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Abstract

In this paper, we consider the defocusing nonlinear wave equation —6,2u +Au = |ulPluinRxRY. Building on our
companion work (Self-similar imploding solutions of the relativistic Euler equations, arXiv:2403.11471), we prove
thatford =4,p >29andd > 5, p > 17, there exists a smooth complex-valued solution that blows up in finite time.
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1. Introduction

In this paper, we consider the defocusing nonlinear wave equation
Ou = |u|Pu, (1.1)

where u : R1*¢ — C is the unknown field, 0 = 999, = —9? + Zflzl (9i2 is the d’Alembertian operator!
on Minkowski spacetime R'*¢ with the standard Minkowski metric

mo =—1, my=1forallieZn[l,d], myu, =0ifu,v € ZN[0,d] with u # v,

and we assume p € 27Z, + 1 for simplicity.

Given smooth initial data (u|;=9, d;u|;=0), there exists a local smooth solution on the maximal
existence of interval [0,7); T < +oo if and only if lim sup,qr [[u(?)[|L> = +oo, see [68, 45]; moreover,
there holds the energy conservation

1 1
Elu@®)] = | 10ul*+ =|Vsul*+ P dy. 1.2
)= [ S10P + 317+ — (12)
The class of solutions to (1.1) is invariant under the scaling
u(t,x) — uy(t,x) := /ll’%lu(/lt, Ax), A1>0. (1.3)
This scaling symmetry preserves the critical norm invariant, i.e.,
d 2
t,- 7S¢ = /lt, 7S¢ h c == .
e, Mizge = (e where s = 5 = ——

We can split the range of parameters (d, p) into three cases accordingly:

o Subcritical case: s, <1 & d <2orp <1+4/(d-2)ford > 3.
e Critical case: s, =1 & p=1+4/(d-2)and d > 3.
e Supercritical case: s, > 1 <= p>1+4/(d—-2)andd > 3.

For the subcritical case, the global well-posedness and propagation of regularity dated back to Jorgens
[31] for d = 3; see also [19, 20] for the global well-posedness within the energy class H' x L? for all
dimensions; the propagation of regularity holds at least for d < 9 [3]. The critical case is much more
difficult. The global regularity result was obtained firstly in [71] for d = 3 and spherically symmetric
initial data, and then extended to d < 9 for general smooth data in [21, 22, 66], and all dimensions in
[67] (in the energy class H'! x L?). For the long-time behavior of these global solutions, we refer to [75]
and references therein.

For the supercritical case, it is known that the Cauchy problem is ill-posed in some low regularity
spaces [6], or even in the energy class [26], despite the global existence of weak solutions [70], as well
as the global well-posedness with scattering for small smooth data [44]. The global well-posedness for

THere we use the Einstein’s summation convention.
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general smooth data is a long-standing open problem [2, 72]. In the breakthrough work [51], Merle,
Raphaél, Rodnianski and Szeftel construct radial and asymptotically self-similar blow-up solutions for
the energy supercritical defocusing nonlinear Schrodinger equations (NLS). The goal of this paper is to
extend a similar blow-up result for NLS to the defocusing supercritical wave equation.

Before stating our theorem, we recall Tao’s blow-up result [73] for the defocusing nonlinear wave
system of the form Ou = (VgmF)(u), where u : R"*¢ — R™ is vector-valued, and F : R — R
is a smooth potential which is positive and homogeneous of order p + 1 outside of the unit ball for
some p > 1 (letting m = 2 and F(u) = |u|”*'/(p + 1) we recover (1.1)). Tao [73] proved that for any
supercritical (d, p), and sufficiently large positive integer m, there exists a defocusing F : R™ — R such
that the system Ou = (Vg F) (1) has no global smooth solution for some smooth compactly supported
initial data. A similar result for the defocusing Schrodinger system was obtained in [74].

1.1. Main results

Roughly speaking, we prove that the defocusing supercritical nonlinear complex-valued wave equation
for d > 4 admits finite time blow-up solutions arising from smooth initial data. The leading order term
of blow-up solution is given by a self-similar blow-up solution of the relativistic compressible Euler
equation, which is stated here as Assumption | (in Section 2). In our companion paper [65], we have
verified Assumption | for some (d, p).

Theorem 1.1. Let d € Z N [4,+0) and p € 2Z, + 1 be such that> k > € + V', where k := d — 1 and
£:=1+4/(p - 1). Assume that there exists B € (1, k/(€ + VE)) such that Assumption | holds. Then
there exist compactly supported smooth functions ug,u; : R — R*(= C) such that there is no global
smooth solution u : [0,+c0) x R? — R?(= C) to the defocusing nonlinear wave equation (1.1) with
initial data u(0) = ug, O;u(0) = u;.

