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THE FINITE-TIME RUIN PROBABILITY
WITH DEPENDENT INSURANCE
AND FINANCIAL RISKS
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Abstract

Consider a discrete-time insurance risk model. Within period i, the net insurance loss is
denoted by a real-valued random variable X;. The insurer makes both risk-free and risky
investments, leading to an overall stochastic discount factor ¥; from time i to time i — 1.
Assume that (X;, ¥;), i € N, form a sequence of independent and identically distributed
random pairs following a common bivariate Farlie-Gumbel-Morgenstern distribution
with marginal distribution functions F and G. When F' is subexponential and G fulfills
some constraints in order for the product convolution of F and G to be subexponential
too, we derive a general asymptotic formula for the finite-time ruin probability. Then,
for special cases in which F belongs to the Fréchet or Weibull maximum domain of
attraction, we improve this general formula to be transparent.
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1. Introduction

Following the works of Nyrhinen (1999), (2001) and Tang and Tsitsiashvili (2003), (2004),
we consider a discrete-time insurance risk model. Within period i, the net insurance loss (equal
to the total claim amount minus the total premium income) is denoted by a real-valued random
variable X;, i € N. Suppose that the insurer makes both risk-free and risky investments, which
lead to an overall stochastic discount factor ¥; from time i to time i — 1. See, e.g. Section 4.1
of Hashorva et al. (2010) for the structure of these overall stochastic discount factors. In the
terminology of Tang and Tsitsiashvili (2003), (2004), we call {X;, i € N} insurance risks and
{Y;, i € N} financial risks. Thus, the sum

Snzixi]l_[y, neN, (1.1)

i=1  j=1

represents the stochastic present value of aggregate net losses up to time n. As usual, the
probability of ruin by time » is defined to be

m

V(x;n) = Pr( max in ]_[ Y; > x>, neN, (1.2)
j=1

1<m<n 4
i—

=1

where x > 0 is interpreted as the initial wealth of the insurer.
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Since the work of Tang and Tsitsiashvili (2003), there has been a vast amount of literature
on the asymptotic behavior of the ruin probability of this risk model in the presence of heavy-
tailed insurance and/or financial risks. It has been common to assume that both {X;, i € N} and
{Y;, i € N} are sequences of independent and identically distributed (i.i.d.) random variables
and that they are independent of each other. Undoubtedly, this assumption of complete inde-
pendence is unrealistic. A recent new approach is to introduce various dependence structures
to the risk model. In this direction, we refer the reader to Goovaerts et al. (2005), Tang (2006a),
Zhang et al. (2009), Weng et al. (2009), and Yi et al. (2011), among many others. However,
there are few papers which take into account the dependence between insurance and financial
risks, with the difficulty existing in describing the tail behavior of the product of dependent
random variables.

In the present paper we assume that (X;, Y;), i € N, form a sequence of i.i.d. random pairs,
and that a generic random pair (X, Y) has dependent components. We use a bivariate Farlie—
Gumbel-Morgenstern (FGM) distribution to model the dependence structure of (X, Y). Recall
that a bivariate FGM distribution function is of the form

M(x,y) = F&)Gy)(1 +0F(x)G(y)), (1.3)

where F' and G are marginal distribution functions and 6 is a real number fulfilling |#| < 1
in order for I1(-, -) to be a proper bivariate distribution function. Trivially, if 6 = 0 then
(1.3) describes a joint distribution function of two independent random variables. We refer the
reader to Kotz et al. (2000) for a general account on FGM distribution functions, and to Tang
and Vernic (2007) and Cossette et al. (2008) for applications of FGM distribution functions to
risk theory.

First, under the assumption that F in (1.3) is a subexponential distribution function while G
fulfills some constraints in order for the product convolution of F and G to be a subexponential
distribution function too, we derive a general asymptotic formula for the ruin probability
Y (x;n). Here the product convolution of F and G, denoted as F ® G, is understood as
the distribution function of the product X*Y*, where X* and Y* are two independent random
variables with X* identically distributed as X and Y* as Y.

