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ESTIMATES BY POLYNOMIALS
R.M. ARON, Y.S. CHOI AND J.G. LLAVONA

Consider the following possible properties which a Banach space X may have:
(P): If (XJ) and {yj) are bounded sequences in X such that for all n ^ 1 and
for every continuous n-homogeneous polynomial P on X, P{XJ) — P{yj) —• 0,
then Q(XJ — yj) —» 0 for all m ~£. 1 and for every continuous m-homogeneous
polynomial Q on X.
(RP): If {XJ) and (yy) are bounded sequences in X such that for all n ^ 1 and
for every continuous n-homogeneous polynomial P on X, P{XJ — yj) —» 0, then
Q(XJ) — Q{yj) —> 0 for all m ^ 1 and for every continuous m-homogeneous
polynomial Q on X. We study properties (P) and {RP) and their relation with
the Schur property, Dunford-Pettis property, A, and others. Several applications
of these properties are given.

During the past few years, interest has grown in the relation between a Banach
space X and spaces of polynomials on X. Thus, for example, Carne, Cole, and Gamelin
[4] examined the relation of weak polynomial continuity on a Banach space, in what they
called A-spaces, and tightness of certain Banach algebras of bounded analytic functions
on the ball of a Banach space. Farmer [12] examined the relationship between upper
and lower estimates on a Banach space X and reflexivity of the Banach space of n-
homogeneous polynomials on X, and Farmer and Johnson [13] studied polynomial
versions of the Dunford-Pettis and Schur properties, relating them to the type of a
Banach space. Earlier, Davie and Gamelin [7] had proved a strengthened form of
Goldstine's theorem for weak polynomial density of Ball x in Ballx** and, almost fifteen
years ago, Ryan [20] had shown that the Dunford Pettis property is equivalent to the
polynomial Dunford Pettis property.

The original motivation for this article was the following question:
Suppose that X and Y are real or complex Banach spaces with closed unit balls

Bx and By respectively, and let g : Bx —* By be a function which satisfies property

(*), below:

(*) For any polynomial P:Y"—>K = R o r C , the composition Pog : Bx —*
K is uniformly continuous.
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Is g necessarily uniformly continuous?
The natural approach to this question is to take two arbitrary sequences (zn) and

(yn) in Bx such that ||xn — 7/n|| —> 0, and to ask if the image sequences in By satisfy
||<7(a;n) —5(l/n)|| —> 0. It is clear that by (*), our problem is really to determine when
the following condition is satisfied:

(**) Given two bounded sequences (un) and (vn) in Y, if \P(un) — P(vn)\ —>
0 for every continuous polynomial P on Y, it follows that \\un — vn|| —> 0.

We introduce here the following condition which, as we shall see, is strictly weaker
than (**):

PROPERTY (P). Given two bounded sequences (UJ) and (VJ) in Y, if for every n ^ 1
and every P e V("Y), \P(UJ) - P(VJ)\ -» 0, it follows that \Q(UJ - Vj)\ -> 0 for every
m ^ 1 and every Q 6 V(mY).

(Here, V("Y) denotes the continuous n-homogeneous scalar-valued polynomials on
Y. This space and related concepts will be reviewed at the beginning of Section 1.)
In this article, we study property (P) and its relation to other properties of a Banach
space (such as the Dunford-Pettis property [8] or the A-property [4]). In addition, in
our study of property (P), we were led to the following reciprocal property, which is
also studied in this paper:

"RECIPROCAL" PROPERTY {RP). Given two bounded sequences (UJ) and (VJ) in Y,
if for every n ^ 1 and every continuous P £ V(nY), \P(UJ — Vj)\ —» 0, it follows that
\Q{UJ) - Q{VJ)\ -» 0 for every m ^ 1 and every Q £ •p(mr).

We study property (P) in Section 1. Property (RP) has been used in examining
versions of Arens regularity for multilinear mappings [2], and in Section 2, we give
examples of Banach spaces which have, and which don't have, this property. We give
several applications and discuss the relation between these and other known properties.
However, we remark that the basic question of whether every Banach space has property
(P) remains open.

