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FINITE ARITHMETIC SUBGROUPS OF GL,, IV

YOSHIYUKI KITAOKA anxp HIROSHI SUZUKI

In this paper, we improve a result of the third paper of this series, that is we
show

THEOREM. Let K be a wilpotent extension of the rational number field Q with
Galois group I', and G a I'-stable finite subgroup of GL,(Ox). Then G is of A-type.

Here, automorphisms in I" act entry-wise on matrices in G, and G being
I'-stable means that o(g) € G for every ¢ € I' and g € G. Oy stands for the
ring of integers in K and G being of A-type means the following:

Let L=1Zle,,. .., e,] be a free module over Z and we make g = (g;;) € G
act on OgL by gle) = X1, g,¢, Then there exists a decomposition L = @, L,
such that for every g € G, we can take a root of unity ¢;(g)(1 < i< k) and a
permutation s(g) so that €,(@)gL; = Ly, for ¢ =1,..., k. (The definition of
A-type in the third paper [3] of this series is wrong, but the results in it are true
in the above sense of A-type. See the correction at the end.) We denote the identi-
ty matrix of size # by 1,, and the ring of rational integers by Z.

LEMMA 1. Let F be an abelian extension of Q with Galois group I', and I an in-
tegral ideal (# Op) of F. Let G be a I'-stable finite subgroup of GL,(Op). Then G is
of A-type, and for a subgroup

G :={geCGlg=1,mody},
there exists an integral matris T € GL,(Z) such that {TgT ' | g € G()} comsists

of diagonal matrices.

Proof. 1t is clear that
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S:=3 gz

g€G

is a rational integral positive definite matrix, where the bar denotes the complex
conjugation. We introduce a lattice L:= Zle,..., ¢,] with bilinear form
(Ble;, ¢)) =S and consider the scalar extension OpL with Bz, uy) =
AL Bz, y) for A, t € O, and x,y € L. Then L, O;L are a positive definite
quadratic lattice over Z and a positive definite Hermitian lattice over Op, respec-
tively. Let

L:=L,1---11L,
be the decomposition to indecomposable lattices. We define an automorphism ¢, :
OFL'——) OFL by
n
(¢g(el); seey ¢g(en)) = (ep ey en) ’g i'e" ¢g(ei) = Z gifef'
j=1

Then ¢, is an isometry of OzL by (B(¢,(e), ¢,(e)) = gS'g = S. Hence by [1],
there exist a root of unity ¢; € F and a permutation 0 € &, such that

(1) 6i¢g(Li) = Lo(z) for l = 1’ cee 4,

which implies that G is of A-type. Here assuming & € G(3), we have

(2) ¢, (x) = x mod JL,

and hence the permutation ¢ in (1) is the identity. Now we take a basis {z,,. . .,
2.} of L, for an integer k with 1 < k < a. Then there exist a root of unity ¢ € F
and A € GL(Z) satisfying

(3) (e¢,(z),..., e4,(2)) = (z,..., 2) A.

Let B be a prime ideal dividing & and p the rational prime number dividing 8. At
first, we claim that we can choose the matrix A so that

A =1,modp.
By virtue of (2), (3), we have
4) ¢ 'A=1,mod B,
which implies, by putting A = (a,,)
a,;=0modpifi#j, a;=emod®P for every ¢,

and then we have
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(5) A= a;1,modp.

Hence the claim is clear if p = 2, and hereafter we assume p > 2. ¢ 'A(= 1, mod
RB) is of finite order, and the order is a power of p, say p". Then we have s’rls =
Ap’, which is a rational integral matrix. Thus A=+ 1, is clear. If A= - 1,
then by replacing ¢, A by — ¢, — A in (3), respectively, we may assume A = 1,
and e =1 1f e = 1, (4) implies the claim. Otherwise, let p be the prime ideal of
Q(e) under PB; then (4) implies a;; = e mod p. Now p = (1 — ¢) yields a; =1
mod p and hence @;; = 1 mod p. Thus we have shown the claim.