Next, for some special cases in which F is a distribution function in the Fréchet or Weibull
maximum domain of attraction, we improve the general asymptotic formula to be transparent.
The obtained asymptotic formulae successfully capture the impact of the underlying dependence
structure of (X, Y).

The rest of this paper consists of three sections. In Section 2 we give some preliminaries on
subexponential distributions and maximum domains of attraction. Section 3 contains the main
results, and the proofs are presented in Section 4.

2. Preliminaries

Throughout the paper, all limit relationships are according to x — o unless otherwise
stated. For two positive functions f(-) and g(-), we write f(x) < g(x) or g(x) = f(x)
if limsup f(x)/g(x) < 1 and write f(x) ~ g(x) if lim f(x)/g(x) = 1. We also write
f(x) < gx)if 0 < liminf f(x)/g(x) <limsup f(x)/g(x) < oo.

A distribution function F on RT = [0, c0) is said to be subexponential, written as F' € 4,
if F(x) =1 — F(x) > 0forall x € Rt and

F2*(x) ~ 2F (x),
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where F?* denotes the two-fold convolution of F. More generally, a distribution function
F on R is still said to be subexponential if the distribution function F(x) = F(x) 1{x>0)
is subexponential. It is well known that every subexponential distribution function F is long
tailed, written as F € £, in the sense that the relation F(x 4+ y) ~ F(x) holds for some (or,
equivalently, for all) y # 0; see Lemma 1.3.5(a) of Embrechts ef al. (1997). Following the
works of Konstantinides et al. (2002) and Tang (2006b), we say that a distribution function F
on R belongs to the class 4 if F' € 4 and the relation

F
fim sup 1 _ Q.1

x—oo F(x)

holds for some ¢ > 1. Note that (2.1) is really a mild constraint and is fulfilled by almost all
useful distribution functions with unbounded supports. Thus, as remarked in Tang (2006b), the
class 4 almost exhausts the class 4.

Under the assumption that the insurance risk X follows a distribution function F € 4 or
A, we will derive a general asymptotic formula for the ruin probability ¥ (x; n). In order to
further improve this general formula to be transparent, we need to introduce several concepts
in extreme value theory.

A distribution function F on R is said to belong to the maximum domain of attraction of an
extreme value distribution function Fp, written as F € MDA (Fp), if

lim sup |F"(apx + by) — Fo(x)| =0 (2.2)
n—>oo XER
holds for some constants a, > 0 and b, € R, n € N. Only three choices for Fj in (2.2) are
possible: the Fréchet, Gumbel, and Weibull distributions, which we denote by ®,, A, aﬂd v,
for o > 0, respectively. A distribution function F belongs to MDA (®,,) if and only if F(-) is
regularly varying at oo with index —c«, that is, the relation
F
lim T _ -a
X—>00 F(x)

holds for all ¢ > 0; see Theorem 3.3.7 of Embrechts et al. (1997). Hence, MDA(®,) C 4;
see Lemma 1.3.1 of Embrechts ez al. (1997). A distribution function F with an upper endpoint
X =sup{x € R: F(x) < 1} < oo belongs to MDA (A) if and only if the relation

. F(x +ca(x))
lim —— =
i F(x)

e—C

holds for some positive auxiliary function a(-) and all ¢ € R. Recall that the auxiliary function
a(-) is asymptotically equivalent to the mean excess function of F, namely, a(x) ~ E[X —
x | X > x] as x 1 x; see Theorem 3.3.27 of Embrechts er al. (1997). Almost all distribution
functions with rapidly varying tails are included in MDA (A). A distribution function F belongs
to MDA (¥,,) if and only if its upper endpoint X is finite and the relation

F(% —c/x)
m —- =
¥—00 F(% — 1/x)

o

holds for all ¢ > 0; see Theorem 3.3.12 of Embrechts et al. (1997).
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3. Main results

Recall the insurance risk model introduced in Section 1. In the sequel, denote by F on R,
G onR™, and H on R™ the distribution functions of X, ¥, and XY, respectively. Throughout
the rest of the paper, F' is assumed to be heavy tailed and, to avoid triviality, G is assumed to
be nondegenerate at 0. For each i € N, denote by H; the distribution function of X; ]_[’j:l Y;.
Note that H = H;.