1. PROPERTY (P)

We begin by recalling some relevant definitions and reviewing several properties
of Banach spaces related to continuity of polynomials. X and Y are real or complex
Banach spaces with closed unit balls Bx and By respectively. For n = 0 ,1 , . . . , the
space V(nX, Y) of continuous n-homogeneous polynomials P : X —> Y consists of all
functions P of the form P(x) = A(x,... ,x), where A : X x- • -xX —»Y"isa continuous
n-linear mapping. ||P|| = sup{||P(a;)|| : x E Bx}- The space P(X,Y) is the algebraic
direct sum of the spaces V(nX, Y), n = 0,1,2, We use V(X) and V(nX) to denote
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V(X, K) and V(nX, K ) , respectively. In [4], the following type of space was introduced
and studied:

DEFINITION 1.1: [4] A Banach space X is a A-space if for any sequence (v.k) C X

such that (-P(tiit)) -> 0 for all P E V(nX) (n ̂  1) as Jfe -+ oo, it follows that ||ujt|| -> 0.

The second author and Kim [6] have obtained connections between A-spaces and
spaces having properties (P) and (RP). We list below several basic examples and
properties of A-spaces.

PROPOSITION 1.2.

1. [14] Every super-reflexive Banach space is a A-space. In particular, every
Cv-space is a A — space, tor 1 < p < oo.

2. [4] Closed subspaces of A-spaces and Schur spaces are A-spaces.
3.- [4] Lj[0,1], Co, and too are not A-spaces.
4. [13] Every Banach space with non-trivial type is a A-space.

DEFINITION 1.3: A function / : Bx —» K is said to be P-continuous if for every
e > 0, there are 6 > 0 and a finite set {Pi,...,Pn} C V(X) such that if x,y 6 Bx

satisfy \Pj{x-y)\<6, {j = 1,... ,n), then |/(z) - f(y)\ < e.

In [3], the authors study the special case of 'P-continuity, when the polynomials
are restricted to being 1-homogeneous (that is, continuous linear forms), obtaining the
space CWu{Bx) of functions which are weakly uniformly continuous on the ball of X.
For certain Banach spaces, such as Co, every 'P-continuous function is automatically
weakly uniformly continuous, but in general these two spaces are different. For example,
oo

5^ x'j is clearly V-continuous on £2 although it cannot be weakly uniformly continuous
;=i

on Bi2. On the other hand, every P-continuous function is uniformly continuous. For
many Banach spaces such as I2 , uniform and P-continuity coincide; on the other hand,
the norm on c<j is not P-continuous. We do not know of a characterisation of those
Banach spaces X for which uniform and P-continuity coincide.

We shall appeal to the following useful result of R.A. Ryan.
PROPOSITION 1 .4 . [20] The Dunford-Pettis and the polynomial Dunford-

Pettis properties are equivalent. That is, if X has the Dunford-Pettis property, if
Y is an arbitrary Banach space, and if P : X —» Y is a polynomial such that P(Bx) is
relatively weakly compact in Y, then (P(xn)) is norm Cauchy in Y for every weakly
Cauchy sequence (xn) in X.

This result can be used to give a straightforward proof of the result that a Banach
space X is a Schur space if and only if X is a A-space and has the Dunford-Pettis
property [4]. Indeed, let (as,-) be a weakly null sequence in X. By Proposition 1.4, it
follows that ( P ( Z J ) ) is a norm null sequence of scalars, and so since X is a A-space it
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follows that ||ZJ|| - » 0 .

We begin with the following easy facts about property (P) .

PROPOSITION 1.5.

(i) Every Banach space with the Dunford-Pettis property has (P).
(ii) Let g : Bx —» By be a function between the closed unit balls oi Banach

spaces X and Y, such that property (*) holds. It Y is a A-space with
property (P), then g is unilormly continuous.

PROOF: (i) If (un) and (un) satisfy the conditions in 1.5, then clearly (un — vn) —*
0 weakly. Consequently, since every scalar-valued polynomial Q is automatically weakly
compact, an application of 1.4 completes the proof. The proof of (ii) is straightfor-
ward. D

In fact, all that is used in the proof of 1.5(i) is the fact that if a sequence (XJ) —> 0
weakly in X, then {Q{XJ)) —> 0 for every Q G V(nX) and every n. In particular, if
every continuous scalar-valued polynomial on X is weakly sequentially continuous at
the origin, then X has property (P) . Thus, for example, the original Tsirelson space
T* has (P) [1].

If g : BCQ —» BCQ is defined by g((xn)) = (x™), then g is not uniformly contin-
uous since ||5(en) — ^([1 — (l/n)]en)| | -» 1 — e"1 > 0. However, by the Littlewood-
Bogdanowicz-Pelczynski theorem (see, for example, [17]), Pog is uniformly continuous
for every continuous polynomial P on Co. Although the spaces Li[0,l], CQ, and ôo
satisfy property (P) , they do not satisfy condition (**).