Corollary 1.2. If d =4, p € QZ+1) N [29,+0) ord > 5,p € (2Z+ 1) N [17,+c0), then there exist
compactly supported smooth functions ug,u; : RY — R*(= C) such that there is no global smooth
solution u : [0, +00) x R? — R?(= C) to the defocusing nonlinear wave equation (1.1) with initial data
u(0) = ug, O;u(0) = u;.

Several remarks are in order.

1. For the blow-up solution u we construct in Theorem 1.1, if u blows up at time T, € (0, +c0), then
according to our construction, we have the blow-up speed

_2B _B) 4
(e, Mles 2 (To = )77, | (@(0), Bu)) s et 2 (T =) 1%

As 8 > 1, our solution is unbounded in the critical space. This is compatible with the results in
the literature, which state that the solutions for the supercritical defocusing wave equation that are
bounded in the critical space H3* x Hf;'_l must be global and scattering (at least for real-valued
solutions and some supercritical (d, p), see [4, 5, 18, 35, 36]).

2. As in the recent breakthrough work by Merle-Rapha€&l-Rodnianski-Szeftel [51, 52, 53], the heart of
proof of Theorem 1.1 is to study (1.1) in its hydrodynamical formulation, i.e., with respect to its phase
and modulus variables, i.e. (2.1). After introducing a front re-normalization (2.2), (2.1) becomes (2.3).
Taking the formal limit » — 0, we reveal the underlying relativistic compressible Euler dynamics
(2.6). The relativistic Euler dynamics provides us with a self-similar blow-up solution, which has
been constructed in our companion paper [65] and which, in turn, acts as the leading order term of
the blow-up solution of the defocusing supercritical wave equation (1.1).

2In particular, we have k > ¢, which is equivalent to p > 1+4/(d — 2). So we are in the supercritical case. Nevertheless, we
can not cover the whole supercritical range using the method of current paper.
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3. In the proof, we first construct a good approximate solution, then solve the perturbation equation
backward in time. This method is quite different from [51], and simplifies our proof greatly.
Unlike [51], we do not need to analyze the stability of the linearized operator near the leading order
profile constructed in [65], hence we only use less information of the leading order profile (see
Assumption 1). On the other hand, in [51], the initial data for blow-up form a finite co-dimensional
manifold in the class of radial smooth fast-decay functions, we only construct the blow-up solution
for one initial data (ug, u1) in Theorem 1.1. We believe that the blow-up should hold for a large class
of initial data, just as in [51]. This is left to the future work.

4. To prove Corollary 1.2, we just need to verify Assumption |, which is related to the existence of a
smooth global solution to a specific ODE (2.8). If d =4,p > 29 ord =5, p > 17, Assumption |
is verified in our companion paper [65]. As a consequence, if one can find some other methods to
verify Assumption | for smaller p, then one can also get the blow-up for that smaller p. The case
d > 5 follows from the result for d = 5 and truncation, see Subsection 2.5.

5. We emphasize that if Assumption 1 is valid, then we must have d > B(€ + Vo) + 1, where € := 1 +
4/(p—-1) > 1.Using 8 > 1, we getd > 3. As aresult, the case of d = 3 is not amenable to our analysis
at present, and the existence of blow-up solutions for d = 3 remains open. We point out that similar
situation happens in [51], where the construction fails for 3-D and 4-D defocusing supercritical NLS.

6. In this work, we can only construct the blow-up for the complex-valued solution. The blow-up for
the scalar defocusing supercritical wave equation remains open at this point. We guess that the same
blow-up result should hold for the scalar nonlinear wave equation, at least for (d, p) satisfying the
same hypothesis as in Theorem 1.1.

7. In this paper, we initiate our exploration of complex-valued blow-up solutions by employing the
modulus-phase decomposition # = wel®, as detailed in Section 2. For the R-valued problem, an
analogous approach appears promising. Specifically, we propose a decomposition of the form
u = wf(®), where f : R — R* is an unknown real-valued function. Under this framework, the
problem reduces to solving the following system of equations:

200, ® +wod =0, f7(®)=—f(P)?, oOw= (D)’ (WP +wd*®I,D).

When compared with (2.1), the above system exhibits a significantly higher level of complexity.
Consequently, its thorough investigation is deferred to future work.

The road map of the proof of Theorem 1.1 and Corollary 1.2 can be found in Section 2. The proof
is based on Propositions 2.4, 2.7 and 2.8. Our starting point is to introduce a front re-normalization
(2.2), relying on a constant b > 0; taking the limit » — 0, the defocusing wave equation becomes the
relativistic compressible Euler equations.

We first write the desired solution to (1.1) in the form of a power series (see (2.4)) with respect to the
constant b > 0. The non-degeneracy of the leading order approximation allows us to solve all high-order
approximations (o, ¢,), which is exactly the purpose of Proposition 2.4. The proof of Proposition 2.4
is rather technical and can be found in Section 5. One of the key ingredients used is the existence of
smooth solutions to the second order ODEs having singular points with a parameter A, see Appendix B.