Our first main result is as follows.

Theorem 3.1. Assume that (X;, Y;), i € N, form a sequence of i.i.d. random pairs following
a common bivariate FGM distribution function (1.3) with 6 € (—1, 1]. Furthermore, assume
that F € 8 and that there is a function b(-): RY +— RT such that the following statements
hold simultaneously:

(@) b(x) 1 oo,

() b(x)/x |0,

(©) G(b(x)) = o(H (x)), and
(d) F(x —b(x)) ~ F(x).

Then, for each n € N, the distribution function of S, belongs to the class 8 and the ruin
probability ¥ (x; n) satisfies

Y(xin) ~Pr(S, > x) ~ Y H;(x). (3.1)
i=1

Assumptions (a)—(d) of Theorem 3.1 were first proposed in Cline and Samorodnitsky (1994)
when establishing subexponentiality for the product of independent random variables; see
Lemma 4.1 below. These assumptions automatically hold if Y is bounded above. Recall that
F ® G stands for the product convolution of F and G. With 8 € (—1, 1], relations (4.4) and
(4.7) below show that H (x) < F ® G(x). Thus, for this case, the set of assumptions (a)—(c) is
equivalent to the set of assumptions (a), (b), and

(c*) G(b(x)) = o(F @ G(x)).

Of course, (c*) is easier to verify than (c).

As remarked in Tang (2006b), (c) requires that b(-) diverge to oo not too slowly while
(d) requires that it diverge to oo not too fast. Very often (d) appears to be too restrictive for
applications. In our second main result below we drop this annoying assumption.

Theorem 3.2. Assume that (X;, Y;), i € N, form a sequence of i.i.d. random pairs following
a common bivariate FGM distribution function (1.3) with 6 € (—1, 1]. Furthermore, assume
that F € A and that there is a function b(-) : RT > R such that (a)—(c) hold simultaneously.
Then, for each n € N, the distribution function of S, belongs to the class A and the ruin
probability ¥ (x; n) satisfies (3.1).

Intereitingly, as mﬂnmarized in Lemma 4.6 below, (a)—(c) amount to the assertion that the
relation G(cx) = o(H (x)) holds for all ¢ > 0. This latter assertion is much easier to verify
than (a)—(c).
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We end this section with a corollary of Theorems 3.1 and 3.2 in which we focus on improving
the asymptotic formula given in (3.1) to be completely transparent within maximum domains
of attraction.

Corollary 3.1. Assume that (X;, Y;), i € N, form a sequence of i.i.d. random pairs following
a common bivariate FGM distribution function (1.3) with 6 € (—1, 1].

(i) If F € MDA(®,,) for some a > 0 and E[Y*¢] < oo for some & > 0, then

. o * *\ 00 1_(E[Ya])n—
Yx;n) ~ (1 -60)E[Y* ]I+ 0E[(Y] VY,) ])T[YQ]F(X), 3.2)

where Y| and Y3 are two independent random variables identically distributed as Y .

(i1) If F € 8 "MDA(A) with an auxiliary function a(-) and G € MDA (W) for some o > 0
with an upper endpoint 0 < y < 00, then

5}l+1 X i
wixin) ~ (1 +9)Z <y ><F(a+ 1)G(y - Ta(y ))) . (33

Relation (3.2) suggests that if further E[Y*] < 1, the following simple asymptotic formula
for the infinite-time ruin probability should hold:

(1—-0)E[Y¥]+0E[(YVYH*]—
Y(x;00) = Pr( max ;X l_[Y >x> ~ Eve 1 2 Fx).

