering obstacle have recently been obtained by Colton [1], Colton
and Kirsch [2], Colton and Monk [3, 4] and Kirsch [8].

We now want to be more precise on what we are going to prove. Consider the
scattering due to an inhomogeneous medium of compact support of the incident plane
wave

u'(x, t)=exp[ifex-a-iajt] (1.1)

where fc>0 is the wave number, w is the frequency and «, |«| = l, is the direction of
propagation. Then for xeR3 the scattered field has the asymptotic behavior

Hkr-ot) j

F(*fc) + OKJ (1.2)
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where x = x/|x| and r = |x|. The function F(x;k, at) is known as the far field pattern
corresponding to the incident wave (1.1). Now let «1,«2»-" be a countable dense set of
vectors on the unit sphere and define the sets

F = span {F(x;k,*n):n = 1,2,...}
(1.3)

, «!):«= 1,2,...}.

The aim of this paper is to show that for k sufficiently small, we have that F = L2(3Q)
and to furthermore explicitly characterize the orthogonal complement Sx of S.

2. Wave propagation in an inhomogeneous medium

Consider the propagation of the acoustic time harmonic plane wave (1.1) through an
inhomogeneous medium of compact support. Let c(x), xeR3, denote the local speed of
sound and assume that c(x)=co>0 for r= |x |>a where co is a constant. Then, if
k = a>/co>0 is the wave number, n(x)=(co/c(x))2, and we factor out the term e~iat, under
appropriate assumptions (cf. [6]) the mathematical problem we are faced with is to
determine the velocity potential u(x) of the total field such that

= 0 in/?3 (2.1)

(2.2)

r-»oo
lim r(^--iktA = O (2.3)

\ Of J

where us(x) denotes the scattered field and the Sommerfeld radiation condition (2.3) is
assumed to hold uniformly for x on the unit sphere dQ. We shall make the assumption
that n(x) is positive, continuously differentiable and that

B = {xeR3:n(x)^l} (2.4)

is simply connected and contains the origin. In particular, this implies that for xeB
either c(x)>c0 or 0<c(x)<c0.

The scattering problem (2.1)—(2.3) is easily seen to be equivalent to the integral
equation

u(x) = exp[ikx-«] -k2 JJ <D(x,y)m(y)u(y)dy (2.5)
B

where

m(x) = l -n (x ) (2.6)
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and

5 ^

Noting that for xeB, m(x) is either always positive or always negative, we assume
without loss of generality that m(x) is positive for xeB and define the Hilbert space
L2

m(B) by

L2(B) = ju(x):w(x) measurable, JJ m(x)|u(x)|2dx<ool (2.8)

with inner product and norm given by

,*) = JJm(x)/(x)g(x)dx
(2.9)

I/2

(If m(x) is negative for xeB then m(x) must be replaced by — m(x) in the above
definitions.) We can now write the integral equation (2.5) in operator notation as

u (2.10)

where T:L2(B)-*L2(B) and /a(x)=exp[ifcx-a]. In [5], it was shown that

where

M=maxm(x) (2.12)
xeB

and hence by the contraction mapping principle (2.10) is uniquely solvable for
fe2<v/6/2Ma2. Letting x tend to infinity in (2.5), we see that for Jt2<N/6/2Ma2 the far
field pattern, as defined by (1.2), is given by

F(x; k, a) = - £ - ] J exp [ - ikx • y]m(y)U(y) dy. (2.13)

471 B

Finally, we note that the adjoint of T in L%,(B) is given by

(2.14)
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where O(x, y) denotes the complex conjugate of <D(x, y).

3. Far field patterns

We shall now show that for k2<^/6/2Ma2 we have that F = L2(dfi) and, in addition,
shall characterize Sx.

Definition. Let j/(fe|x|) denote a spherical Bessel function and Yfix) a spherical
harmonic. Then H is the vector space

H = span{jt(k\x\)Y?(x): I = 0,1,2,..., - / ^ m ^ 1}

and H is the closure of H in L^B).

Theorem. Let k2 < ,/6/2Ma2. Then F=L2(dCl).