Since we do not have enough information on (p,, ¢,,), especially the estimate uniform in n, we may
not have the convergence of the formal series (2.4). To overcome this drawback, we truncate (p,, ¢,,)
in the form of (2.23), and in Proposition 2.7 we prove that the truncated solution is a good approximate
solution to the defocusing wave equation. The proof of Proposition 2.7 can be found in Section 3.

Finally, we construct a solution to (1.1) near the truncated approximation solution. This is exactly
what Proposition 2.8 says. The proof of Proposition 2.8 can be found in Section 4, where we use the
energy method to solve the wave equation in a time-backward direction, and we need to use a technical
truncation to avoid the singularity at blow-up time. Such method of solving backward in time has been
used in [41, 42, 60]. Let’s emphasize that this part does not depend at all on our method of constructing
the approximate solutions, and it includes the case d = 3 and does not require Assumption | or the
spherical symmetry of the approximate solutions either.
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1.2. Blow-up phenomenon for related models

Let’s review some important results on the blow-up for other related equations.
It is more common to observe the blow-up phenomenon for the focusing nonlinear wave equation, i.e.,

Ou = —|ulPu. (1.4)

In fact, the spatial independent function u(r) = C, (T — 1)~/P~D where C5™" = 2(p + 1)/(p - 1)2,
gives a blow-up solution to (1.4). This ODE-type solution can be further truncated to a smooth com-
pactly supported blow-up solution to (1.4) by using the finite speed of propagation [1, 30, 43]. We will
use similar ideas to prove Corollary 1.2 for the case d > 5. See also [12, 15, 16, 18, 27, 32, 34, 40,
42, 46, 58] for the construction and classification of blow-up (or global) solutions as well as recent
breakthrough [13, 17, 29] on the soliton resolution conjecture.

Other related models such as the nonlinear Schrédinger equation, see [33, 48, 50, 51, 54, 55, 59, 61];
see [14, 38, 39, 41, 62, 64] for the wave map; see [49, 60] for the Schrodinger maps; see [7, 8, 9, 11, 23,
47, 56, 57] for the semilinear heat equation and [10, 28, 37, 63] for the harmonic heat flow.

1.3. Notations and conventions

Unless stated otherwise, we adopt the following notations, abbreviations, and conventions:

e Constants: i = V—1 is the imaginary unit, e is the base of the natural logarithm.

e For any a € R, we denote Z>, := Z N [a,+0) and Z-, := Z N (a,+c0). Moreover, we denote
Zy = Zs1. Similarly, R5g := RN [0, +0c0).

e Greek indices run from 0 to d, where d € Z is the spatial dimension, Latin indices run from 1 to d,
and we use the Einstein’s summation convention: repeated indices appearing once upstairs and once
downstairs are summed over their range.

e (t,x) = (t,x1,---,xq) denotes coordinates in spacetime, r = |x| = (Z?zl)@ 112 We write
8 =-0°=08 = 2,0, =0 =0 = % for j € ZN[l,d], 0 = 899, = —af+z;?:,a]2.

and A = Z;.izl 6}, then 0 = —02 +A.
e Wedenote £ :=1+4/(p—-1)>1,k:=d—-1€Z,andy :=48/(p-1)+2=6(-1) +2.
e For a (vector-valued) differentiable function f = f(z, x), we denote

Df::(al‘f7alf762f7“'73df) and Dxf::(alfvazf"“’adf):Vva

and [Df] = (10, f + 2L 10; Y2, IDif] = (5, 1;/1%)"2. For all j € Z, we denote
Dif == DDi"'f DLy := DD f, DOf = DOf = f, noting that D/~ f and D' f are again
vector-valued functions; moreover, D=! f := (f, D f).

e For (1,x) € [0,T) xR?, we let 7 := —In(T — ) and Z := |x|/(T —t) € [0, +o).

e For N > 0, HY denotes the inhomogeneous Sobolev space with the norm || - || g~ With respect to the
spatial variables and HY denotes the homogeneous Sobolev space with the norm || - |5 . Moreover,
we denote L2 := HY.

e A function space is a linear vector space if it is closed under addition and multiplication by a constant.
A function space is aring (algebra) if it contains all the constant functions and is closed under addition
and multiplication. Then a ring is also a linear vector space.