Next we claim that we can take 1; as A. Since A is of finite order, the claim
above yields A = 1, if p > 2. Suppose p = 2. By virtue of A = 1,mod 2 and x =
(x +ep,(2) /2 + (x — e¢,(x)) /2, we have L, =L, L L_, where L, = {x €
L,leg,(x) = £ x}. Since L, is indecomposable, we have L, = L, or L_, which
means A = % 1_. If necessary, by replacing ¢, A by — ¢, — A in (3), respectively,
we may assume A = 1. Thus we have shown the claim. Hence we have only to
take a matrix T as a transformation matrix from the original basis {e,, ..., ¢,} of
L to the one consisting of basesof L, (k =1,..., @). ]

DerINITION.  Let K be a Galois extension of Q with Galois group I" and B a
prime ideal. Then we put, for a non-negative integer m

V,,®B;K/Q :={u<€TI'lulx) =z mod R for z € 0.

LEMMA 2. Let K be a Galois extension of Q with Galois group I', and B a prime
ideal of K, and suppose I' = V,(B; K/Q). Let F be the maximal abelian extension of
Q contained in K. Let G be a I'-stable finite subgroup of GL,(O) and k a
non-negative integer. Suppose that GR*™Y) consists of diagonal matrices. Then we

have G(B") < GL,(0,).

Proof.  We take and fix an element g € G(B). Let us see, for 6 € I’

k+1

o(g) = gmod P,

If k=0, it is clear because of I'= V,(B; K/Q). Suppose k > 0. Putting g = 1,
+ 7"A with A € M, (Og), where 7 is a prime element in the completion Oy of O
at the prime B, we have

o(z") = 7 mod B**', ¢(4) = Amod P’

and hence
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o(g) = gmod B! and o(gg” € GB.
Thus D, := 0(g)g " is diagonal and it is easy to see
D,,=uD)D, foro,p€T.
By Lemma 1 in 3], there exists a diagonal matrix D € GL,(K), which satisfies
D€ GL,(Q and D,=o(D)D,

where w is the number of roots of unity in K. Then o(g)g™" = o(D™)D for every
0 € I''yields h:= Dg € GL,(Q). We choose a rational diagonal matrix /%, so that
the greatest common divisor of entries of each row of A,k is 1. Since g = D™'h =
(h,D) 'k and g € GL,(0,), all diagonal entries of the diagonal matrix &,D are
units in O. Moreover we know that (h,D)” = hyD" is rational, and so all diagon-
al entries of (th)w are * 1, which means that all diagonal entries of 4, D are
roots of unity in K. Thus we have g = (h,D) 'h,h € GL,(F). ]

LEMMA 3. Keeping everything in Lemma 2, we have G < GL,(Op).

Proof. By Lemma 1, we may assume that G(B) N M, (F) consists of diagonal
matrices. We take a sufficiently large integer & so that G(B*) = {1,} ; then Lem-
ma 2 yields G(B*™) < G(®) N M,(F) and then G(R*™) consists of diagonal
matrices, too. By iterating this operation, we see that G(B) consists of diagonal
matrices and then Lemma 2 yields G € GL,(Op).

LEmMMA 4. Let K be a nilpotent extension of Q with Galois group I' and suppose
that 2 is the only ramified rational prime. Denoting a prime ideal of K lying over 2 by

B, we have I' = V,(B; K/Q).