<m<oo

Indeed, this can be easily proven by Theorem 1 of Grey (1994). We omit the details. Also, note
that, when $ = 1, relation (3.3) admits the following substantial simplification:

Y n) ~ 1+ (a+ 1)f(x)6(1 - ai—x)) (3.4)

Since the right-hand side of (3.4) does not involve n, the same asymptotic formula should hold
for the infinite-time ruin probability, though we still cannot prove it at this stage.

4. Proofs
Recall relations (1.1) and (1.2). Clearly,

Pr(ix,»]l_[yj >x> §I/f(x;n)§Pr<iXi+ll_[Yj >x>, 4.1)
i=1 j=1 i=1 Jj=1

where Xl+ = X, 1;x,>0y denotes the positive part of X;, i € N. For the proof that (3.1) holds
in both Theorems 3.1 and 3.2, if we can establish that the second asymptotic formula in (3.1)
holds by not requiring the assumption that F(0—) > 0, then the same asymptotic formula
should hold for the right-hand side of (4.1) as well. In this way we will have completed the
proof of (3.1). Furthermore, we note the simple fact that

S,,:Xn:XilL[YJ-an:XiﬁY-, neN, 4.2)
i=1  j=I i=1  j=i
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due to the i.i.d. assumption for the sequence {(X;, Y;), i € N}, where ‘2 denotes equality in
distribution. Denote by 7, the sum on the right-hand side of (4.2). Therefore, we only need to
prove the relation

Pr(T, > x) ~ Zﬁi (). 4.3)
i=1

4.1. Proof of Theorem 3.1

The following lemma is a restatement of Theorem 2.1 of Cline and Samorodnitsky (1994),
which is crucial for establishing our Theorem 3.1.

Lemma 4.1. Let X and Y be two independent random variables with distribution functions F
on R and G on R™, respectively. Denote by H the distribution function of their product XY .
We have H € 8 if F € 8 and there is a function b(-) : RT + R such that (a)—(d), namely,

e b(x) 1 oo,
b(x)/x |0,

G(b(x)) = o(H(x)), and
F(x — b(x)) ~ F(x)

hold simultaneously.

Recall the generic random pair (X, Y) in the insurance risk model in Section 1. Introduce the
six independent random variables X*, XT, X3, Y*, Y}, and Y, with the first three identically
distributed as X and the last three identically distributed as Y. In the proof of Theorem 3.1 we
also need the following lemma.

Lemma 4.2. Let (X, Y) follow a bivariate FGM distribution function (1.3) with 0 € (—1, 1].
Under (a)—(c), it holds that

Hx)~ (1 —=0)Pr(X*Y* > x) + 0 Pr(X* (Y] V Y}) > x). (4.4)
Proof. Note the decomposition
N=0+46)FG —0F>G —0FG?* + 06F*G>. 4.5)

Clearly, X7 Vv X3 is distributed by F Zand Y Vv Y7 is distributed by G?. Thus, it follows from
(4.5) that

H(x) =Pr(XY > x)
= (14+0)Pr(X*Y* > x) — O Pr(X} v X5)Y* > x)
—OPr(X* (Y] VYy)) >x)+0Pr((X] Vv X5) (¥ VYY) >x). (4.6)

In terms of the function 5(-) in (a)—(c), we have

b(x)
Pr((X3 Vv XHY* > x) = / Pr(XT VX;> ;) dG(y) + 0(G(b(x)))
0

b(x) o
— 2+ o0(1) / Pr(X* > ’;C) dG(y) + 0(G(b(x)))
0

= 2+ 0(1)Pr(X*Y* > x) + o(H(x)).
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Similarly as above,
Pr((XFV XYV YE) > x) = 2+ 0(1))Pr(X* (Y] V Y5) > x) + o(H(x)).
Substituting these estimates into (4.6) yields
H(x) = (1-6 +0(1) Pr(X*Y* > x) + (0 + o(1) Pr(X*(Y] V ¥3) > x) + o(H (x)),

which implies relation (4.4).