2. A roadmap of the proof

We introduce the modulus-phase decomposition u = we'®, with w : R™*¢ — R.gand ® : R"*? — R.
Then

Ou = (Ow +2i0 W, ®@ +iwa® — wd D, d)e'®,
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and (1.1) becomes
aw =w? + wd P9, D, 209wd,® + wod = 0. 2.1
Let b > 0 be a positive constant. We re-normalize according to
w(t,x) = b 7 p(t,x),  ®(1,x) = b2 (1, ), 2.2)
then (2.1) becomes
bop = p? + pd¥$d, @, 20%p0,¢ + pO¢ = 0. (2.3)

We seek solutions (p, ¢) to (2.3) in the form of

p(t.x) = ) palt.)b",  $(t.x) = )" dult.x)b". 2.4)
n=0 n=0
Plugging (2.4) into (2.3), we obtain the following recurrence relation for n € Z>:
Opp-1 = Z PnPny " Py, + Z pnlaa¢nzaa¢n3,
nyt+na+---+np=n ni+ny+ni=n (2 5)
0=2 Z 0P, Oadn, + Z P O¢n,,
ni+ny=n ni+ny=n

where we have used the convention that p_,» = ¢_,» = 0 for all n’ € Z,. Here (2.4) is only a formal
expansion and we will use cutoff functions to construct approximate solutions. Here b plays the role
of deriving recurrence relation (2.5), the smallness lies in the functions p,,, ¢,, as t T T rather than b".
We will not let b | 0, in fact, we will fix b = 1.

2.1. The leading order term of the blow-up solution

Letting n = 0 in (2.5), we know that (pg, ¢¢) satisfies the system?
pE + Pod ¥ dodado =0, 207 po0a o + poO¢o = 0. (2.6)
For any S > 1, the system (2.6) is invariant under the scaling
oa(t.x) = P lgo(Ar 1x),  poa(r.x) = AP T po(At,Ax), VA > 0.

We seek radially symmetric self-similar blow-up solutions to (2.6) of the form

bo(t.7) = (T =)' PGo(Z).  polt.x) = (T — 1) 71 po(Z). Z=TL_t, r=kl, @7

where T > 0 is the blow-up time and 8 > 1 is a constant.* Let v = 9, ¢/ ¢g, then v = v(Z) solves the
ODE?

Az (Z,V)Av/AZ = A, (Z,v), A (Z,v):= (1 =vD)[B(1 —v)Z - kv(l - Zv)],
Az(Zv)=Z[(1-2Zv)*-t(v-2)*], (2.8)

where £ :=1+4/(p—1) > 1and k :==d — 1 € Z>. See Subsection A.1 for the derivation of (2.8).
Recall the following fact from [65] (recalling footnote 4).

3System (2.6) is exactly the same as (2.5) and (2.6) in [65] as long as we let £ = 1 +4/(p — 1) and o = pP*1.

“Note that 3 in this paper is not the same as 8 in [65]. In fact, Bin this paper = Bin 401/ (£ + 1). Hence, Bin this paper > 1 is
equivalent to Biy (5] > € + 1, see Lemma A.7 in [65].

SODE (2.8) is exactly the same as (2.17) in [65], as long as we let m = B¢€.
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Lemma 2.1 ([65], Lemma 2.1). If v(Z) : [0,1] — (=1,1) is a C" solution to (2.8) with v(0) = 0 and
£>1,8>0,k >0, then k > B(£ + VY).

As a consequence, it is natural to restrict the parameters (k, £, 8) in the following range:
B>1, €>1, keZn[3,+x), k> B(L+V0). (2.9)

Assumption 1. There exists a smooth function v = v(Z) € (-1, 1) defined on Z € [0, +o0) solving the
ODE (2.8) with v(0) =0 and v € C5°([0, +0)).

Here we define (with Ry¢ := [0, +00))

C®(Rsg) = {f € C¥(Rsp) : 3 f € C¥(Rag) sit. £(Z) = F(ZD)V Z € RZO} , (2.10)
C (Rao) = {f € C®(Rso) : 3 [ € C(Rug) sit. f(Z) = Zf(ZA)V Z € RZO} . 2.11)

Then C°(Ryo) is a ring and Cg° (Rxo) is a linear vector space.
Remark 2.2. Under Assumption | and (2.9), we can show that the solution v(Z) satisfies
e v(Z)<Zand Zv(Z) < 1 forall Z € (0, +c0).

e Az (Z,v(Z)) >0forZ € (0,Z))and Az (Z,v(Z)) < Ofor Z € (Z;,+0), where Z| =

0.
o Let Ag(Z) := Az(Z,v(Z)) for Z € [0, +o0), then A((Z;) # 0.

k
Ve B

See Subsection A.2 for the proof.

In view of Assumption 1, we can define that for Z € [0, +o0)

(o)
- exp((ﬁ—l)/ sv(s))

(B= D77 ¢o(2)7T (1 - v(2)2) 7 '
(1-2Zv(Z)7

¢0(Z) =
(2.12)

po(Z) =

Then ¢o(Z) > 0, pp(0) = 1 and po(Z) > 0 for all Z € [0, +0). As a consequence, (¢o, po) defined by
(2.7) solves (2.6) (see Lemma A.1), and ¢, pp € C°([0,+o0)) (see Lemma A.6). This is the leading
order term of our blow-up solution (p, ¢) to (2.3).