In order to prove that a space containing some £p, 1 < p < oo, is a A-space, it is
sufficient to only make use of polynomials of degree [p]. However, the following simple
example shows that something more is required to prove that a space has property
(P) . Consider the two sequences (e^) and (—e,) in £2 • For this pair of sequences, it
is clear (ey — (—e,)) —> 0 weakly and that P(e;) — P(—ej) —* 0 for all 2-homogeneous

continuous polynomials P on £2 • The "clue" here is to allow polynomials of an odd
00

degree greater than p; in this case, the 3-homogeneous polynomial P(x) = X) xn

serves to show that P(e^) — P(—ej) -** 0.

Castillo and Sanchez define in [5] a Banach space X to be in the class Wp (1 < p
< 00) when each bounded sequence (sy) in X admits a weakly-p-convergent subse-

00

quence (xjk); that is, there is x £ X such that ^ |a;*(z;)t — x) | < +00 for all
k=i

x* G X*. They showed that every super-reflexive Banach space is in the class Wp for

some p, 1 < p < 00. We use this fact in proving Theorem 1.6.

THEOREM 1 .6 . II X is a Banach space whose dual X* is in Wp tor some p £
(l ,oo), then X has property (P) .
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PROOF: Let (XJ) and (yj) be bounded sequences in X such that \P(XJ) — P(yj)\ —»
0 for every P G V(nX), n ^ 1. We claim that \\XJ - y,-|| -> 0. Otherwise there exist
some e > 0 and subsequences of (XJ) and (y7-), which we shall still denote by (XJ)

and (yj), such that \\XJ — yj\\ ^ e for every j . Since (a;,- — yj) goes to 0 weakly, by
passing to a subsequence, (XJ — yj) can be considered as a basic sequence in X (see for
example, [9]). Let Zj = Xj — yj and Z be the closed subspace of X spanned by (ZJ).

Let (zj) be the corresponding bounded sequence of coefficient functionals associated to
(ZJ). By the Hahn-Banach theorem each zj can be extended to a functional z? G X*

with the same norm, and hence (zj) is a bounded sequence in X* . Since X* is in Wp,

it follows from [5] that there exist an x* G X* and a subsequence of (zj) , still denoted
by [zf) , such that

For any z G Z, (ZJ— x*)(z) —> 0 and z*j(z) —» 0. This implies x*(z) = 0 for every
2 f Z . Hence we obtain

where Sji is the Kronecker delta.

By taking subsequences, we may assume that (ZJ — z*)(a;;) and (zj — z*)(j/j)

converge to, say, a and 6 respectively. Clearly, a — b = 1. Choose N > p such that

| a N - 6N | = i? > 0, and define

It is easy to see that P G V(NX) . Moreover, for each £ we have

which contradicts the original hypothesis. U

Note that the dual of a super-reflexive space is also super-reflexive (see, for example,
[10]). The proof of Theorem 1.6 shows that if X is super-reflexive, then X has property
(P). Since ip[0,l] is super-reflexive for 1 < p < oo, every such Lp[0,l] has property

Using [13] and a modification of the above argument, Choi and Kim [6] have shown
that every space which has non-trivial type has property (P). We remark that we have
no example of any Banach space which does not have property (P). Moreover, although
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it is trivial that every Banach space which has property (**) described above is a A-
space, we do not know if the converse implication holds. However, every A-space which
has property (P) satisfies (**).

We conclude this section by commenting on a question of Petunin and Savkin [18],
concerning an analytic version of a A-space. X is said to be a holomorphic A-space

if, whenever (xn) C X is a sequence such that (f{xn)) —» /(0) for every holomorphic
function / : X —> C , then ||a:n|| —» 0. Of course, every A-space is a holomorphic
A-space. The converse is false since, for example, every separable Banach space is a
holomorphic A-space [18]. The following shows that the not every Banach space is a
holomorphic A-space.

EXAMPLE 1.7. £<» is not a holomorphic A-space.

PROOF: Let (en) be the standard unit vector basis of Co C ^oo, and let / 6 H(loo)
oo

with Taylor series representation ^ Pj. By a result of Josefson [15], f\Co is bounded
;=o _

on every bounded subset of eg, and so if B denotes the closed unit ball of CQ , f\g is
oo

the uniform limit of ^2 Pj\-=. Since Pj(en) —> 0 as n —> oo for each j'< = 1, 2 , . . . , (see,
3 = 0

for example, [17] or [20]), it follows easily that (/(en)) —> / (0 ) , which completes the
proof. U

2. PROPERTY (RP)

We begin with several elementary examples of spaces which have (RP) •

PROPOSITION 2 . 1 . 1. Every A-space has property (RP).