When 6 € (—1, 1], we apply the two-sided inequality
Pr(X*Y* > x) < Pr(X*(Y{ VY)) > x) <2Pr(X*Y* > x)
to obtain an asymptotic estimate for the right-hand side of (4.4) as
(1 =0)Pr(X*Y* > x) + 0 Pr(X* (Y] VYy) > x) < Pr(X*Y™* > x). 4.7)

Therefore, there is no problem with the implication in the last step of the proof of Lemma 4.2.
When 6 = —1, however, we need to be aware that the right-hand side of (4.4) could reduce
to o(Pr(X*Y* > x)), e.g. when F is rapidly varying tailed and G does not assign a mass at
the upper endpoint 0 < y < oo. For this case, (4.4) may fail to give an exact asymptotic
relationship. This explains why we have to exclude & = —1 in Lemma 4.2 and hereby in
Theorems 3.1 and 3.2.
Lemma 4.2 offers the following insight. For6 € (—1, 1], introduce a function Gg(-) : R
RT as
Go(y) = (1 —0)G(y) +0G*(y), (4.8)

which clearly defines a proper distribution function on R™. Furthermore, introduce a nonnega-
tive random variable Zy distributed according to Gy and independent of (X, Y). Then relation
(4.4) can be rewritten as

Pr(XY > x) ~Pr(XZg > x). 4.9)

In this way, the dependence structure of (X, Y) is dissolved.

By Lemma 4.1, it is easy to establish the subexponentiality of the independent product X Zg
in (4.9). Also, recall that the class 4 is closed under asymptotic equivalence; see, e.g. Theorem 3
of Teugels (1975). Therefore, by relation (4.9) we readily arrive at the following result.

Lemma 4.3. Let (X, Y) follow a bivariate FGM distribution function (1.3) with 0 € (—1, 1].
If F € 8 and (a)—(d) hold then H € §.

For a distribution function F on R, under (a), (b), and (d), it is straightforward to verify that
the relation
F(x —cb(x)) ~ F(x) (4.10)

holds for all ¢ > 0. The following lemma is inspired by the work of Zhou et al. (2011).

Lemma 4.4. Let (X, Y) follow a bivariate FGM distribution function (1.3) with 6 € (—1, 1].
Under (a)—(d), it holds for all ¢ > 0 that

H(x — ch(x)) ~ H(x). 4.11)
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Proof. We only need to prove that (4.11) holds with ¢ = 1. For arbitrarily fixed0 < ¢, < 1,
by (4.9) we have

H(x — b(x)) ~Pr(XZg > x — b(x))
e 1 b(x) 00 _
- (/ +f +f +/ )f(—x b(x)>dG9(y)
0 e 1 b(x) y
4
— Z[,.(x). (4.12)
i=l1

We deal with the four terms on the right-hand side of (4.12) one by one. By (a) and relation
(4.10) with ¢ = 1/e¢, it holds for all large x that

hx) < F(X_T”()‘))Gaqo, el

< F(; _ 1b( ))Geao, e

< (1+8)Gy((0, eDF(f)

—q +8)MPr<X -1z g)
Go(e) €

<+ a)%(ze:]) Pr(XZy > x).
0

Similarly, it holds for all large x that

I_/x  bx)
hx) < / F(— - —) dGo(y)
e y 3

1
e
y
<q +5)/ ( )dGm)

By (b) and (d), it holds for all large x that

b(x) X b(x) _ /y
I3(x) < / (— - b( )) dGe(y) = ( +8)/ F(—) dGo(y).
1 Y y 1 y

Finally, by (4.8) and (c),
I4(x) < Go(b(x)) < G(b(x)) = o(H (x)).
Substituting these estimates into (4.12) yields

H(x — b(x))

b(x)
<a +5)%€)€DP 1(XZg > x) + (1 +a>/

o\&

(;C) dGe(y) + o(H(x))
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S(1+6)

~

<M n 1) Pr(XZy > x) + o(H (x))
Gy(e)

Go((0, €] —
~1+6)|—+1)H(x),
1+ )< o (®) + ) (x)

o\E

where in the last step we used (4.9) again. Letting both ¢ | 0 and é | 0 on the right-hand side
above leads to H (x — b(x)) < H(x), which is equivalent to (4.11) with ¢ = 1.