2.2. Solving (pp,dn) for n € Z»,

In Subsection 2.1, under Assumption 1, we construct the leading order blow-up solution (pg, ¢). In
view of the expansion (2.4), we construct (o, ¢,) for n € Zs ;. We rewrite the recurrence relation (2.5)
forn e Zs; as

(ppp : + aa¢06¢1¢0)pn + 2p060¢06af¢n

=0pp-1 — Z Pny " Pnp — Z pn16a¢nzaa¢n3 = Fy,, (2.13)
nit--+np=n ni+nz+nz=n
ny,-,np<n-1 ny,ny,n3<n-1
po0d, + 26“p060¢n + 25a¢03mﬂn + 0¢0Pn
> 0%Pwdabm— Y. pmObm, = Gy (2.14)
ny+ny=n ni+ny=n
ny,ny<n—1 ny,np<n—1
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Using the equations for (po, ¢o) given by (2.6), the above recurrence relation becomes
(p = Dp2 ™ pn +2000% $00atn = Fn, (2.15)

O (pgdatn) +20% (p00adopn) = PoGn. (2.16)

By (2.15), we have

1-p
Fa 2 5
) 2.17)

Pn b1 -1

Substituting the above identity into (2.16), we obtain the following linear equation for ¢,,:
a 2 4 3-p a 2 a 2-p
9 poaa¢n - ﬁpo 0a$00“ p0050n | = poGn — Fa (PO aa¢OFn) =: Hy. (2.18)
We introduce the linearized operator

4 B _
L(p) = 9" (péam - p5a¢050¢05&¢) L p= (LX) = 60,0 (2.19)

Then our aim is to solve inductively £ (¢,) = H,, foreachn > 1.
Indeed, we can show that Z is surjective in some well-chosen functional spaces and then we solve
Z(¢n) = Hy in these spaces. Letting 7 = In =, we define (here Ce7 ([0, +00)) is defined in (2.10))

T-t>°
2o = {f(t,x) = ij(Z)Tj n € Zso, fj € CX([0,+00)) V jeZN]0, n]}, (2.20)
Jj=0
La=(T-"% ={f(t.x) = (T -1)'g(t,x) =e " g(t,x) : g € Lo}, VYAeC. (2.21)

Then 2y is a ring (using that {f(t,x) = f(Z)1/ : fi € C([0,400)), j € Zyo} is closed under
multiplication) and 2, is a linear vector space.
We have the following properties for the functional spaces Z;.

Lemma 2.3.

(i) Let /l,,u e C f S %ﬁ,g € '%.ll' Then 6,f € %,1_1, Af € .%'/1_2, I:If S %ﬂ_z, fg S .%',14./4,
09 f0q8 € XLasp-2, and 0% (f0ag) € Laru—2- _
(ii) Let A,u € Rand j € Zsy be suchthat A > j+ u. If f € Xy, then (T —t)™ D/ f € L=(C), where
C is the light cone C .= {(t,x) € [0,T) xRY : |x] < 2(T - t)}.
(iii) Let A,u € R and j € Zxo be such that 1 > j + p. If f(t,x) = (T - t)"f(Z) for some
f € C2([0,+00)), then (T —t) ™MD/ f € L¥(C).

The proof of Lemma 2.3 can be found in Subsection 5.1.

Proposition 2.4. The linear operator & : X3 — Xa_ is surjective for all A € C, where
y:i=4B8/(p-1)+2=6(-1)+2.

See Section 5 for the proof of Proposition 2.4.
Let

2B

Aoi=Cn-1(B-1),  pp:=2nB-1)- Pt VneZsg. (2.22)
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Recall from (2.7) that
go(t,r) = (T =0)"¢o(2),  po(t,r) = (T = )" po(Z).

As ao(Z),ﬁo(Z) € C°([0,+00)), by (2.20), (2.21) we have ¢g € 2, and pg € Z,,. Similarly, for
a € R we have po(t,r) = (T — 1) po(Z)* and po(Z)* € C ([0, +0)), then p§ € Ly, Moreover,
$0(2), po(Z) are real-valued, so are ¢, po.

Lemma 2.5. Assume that n € Zxy, ¢; € a;, pj € Ly, are are real-valued for j € ZN [0,n — 1].
Let Fy,, G, be defined in (2.13), (2.14). Then there exist real-valued ¢, € X3, and p, € Xy, such that
(2.15) and (2.16) hold.