2. CQ has property (RP) •

PROOF: Both proofs are easy. Let (UJ) and (VJ) be bounded sequences in X and
suppose that P(UJ — VJ) —> 0 for every P £ V(nX), n ^ 1. If X is a A-space, then
\\UJ — Vj\\ —> 0. Since every Q € V(nX), n ^ 1, is uniformly continuous on bounded
subsets of X, we get Q(UJ) — Q(VJ) —> 0. Also, since (UJ —Vj) —» 0 weakly in Co,
\(}>n(uj) — <t>n(vj)\ —» 0 for every 0 6 c j . The result follows from the fact that every
continuous polynomial on CQ can be approximated uniformly on bounded subsets of Co
by finite type polynomials [17]. D

Another proof that Co has (RP) follows.

THEOREM 2 . 2 . If X has the Dunford-Pettis property and lx </-> X, then X has

property (RP).

PROOF: Suppose that (XJ) and (yj) are bounded sequences in X and that
P(XJ -yj) —> 0 for every P £ V(nX), n ^ 1. By Rosenthal's dichotomy [19], since
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£i '/-* X, there exist weakly Cauchy subsequences of (XJ) and (yj), which we still
denote by (XJ) and (yj). Let Q £ V(nX), n ^ 1. Since X has the Dunford-Pettis
property, we have by Proposition 1.4 that Q(XJ) —» £ and Q(yj) —> ^n for some £ and
m. The sequence (2:1,3/1,2:2,2/2, • • • ) , is also weakly Cauchy, since for each ip £ X* ,

\<P(*J ~ 0

as j,k —» oo. Hence Q(xi),Q(yi), Q(x2), Q{y2), ••• converges and so t = m, which
proves that Q(Xj) - Q(Vi) -> 0 for every Q £ V(nX),n ^ 1. D

We shall show that too « £oo[0,l], C[0,l] , and £i[O,l] do not have property
(RP). Thus, the Dunford-Pettis property is not, by itself, a sufficient condition to yield
{RP).

LEMMA 2 . 3 . Let (Ij) be a sequence of pairwise disjoint subsets of [0,1]. Then

(X[.) converges to 0 weakly in £oo[0,1].

PROOF: If (X/.) does not converge to 0 weakly in £oo[0,l], we may multiply

Xj. by a suitable complex number having modulus 1 and so assume without loss of

generality that <?(X/.) ^ £ f°r some ip £ (£oo[0,l])* of norm 1 and some e > 0. Let

/ = £ * / . e £oo[0,l] with Il/H^ = 1. For each n

Hf)\ = * ZX-+ E *,.

(*/J+p E x,

>ne-\\v\\,

Dwhich contradicts |y>(/)| ^ 1.

EXAMPLE 2.4. £oo[0,1] does not have property (RP).

PROOF: Let Ij = (1/2*,1/2*"1) (j = l , 2 , . . . ) and let (TJ^))^ be the

Rademacher functions on [0,1] defined by rj(t) = sign (sin 2*7r<) . Define

A : £oo[0,l] x £oo[0,l] x £oo[0,l] - • K

by

A(f,g,h) = f fdx)
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where {g,rj) = j'grjdx. For \\f\\,, ^ 1, IMI^ < 1, \\h\\,,. ^ 1, we have

with the second inequality coming from Bessel's inequality. From this it is easy to see

that A is a continuous 3-linear map. For each j , let Sj = X/> xj = rj a n <i Vj =

Tj + Sj . By the Dunford-Pettis property of Loo[0,l], Lemma 2.3, and Proposition 1.4,

P(xj -yj) -> 0 for every P £ V^L^Q,!}), n ^ 1. Let Q £ V^L^Q, 1]) be denned

by Qtf) = A(f,f,f) for / £ £00(0,1]. Since

( 0, if 1 ^ j ^ n - 1

1
T"r dx=

J

if

we see that Q(rn) = —1 for all n. Similarly, Q(yn) = 0, and so Q{xn) — Q(yn) -/+ 0,
which completes the proof. D