Proof. Let geL2(dQ). We must show that if

0 (3.1)

for « = 1,2,... then g(x) is identically zero. Suppose (3.1) is true. Then from (2.10) and
(2.13) we have

= JJ ^(ymi + ̂ TryayMy) dy

B

where v(y) is the Herglotz wave function

v(y) = jn g(x) exp [ifcft • y] ds(x) (3.3)

with Herglotz kernel g(x) (cf. [7]). From the expansion

00 I

exp[jfcy'ix] = 47i £ £ i'Ji(k\y\)YT(y)YT(a) (3.4)
l = Om=-l

and the fact that the set {«„} has an accumulation point, we see from (3.2) that
w=(I + k2T*)'1Defli. Since v can be approximated in L2(B) by a function in H
(approximate g(x) by a finite series of spherical harmonics) and convergence in L2(B)
implies convergence in L2(B), we can conclude that veH.
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Now let P-.LKB)-*^ be the projection operator from L2(B) onto H1. Then from the
above discussion, we have that

0=Pv = Pw + fc2PT* w

= w + k2PT*w (3.5)

and since ||P|| = 1 and ||T|| = ||T*|| we can conclude from (2.11) and the hypothesis of the
theorem that /c2PT* is a contraction mapping. Hence, from (3.5) we have that w=0.
Since v = w + k2T*w, we also have that v=0 and hence g=0 ([7]). This establishes the
theorem.

If fc2^N/6/2Ma2 it is not in general true that F = L2(dfi). For examples in the case of
a spherically stratified medium, see [5].

We now proceed to the characterization of S1. In order to do this, we need to
consider the interior transmission problem defined as follows: Find t; e C2(Clb) n C^Qj)
and weC2(nb)r\C\Cib) where fii = {x:|x|<b}, b>a, such that

=0 infi6 (3.6)

2n(x)w=0 inn 6 (3.7)

e-ikr
e

w(x) - v(\)= on dClb (3.8)

If k2 < ̂ /ft/lMa2, the existence of a unique (weak) solution of (3.6H3.9) was established
in [5].

Theorem. Let k2 < ̂ /f>l2Ma2 and {v, w} be the unique (weak) solution of the interior
transmission problem. Then

(a) / / v(\) is a Herglotz wave function with Herglotz kernel g(x), then S± = span{^}.
(b) / / t;(x) is not a Herglotz wave function, then S± = {0}.

Proof. Let geL2(8Q) be such that

£ [F(x; k, an) - F(x; k, ai)]g(x) ds(x)=0 (3.10)

for n = l, 2 Then, as in the previous theorem, we can conclude that wo =
(l + k2T*)~1v0eM1 where v0 is the Herglotz wave function defined by the right-hand
side of (3.3),

M=span {eila"-eikx"l:n= 1,2,...} (3.11)
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and M1 is the orthogonal complement of_M in L*(B). From (3.4) we can conclude that
M is a subspace of H, but is not_all of H since vo(k|x|) ' s n o t m M. If M1 denotes the
orthogonal complement of M in H, then M1 has dimension one since from the proof of
the previous theorem we have that

H = span {e*x<-:n = 1,2,...}. (3.12)

In particular, if P:R->ML is the projection operator from H onto M1 then

M1=span{P/0}. (3.13)

Finally,

(y) <*y=JJ m(y)eik"'iPj0)(y)dy
B B

(3.14)

= constant

for n = 1,2,... and hence from (3.4) we have that

fj m(y)tik\y\)Y?(y)(Pjo)(y)dy = 0 (3.15)

for /= 1,2,..., -l^m^l.
Now let xeR3\B. Then from the addition formula for Bessel functions and (3.15) we

have that

(T*P/0)(x) = JJ $(x, y)m(y)(P;0)(y)dy
B

=—ttm(y)jo{k\y\)(Pj0)(y)dy
r B

(3.16)

But since P is a projection operator, P = P2, P* = P, and hence

I! P i \—(i P 2 i \ — (1*i P i ^ — I l P i II2 C\ \1\

Uo>r7o/~Uo> " Jo) — \*Jo' "Jo)~\\"Jo\\ • x-3-1')
Since Pj0 is not zero, we can conclude that

(3.18)
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Returning now to the beginning of the proof, we have that

(3.19)

where heHL and y is a constant. Hence, vo=(l + k2T*)wo and for xedilb we have

wo(x)-t;o(x)=-fc2(T*wo)(x)

= -fc2y(T*P,0)(x)

= -k2yc (3.20)

and similarly

-(x\ -(x\= —k2vc G211

Since v0 is a solution of (3.6), wo=(I + fc2T*) iu0 is a solution of (3.7). If y = 0, then by
the uniqueness of the solution to the interior transmission problem we have that uo=O
and hence g = 0 whereas if y does not equal zero then v= —(l/k2yc)v0, w= —(l/k2yc)w0

is the unique solution of the interior transmission problem. This establishes the theorem.
We note that in the case of a spherically stratified medium, v(\) is in fact a Herglotz

wave function and hence S1 = {g} where g{\) is the Herglotz kernel of v(x) ([5]).
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