Proof. By Lemma 2.3 (i) and the definition of F},, we have F;,, € X, _,_>, where we have used the fact
that p,, +- - “+Hn, = Hn-1 =2ifny+---+np =nand u,, +Ap, + Ay, =2 =y —2ifny+na+n3 = n.
Using Lemma 2.3 (i) and the definition of G, we have G,, € 2 (24-1)(8-1)-28/(p-1)-2, Where we have
used the fact that 1, + 1, -2 = (2n—-1)(8-1)-28/(p—1) -2if ny +ny = n. It follows from Lemma 2.3
(i) that poGy € Lo+ (2n-1)(B-1)-28/(p-1)-2 = Lan(s-1)-pe—1 (recall that pg € Ly, £ = 1+ ﬁ). Since
p(z)_” € XLo-p)uy» Fn € L, -2, by Lemma 2.3 (i) we get p(z)_”F,, € Lty 1—2+(2-p)po» then by g € Ly,
we have

2_
o (PO p3a¢0Fn) € Xy 1-242-p) o+ do—2 = Lon(B-1)-p-1-

Hence by the definition of H, in (2.18), we have H, € 2y,-1)-ge-1 = La,—y (recall that
v = B(€ - 1) +2). Moreover, F,, G,, H, are real-valued.

By Proposition 2.4, there exists (real-valued) ¢,, € &, such that £(¢,) = H, (otherwise take
Re ¢,,), then (2.18) holds. Let p,, be defined by (2.17). Then p,, is real-valued. Moreover, using (i) of
Lemma 2.3, p(l)_p € L1-p)uys pg_p € Lo-pyugs Fn € L 1—2. b0 € Xy and ¢, € X, we have

1- 2—
Py PF, € Lo (1-p)+ttn1-2 = Ly Py PO podatn € Lo 2=p)agtan—2 = Ly

hence p,, € Z,,,,. Now (2.15) follows from (2.17), and (2.16) follows from (2.17) and (2.18). ]

As ¢g € Xy, po € Ly, and ¢o, po are real-valued, by Lemma 2.5 and the induction, we have the
following result.

Proposition 2.6. Let ¢o, po be defined in (2.7). For each n € Zy, there exist real-valued ¢, € L), and
pn € Xy, such that (2.15) and (2.16) hold with F,,, G, defined in (2.13), (2.14). Hence, (2.5) holds for
ne Zz().

Now we briefly explain the ideas in the proof of Proposition 2.4. In the proof of Lemma 2.5, we see
that we only need to use the surjectivity of Z from 2, to 2, for A € {1,, : n € Z,}. However, this is
not easy to solve the equation & f = g for f € 2 even in the simplest case g = (T —1)*"7g(Z) € La-,
for some g € C([0,+00)) (without the logarithm correction 7/ for j € Z,), in which process we
need to check a non-degenerate property (nonzero of Wronski defined in (5.32)) on the coeflicients of
&) (defined in (5.23)), and it is difficult to check that all 4, satisfy the non-degenerate property, even
for one A,,. To overcome this drawback, we solve the equation for all 4 € C, not merely for those
A € {4, : n € Z,}. It turns out that the non-degenerate property holds for all but countably many A € C
(these A are “bad” in some sense) and the solution depends analytically on A. In this way, we can show
that the solution f = f(-;4) is a meromorphic function on A. For those countably many A € C not
satisfying the non-degenerate property, the analytic property of f allows us to introduce a logarithm
correction to solve the corresponding equation for “bad” A. See Section 5 and Appendix B for details.
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2.3. The approximate solution

Let (pn,¢n) € Ly, X La,(n € Zso) be given by Proposition 2.6. We fix a bump function
n € CZ(R; [0, 1]) such that i{jp,1] = 1 and 77][2,+e0) = 0.

Proposition 2.7. Let T = b = 1. There exist Ny € Z., c¢o € (0,T) and a sequence {T,},,>0 such that
T,=Tfor0<n< Ny 0<T, <T,_1/4foralln > Ny, and for functions®

0 0o

pult,x) = Y1 (?) pn(,0B", $(1,x) = > n (?) $u(t,)b", (2.23)

n=0 n=0
E. = pl +0.0%.00¢. — bOps, J, :=20%p.00bs + PO, (2.24)

defined on (t,x) € [0,T) x R? we have

(T -0PH-'Dig, € L°(C), (T -7 Dip, € L°(C), V] €Zso, (2.25)
(T =1 (0s — ID1) = co, (T=1)pTp.>co, V(1,x)€C, T—1<co, (2.26)
(T -1y (D’E,,D'J.) € L™(C), VA>0,VjeZso. (2.27)

See Section 3 for the proof of Proposition 2.7.

2.4. Solving nonlinear wave equation

Proposition 2.8. Assume that T =1, w, € C*(C), ®. € C*(C) satisfy
(T =P Did, € L™(C), (T -7 Diw. € L™(C), V€ Zso, (2.28)
(T =P (8,®. — |Dy®.]) > co.  (T—1)7Tw. > o V(t.x) €C. T —1 < co, (2.29)
Jor some ¢y € (0,T) = (0, 1). Suppose that (2.27) holds for E., J. defined as
E. :=wl +w,090,0,®, —Ow,, J. :=20%W,0,D, +w.0dD,, (2.30)

Then there exist ¢y € (0,co) and u € C>((T — ¢1,T) x R4;C) such that u(t, ), 6,u(t,-) € C>(R4;C)
fort € (T —cy,T),0u = |ulP Yufort e (T —c,T),|x| <T —t, and

2B 2B
—1 s

CNT-0)77T <|u(t,x)| <C(T—1)"7 Vie(T-c,T), |x| <T—t (2.31)

for some constant C > Q.