It is worth noting that Q(XJ) — Q(yj) —> 0 for every Q £ •p(2^oo) • In fact, suppose
that (xi) and (yi) are bounded sequences in too such that (XJ — yj) converges to 0
weakly in l^. Let Q £ 7->(2£Oo) and A be the unique continuous symmetric 2-linear
map associated with Q, via Q{x) = A(x,x). We can regard A as the bounded linear
map A : x £ ^ —•> >i(x,-) £ ^o o, Since Co /^ l*^, it follows that 4̂ : £„, —> ̂ ^ is
weakly compact [16]. By the Dunford-Pettis property of £00, we get ||.A(:Cj — yj)\\ —» 0
in ^* . Now

where | |ZJ | | , ||j/n|| ^ -M" for all j . On the other hand, L(2£oo) ~ (̂ oo <8>T ^oo)* contains

a copy of Co. (A sketch of the argument is as follows: i(2^oo) — -^(-^ooj-^oo) contains

an isometric copy of Li(QcL\ . In turn, L i 0 e i i contains the weakly unconditionally

convergent series Ylri ®rj> which is not unconditionally convergent.)
j

The Rademacher functions play a similar role in the following argument, that
C[0,l] also fails to have property {RP).
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EXAMPLE 2.5. C[0,l] does not have property (RP).

PROOF: Define A : C[0,l] X C[0,l] x C[O,l] -> K by

As in the previous example, A is easily seen to be a continuous 3-linear map. For
n ^ 2, let

/»(*) =

0

2n+1

0

0- 2n+1)

3 \

2n+l ~

2n ^
3

On+l ~

* 2n+l

* * ^ 2 «

^ 2 n + 1

1

on [0,1/2] and for 1/2 + (j - l ) /2 n + 1 ^ < < 1/2 + j / 2 n + 1 (j = 1,2,... , 2") let

Mi) =
i s i ( m o d 4 )

Let ffn = -/nX[o,i/2]+/nX[i/2,i], (n ^ 2). Then (/„ -jfn) = (2/nX[0,i/2]) is abounded
sequence in C[0,l] which is pointwise convergent to 0. By [11] (/„ — gn) converges to
0 weakly in C[0,l] and so P(fn - gn) -+ 0 for every P £ ^("^[0,1]), TO ̂  1, by the
Dunford-Pettis property of C[0,1]. Let Q = A € ^(^[0 ,1]) , where A(f) = A(f, fj)
for f e C[0,l]. Now

n) - <?(fln) = /n ( ^ ) (/n,rn)2 - 9n (j^j (9n,rn)

for all n ^ 2, which completes the proof. U
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EXAMPLE 2.6. Zi[0,27r] does not have property (RP).

PROOF: Let J,- = ((2TT)/2',(2TZ)/2'-1) (j = l,2,...) and let (r,-(i))~x be the
Rademacher functions on [0,2TT] defined by rj(t) — sign (sin2-7~1t). Define A :
Li[0,2ir] x LX[Q,2-K) -> K by

A(f,g) = f^(f frjdx) (g.rj).
j=l \Jli )

F o r ll/lli 'IMIi ^ 1, we get \A(f,g)\ ^ H/^ y^ and so A is a continuous bihnear
map. For j' Js 2, let

,• = - sin

and

5 i = - 2 sin 2j~h + 2x[0,(a*)/2i] s i n 2''"1*

+ 2X[27r-(27r)/2J ,2TT] s i n 2 J - 1 <

2>
+ 2^X'S •

Now, fj — gj = sin2;~1t converges to 0 weakly in £i[0,2TT] and so P(/ j — gj) —• 0
for every P £ £>("£![0,2TT]), n ^ 1, by the Dunford-Pettis property of £I[0,2TT]. Let
Q = A G 7>(a£i[0,2ir]) , where ! ( / ) = i4(/,/) for / G £1[0,27r]. Note that

1. Jj. fnrjdx — Jj gnrjdx = 0 for 2 < j < n,
2- {fn,rj) = (ffn>r,-) = 0 for j > n,

Using these facts, we can calculate

Q(fn) = (J fnridx^j (/B,r0 + f^ fnrndx\ (fn,rn)

= (2 • 22-n) (1 + 4 • 22~") + (-1 - 22-") [-22-"(2n - 4) - l]

and

Q(9n) = ( / 5n»-idxJ (5n,r!) + f / gnrndxj {gn,rn)

= 23~n(l + 2 • 23-n) + (-1 - 23-n) [-23-n(2n - 2) - 1]

for each n, n ^ 2. Hence <?(/„) - (?(5n) = - 4 - 52 • (2"n) + 26 • (2-2n) -> - 4 , which
completes the proof. u

Finally, if in a Banach space, every (norm) continuous polynomial is P-continuous
in the sense of Definition 1.3, then property (RP) holds. We remark that in each of
the above examples, polynomials have been constructed which are not P-continuous.
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