The following lemma is well known and can be found in Embrechts and Goldie (1980),
Cline (1986, Corollary 1), and Tang and Tsitsiashvili (2003, Lemma 3.2).

Lemma 4.5. Let Fy and F, be two distribution functions on R, and let F = F1x F,. If ) € 4,
Fye L, and Fr(x) = O(F1(x)), then F € 8 and F(x) ~ F1(x) + Fy(x).

Proof of Theorem 3.1. As mentioned in the beginning of this section, we only need to prove
that relation (4.3) holds and that the distribution function of 7,, belongs to the class 4. We
proceed by induction on n. Note that

(1:1) G(b(x)) = o(H (x)) and H (x — b(x)) ~ H(x) (by Lemma 4.4),

(1:2) relation (4.3) trivially holds forn = 1,

(1:3) T = XY, follows a subexponential distribution function (by Lemma 4.3).
Now assume that

(n:1) G(b(x)) = o(H,(x)) and H, (x — b(x)) ~ H,(x),

(n:2) relation (4.3) holds for n,

(n:3) both X, ]_[;le Y; and T, follow subexponential distribution functions.

We will prove that these assertions hold for n + 1, namely,

(+1:1) G(b(x)) = o(Hp11(x)) and H 11 (x — b(x)) ~ Hpy1(x),

(n+1:2) relation (4.3) holds for n + 1,

(n+1:3) both X1 ]_[;’:} Y; and T, follow subexponential distribution functions.

First, note that 7,, and X,4+; are independent of each other, that, by (n:3), both follow
subexponential distribution functions (hence are long tailed), and that, by (n:2), if G(1) > Othen
Pr(X,41 > x) = O(Pr(T, > x)), while if G(1) = 0 then Pr(7}, > x) = O(Pr(X 41 > X)).
Thus, by Lemma 4.5,

n
Pr(T, + Xpq1 > x) ~Pr(T, > x) + Pr(Xp41 > x) ~ ZE (x) + F(x), (4.13)
i=1
where in the last step We_used (n:2).
Consider (n+1:1). If G(1) > 0 then

n+1
Hap1(x) > Pr(Xn+1 [[vizx1n>1... %> 1) >Hx)G)".
j=1

Thus, G(b(x)) = o(H(x)) = o(Hu41(x)). If G(1) = 0 then the relation G(b(x)) =
0(H4+1(x)) trivially holds since G(b(x)) = O for all large x. Moreover, note that, since
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H,(x —b(x)) ~ Hy(x) by (n:1), the proof of H,1(x — b(x)) ~ Hp41(x) is similar to but
easier than the proof of Lemma 4.4.

Next, consider (n+1:2). Introduce the six independent random variables X*, X7, X3, Y*,
Y l* and Y2*, as for Lemma 4.2, and let them be independent of 7,,. Similarly as done in (4.6),

Pr(Ty+1 > x) =Pr((Ty + Xyt 1) Yny1 > X)
= (14 0)Pr((T, + X*)Y* > x) — 0Pr((T, + X vV X5)Y* > x)
—OPr((Ty + XN YV YY) > x) +0Pc((Ty + XE v XYV Y > x)
— (1 +0)J1(x) — 0J2(x) — 0J3(x) + 0J4(x). (4.14)

We only deal with the tail probability J;(x) in detail. By (4.13), for x > 0,

b(x) 00 X
Ji(x) = </ +/ )Pr(Tn—f—X’k > —) dG(y)
0 b(x) y
bx) /My _/x -
=1+ 0(1))/ (Z H, <;> + F<;>> dG(y) + 0(G(b(x)))
0 i=1

[ (G) 7))o

where we have used G (b(x)) = o(1) [~ F(x/y) dG(y) due to (c) and relations (4.4) and (4.7).
In a similar way, with some obvious modifications, we have