In fact, u = (1 + h)w.e'®, h = O((T - 1)), ¥ A > 0. To prove Proposition 2.8, it suffices to solve
the equation for % (see (4.1)) and prove that A is small. In view of the singularity of (4.1) at blow-up
time 7, we take a sequence &, | 0 and then we solve (4.1) (with technical truncation) with zero initial
data at T — g, in a backward direction. We denote the solution for each n € Z, by h,. Using energy
estimates and a bootstrap argument, we can show that %, lives in an interval with a positive lower bound
independent of n € Z,. Taking the limit n — co we get a desired solution to (4.1) (in the light cone).
See Section 4 for details.

SFor fixed (¢, x) € [0,T) X R4, the summations in (2.23) are both finite sums. Indeed, we have T — ¢ > 0, then lim,; 0 (T -
1)/Ty, = +oo, thus (T —t)/T,, > 2 for all sufficiently large n and hence 1((T - t)/T;,) = O for all sufficiently large n. As a
consequence, we have p., ¢, € C*([0,T) x R4).

https://doi.org/10.1017/fmp.2025.7 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.7

Forum of Mathematics, Pi 11

2.5. Proof of main results
Let’s begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. LetT = b = 1 and (p«, ¢.) € C*(C), co € (0,T) be given by Proposition 2.7,
andw, = p, D, = ¢.. Thenw,, D, € C*(C), (2.28) isequivalentto (2.25), (2.29) is equivalent to (2.26).
The definitions of E., J, in (2.24) and (2.30) are the same, and (2.27) also follows from Proposition 2.7.
It follows from Proposition 2.8 that there exist c; € (0,cq) € (0,1), % € C>((T - ¢1,T) x R?;C) such
that u(t, ), d,1(t,-) € C(R¥;C) fort € (T —¢1,T), o = |u|P'ufort € (T —cy,T),|x| <T —t,and

28 2B
CiNT -0 7T <u(t,x)| < C(T-0)"77, Vie(T-c,T), x| <T-t (2.32)
for some constant C; > 0. Choose initial data ug, u; : RY — C such that
uo(x) = (T = ¢1/2,x), uy(x) =8,u(T —c1/2,x), VxeR9

Then ug, u; € Cg"(Rd;C). Moreover, let u,(t,x) = u(t+T — ¢ /2,x) fort € (—c1/2,¢1/2), x € R then
u.(0,x) = uo(x), 0;u.(0,x) = uy(x) and Ou, = |u.|? u, fort € [0,c1/2), |x| < ¢1/2 — t. Suppose
for contradiction that Theorem 1.1 fails for this initial data ug, u;, then there exists a smooth function
u: [0,+00) x R — C such that Ou = [u|P~"u and u(0,x) = ug(x), d;u(0,x) = u;(x) for all x € R%.
Finite speed of propagation shows that u = u, in the region {(z,x) € [0,c1/2) xR? : |x| < ¢1/2 - t}.
Hence by (2.32) we have

|u(2,0)] = |u.(£,0)| = |ulz +T = ¢1/2,0)| > Cf1(61/2—t)_%, Vie[0,c1/2).

On the other hand, since u is smooth on [0, +o0) x R4, we have |u(,x)| < C for all |x|] < 27T and
t € [0,c1/2], where C > 0 is a constant. This reaches a contradiction. O

The following result was proved in [65] Theorem 2.2 and Lemma A.7 (8 > €+ 1 in [65] is equivalent
to 8 > 1 in this paper, recalling footnote 4).

Lemma 2.9. There exist £*(3) = 12315 ¢ (8 1) 4nd ¢, (4) € (5/4,4/3) such that if

k=4, 1<t<0(4) or k=3, 1<€<(3), (2.33)

Then there exists B € (1, k/(€ + VE)) “such that Assumption holdsfor d=k+1.