Proof. Let @(I") be the Frattini subgroup of I. Then it contains the com-
mutator subgroup and the subfield F (# Q) corresponding to @(I") is an abelian
extension of Q and 2 is the only ramified prime number. Let p be a prime ideal of
F lying over 2. Then V (p; F/Q) is induced by V,(B; K/Q) and hence V,(B;
K/QoWT) /0 = Vy(p; F/Q). Vy(p; F/Q) = Gal(F/Q) vields V,(B: K/Q)-
O(I') = I and the property of the Frattini subgroup implies V,(®; K/Q) = T.
Hence B is fully ramified and the order of the quotient group V,(®; K/Q)/V,(R;
K/Q) divides NB — 1 = 1, which means V,(B; K/Q) = V,(B; K/Q). ]

Proof of Theorem. We use induction on the degree [K : Ql. By virtue of Lem-
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ma 3 in (3], we may assume that the number of ramified rational prime number is
one, and let it be p. We claim that G is contained in GL,(F), where F is the max-
imal abelian subfield of K. Then Theorem on p. 142 in [1] completes the proof. If
P is odd, then K is a cyclic extension of Q as in [3] and so the claim is obvious.
Suppose p = 2; then Lemma 3 and Lemma 4 yield that G is contained in GL,(F).
]

Remark. 1t is a problem to consider a general algebraic number field as a
base field instead of Q. Let K/F be a Galois extension of algebraic number fields,
and G a Gal(K/F)-stable finite subgroup of GL,(O). If K is totally real, then
one generalization of the notion of being A-type is that G is already in GL,(Op).
But this is not adequate because there exists a counter-example when K/F is un-
ramified. Nevertheless, it seemed not necessarily to be off the point, since the ex-
istence of a certain kind of element in G induces the existence of a proper in-
termediate subfield of K unramified over F. So, we asked the role of the existence
of an unramified proper intermediate field. (c.f. p. 261 in [2].) But D. A. Malinin
gave a following example in [4]: Set

K=Qa, P, F=Qap) fora=y2+y2,8=1y3+2.

Then K/F is not unramified and for

g8=(g), 8n="8n="B, 8= —8&.= —Q,

G={% 1, * g}is a Gal(K/F)-stable subgroup of GL,(O). This seems to be
the first example such that K/F is not umramified and G is not in GL,(Oz) up to
roots of unity, although it is Gal(K/ F) -stable.

We can give another example: Let # be a natural number and F an algebraic
number field containing #th roots of unity, and € a unit in F, which is not a root
of unity. Put K := F(sl/"), which is a not necessarily unramified but abelian ex-
tension of F. For a cyclic permutation ¢ := (1,2,..., n) € &, and for @, = -+ *
=gq,,=¢"and a, = ()", we put

S = (a0,
where d,; denotes Kronecker’s delta function. Then S” = 1, is easy and

& 0
G:= S*| e, : nth root of unity
0 €,

is a Gal(K/F)-stable finite subgroup of GL,(Og). G is not contained in
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GL,(0Og) up to roots of unity.

Is there an example of a Gal(K/F)-stable finite subgroup G in GL,(Oy)
such that G is not contained in GL,(O;) for the maximal abelian subfield L of K
over F, or what can we expect ?

Malinin announced good results in [5], but the details are not available yet.
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Corrections to [3]

As stated in the introduction, the definition of A-type in [3] is not adequate, and we
should adopt the definition in this paper. Then the results are true with the following
minor modifications in the proof of Lemma 3:

Page 203, line 6: €,0(L,) = L, should be “g;,0(L,) = L, for some permutation s €
8,,".

Page 203, line 12: The displayed equation is numbered by (2).

Page 203, line 18: ¢p(L,) = L, should be “e;(L,) = L, for some permutation
sEG,”

Page 203, line 19: u(L,) = L, should be u(L,) = L,

Page 203, line 19: (O L,) = Oy L, should be (O L,) = O L.

Pabe 203, line 19-line 20: Insert “that the permutation s is the identity and” be-
tween implies and 1 (x).

Page 203, line 35: (1) should be (2).

Theorem 2 on p. 205 is improved as follows:

Page 205, line 9: GL,(Og) should be “GL,,(Oy) for any natural number m,”.

Graduate School of Polymathematics
Nagoya University

Chikusa-ku, Nagoya 464-01

Japan

https://doi.org/10.1017/50027763000005699 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005699