Sy X X
Ja(x) ~ / (Z H; (—) + 2F<—)) dG(y),
0 iz y y
Sy x X
J3(x) ~ / (Z H; (—) + F(—)) dG*(),
0 Ny Y Y
Sy X X
Ja(x) ~ / (Z H; (—) + 2F<—)) dG?*(y).
o \7=% \» y
Substituting these estimates into (4.14), and then using (4.8) and (4.9), we obtain

Pt =0~ [T H (%) a6 +a -0 [TF(2)acw)
o =\ o \y

+6 /oo f<f> dG2(y)
0 y

n+1 00 ¥
=Y Hix)+ / f(—) dGo(y)
i=2 0 Y

n+1

~ Zﬁi(x)’ (4.15)
i=1

showing that relation (4.3) still holds for n + 1. . .
__ Finally, consider (n+1:3). Note that H, € 4§ by (n:3) and that G(b(x)) = o(Hp(x)) and
H,(x —b(x)) ~ H,(x) by (n:1). Thus, applying Lemma 4.1 we obtain H,4+; € 4. In other
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words, H; € 8 C L foralli =1,...,n+ 1. Hence, by (4.15), T,,+1 is long tailed. Moreover,
by (4.15) again, if G(1) > O then Pr(T,41 > x) =< H,1(x), while if G(1) = 0 then
Pr(T,,1 > x) < H(x). Therefore, for both cases, applying Theorem 2.1(a) of Kliippelberg
(1988) we obtain the subexponentiality of 7,,4. This completes the proof of Theorem 3.1.

4.2. Proof of Theorem 3.2

The following two lemmas are restatements of Lemma 3.2 and Theorem 2.1 of Tang (2006b),
respectively.

Lemma 4.6. For two distribution functions G and H with G(x) > 0 and H(x) > 0 for all
x € RY, the relation G(cx) = o(H(x)) holds for all ¢ > 0 if and only if there is a function
b(): RT = R* such that (a)—(c), namely,

e b(x) 1 0o,

e b(x)/x | 0, and

o G(b(x)) = o(H(x))
hold.

Lemma 4.7. Let X and Y be two independent random variables with distribution functions F
onRand G on]] RT, respectively. Denote by H the distribution function of their product XY .
If F € A and G(cx) = o(H (x)) forall c > 0O then H € .

Recall relations (4.8) and (4.9) under the conditions of Lemma 4.2. Thus, applying Lem-
ma 4.7, we can easily obtain an analogue of Lemma 4.3 as follows.

Lemma 4.8. Let (X, Y) follow a bivariate FGM distribution function (1.3) with 8 € (—1, 1].
If F € A and (a)—(c) hold, then H € .

Proof of Theorem 3.2. As mentioned before, we only need to prove that relation (4.3) holds
and that the distribution function of 7, belongs to the class 4. We still proceed by induction
on n. Note that

(1:1) G(b(x)) = o(H(x)),

(1:2) relation (4.3) trivially holds forn = 1,

(1:3) T7 = XY, follows a distribution function in the class # (by Lemma 4.8).
Now assume that

(n:1) G(b(x)) = o(Hp(x)),

(n:2) relation (4.3) holds for n,

(n:3) both X, ]_[;’: 1 Y; and T;, follow distribution functions in the class .

We will prove that these assertions hold for n 4 1, namely,

(n+1:1) G(b(x)) = o(Hp4+1(x)),

(n+1:2) relation (4.3) holds for n + 1,

(n+1:3) both X, 41 I—['}:{ Y; and T, follow distribution functions in the class 4.
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The same as in the proof of Theorem 3.1, the relations in (4.13) hold. For (n+1:1), the
verification of G (b(x)) = o(ﬁnH (x)) is the same as in the proof of Theorem 3.1. For (n+1:2),
recalling Lemma 4.6, by relations (4.3) and (4.13) for n, the derivations of (4.14)—(4.15) are
still valid, showing that relation (4.3) holds for n + 1.

Finally, consider (n+1:3). Note that H, € + by (n:3) and that G(b(x)) = o(H,(x)) by
(n:1). Thus, applying Lemmas 4.6 and 4.7, we obtain H, 1| € +. In other words, H; € A C §
foralli = 1,...,n + 1. Then, similarly as in the proof of Theorem 3.1, we obtain the
subexponentiality of T,,41. Furthermore, by definition, H; € A implies that there is some
constant ¢; > 1 such that

. H;(cix)
lim sup < 1.
xX—>00 ,(x)
With ¢ = max{cy, ¢3, ..., cht+1} > 1, by (4.15) we have
Pr(T. n+1 H,
hm Sup M S hm Sup M
x—ooo Pr(Typy1 > x) X—00 Z’H— H;(x)
H;
< max limsup (cix)
I<i<n+l x>0 l(x)

< 1.

Therefore, the distribution function of 7,41 belongs to the class . This completes the proof
of Theorem 3.2.

4.3. Proof of Corollary 3.1

Copied below is the well-known Breiman theorem; see Breiman (1965) and Cline and
Samorodnitsky (1994).

Lemma 4.9. Let X and Y be two independent random variables with distribution functions F
on R and G on R™, respectively. Denote by H the distribution function of their product XY .
If F € MDA(®,,) for some a > 0 and E[Y*¢] < oo for some & > 0, then

. H(x)
lim —

= E[Y“].
x—>00 F(x) [¥™]

The following lemma forms the main ingredient of the proof of Corollary 3.1.
Lemma 4.10. The following statements hold.

(i) Under the conditions of Corollary 3.1(i), it holds for each i € N that
Hi(x) ~ (1 = 0) BIY*1+ 0 E[(Y}' v Y)*DEY D)~ F(v),

where Y| and Y3 are two independent random variables identically distributed as Y .

(i1) Under the conditions of Corollary 3.1(ii), it holds for each i € N that
. _/x o yi+l x i
H,'(x)N(1+9)F<T><F((X+1)G<§)— 11(7))) .
V! x V!
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Proof. (1) Apply Lemma 4.9 to relation (4.4) to obtain

. H®
lim —
xX—00 F()C)

= (1 —0)E[Y*] + 0 E[(Y] v Y)"]; (4.16)

see also Theorem 2.1(i) of Jiang and Tang (2011) for a result more general than (4.16). Thus,
the distribution function H of X;Y; belongs to the class MDA (®). Then, fori = 2,3, ..., by
Lemmas 4.9 and relation (4.16), in turn,

i—1
ﬁ,-(x) = PI‘(X,‘Yi l_[ Yj > x)
j=1
~ EY DT H )
~ (1= O E[Y*]+ 0 E[(Y] v YD DEYD ™ F ).
(ii) Note that every distribution function F € MDA(A) with an upper endpoint ¥ = oo

is rapidly varying tailed. We apply Theorem 2.1(ii) of Jiang and Tang (2011), which, in our

situation, implies that
Pr(XY > x)

lim ————
x—o00 Pr(X*Y* > x)
where X* and Y* are two independent random variables with X* identically distributed as X
and Y* as Y, and are independent of {(X,,, Y;), n € N}. Then, by (4.17 ) and Theorem 3.1(i)
of Hashorva et al. (2010), fori =1,2, ...,
Yi,..., Y,'_1>]

i—1
i—1
~ (1 +9)Pr<x*y* []vi > x)
j=1

Hi(x) = E|:Pr<X,~Y,~ []Yi>x
= (1+9)Pr< ]‘[ )

j=1
_/x /. )A,i+1 X i
y X y

This completes the proof of Lemma 4.10.

=149, 4.17)

'\<>| h<
‘<>| =

Proof of Corollary 3.1. For statement (i), by (4.16), it is easy to verify that (a)—(c) hold with
b(x) = x!7% for some 0 < § < e/(a + ¢); see also Lemma 3.7 of Tang and Tsitsiashvili
(2003). For statement (ii), (a)—(c) automatically hold because Y is bounded above. Hence,
Theorem 3.2 is applicable for both statements (i) and (ii). Then we apply Lemma 4.10 to (3.1)
to complete the proof of Corollary 3.1.
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