Proof of Corollary 1.2. LetT =1.1fd =4,k =3, p > 29, €—1+ then1<€<l+291=§<

7
C(3).Ifd=5k=4,p2170=1+% then1<€<1+171= <51(4) Thus, if d = 4, p > 29

ord =35, p > 17, then (2.33) holds for k =d-1,=1+ ﬁ and the result follows from Theorem 1.1.
The remaining case is d > 5, p > 17. Then Assumption 1 holds with d replaced by d’ = 5. By the

proof of Theorem 1.1, there exists c; € (0,1), # € C>((T = ¢1,T) x R3;C) such that u(t, ), d,u(t,-) €

C2(R3;C) fort € (T —¢1,T),0u = |u|P'ufort € (T —¢1,T), |x| < T —t, and (2.32) holds for some

constant C; > 0. Choose initial data ug, u; : R4 — C such that

uo(x) =n(lxDu(T —c1/2,x1,-++ ,x5), u1(x) =n(|x))o,u(T - c1/2,x1,- -+ ,xs),
for all x = (xy,---,xq) € R% Then ug,u; € C>(R4;C). Moreover, let u,(t,x) = n(jx)ua(t + T -
c1/2,x1, -+ ,xs) for t € (=c1/2,¢1/2), x = (x1,-+ ,x4) € RY. Then u.(0,x) = ug(x), d,u.(0,x) =

ui(x) and Ou, = |u,|P~u, fort € [0,c1/2), |x| < c¢1/2—t. Here we used that 7(|x|) = 1 for |x| < 1 and
that if r € [0,¢1/2), |x| < ¢1/2 =t then |x| < ¢1/2 < 1. Suppose for contradiction that Corollary 1.2

7Note that 1 < £*(3) < £;(4) < 3/2, thus if (2.33) holds then £ + V€ < 2¢ < 3 < k.
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fails for this kind of initial data u, «1, then there exists a smooth function u : [0, +o0) X R4 — C such
that Ou = |u|”~'u and u(0, x) = ug(x), d;u(0,x) = u; (x) for all x € R4, and we can get a contradiction
as in the proof of Theorem 1.1. O

3. The approximate solution

In this section, we prove Proposition 2.7, i.e., the construction of the approximate solution.

3.1. Construction of the approximate solution

LetT = b =1 and (pn, pn) € Ly, X La,(n € Zyo) be given by Proposition 2.6. For N € Z, and
(t,x) € [0,T) x R4, let

N N
P (6,3) = Y pa(t.0B", g (1,3) = Y da(t, 0B,
n=0 n=0

En = ply, + P dn)Pad(n) = bOP(N),
IN =20"p(n)0ad(N) + P(N)DD(N)-

It follows from (2.5) that

pN 2N
En(tx)= Y Ena(t0)b",  Iy(tx)= Iy alt,x)b"
n=N+1 n=N+1
with
EN,n = Z PniPny " 'pn,, + Z Pn16”¢n23a¢n3 —0OpnN 1n:N+],
nit--+np=n ni+nz+nz=n
ni,--,np <N ny,ny,n3 <N
I =2 Z Bapnlaa¢n2 + Z PnO¢Pn, .
ni+ny=n ni+ny=n
np,np <N ny,np <N

Then En.n € Lon(p-1)-2pp/(p-1)> IN.n € L2n-1)(p-1)-28/(p-1)-2 = L(2n+1)(-1)-2pp/(p-1)- Here the
proof is similar to Lemma 2.5.
Take Ny € Z, such that 2Ny(8 —1) = 2pB/(p — 1) > 3. We fix such Ny (which is the same as the

one in Proposition 2.7) and a non-decreasing sequence {ky }n ez, N © Z, such that

IN(B~1)=2pB/(p —1) > 3kn ¥ N € ZN [No, +o0), and lim ky = +eo. 3.1)

Then by Lemma 2.3 (ii), we have (T — t) kN (D/En, D7 Jy) € L®(C) for 0 < j < ky, N > Ny. Or
equivalently, for each N € Z N [ Ny, +o0) there is a constant Ay > 0 satisfying

IDIEN(2,x)| + D/ Jn (t,x)| < AN(T =)V, V0 <j<ky, (1,x) €C.

In fact forevery fixedn > d/2, we canuse (o(n), #(n)) as an approximate solution for N large enough
(but fixed) to construct blow-up solutions of H" regularity. But to obtain a blow-up solution of C* initial
data, we need to sum all the (p,,, ¢,,) with truncation as in (2.23). Note that for T —t € [2Tn+1, TN ], we
have E.(t,x) = En(t,x) and J.(t,x) = Jny (¢, x). The following result extends the above estimate to the
case T —t € [Tn+1, T ] (with a possible different Ap).
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Lemma 3.1. Let T = b = 1. Then there exists a sequence {An}N Zs N1 such that for all {Ty}nez,,
satisfying T, =T for 0 < n < Ny, 0 < T,, < Ty,—1/4 for all n > Ny, if we define p., ¢, E., J. by (2.23),
(2.24), then for j € Z N [0, kn ] we have

IDYE.(t, )| + D/ 1 (6, x)| < AN(T =)V, VT —t€[Tyu, T, (bx) €C. (32)
Lemma 3.2. Let T = b = 1. There exists a sequence {T, }n>0 satisfying

T,=Tfor0O<n<Ny and 0<T,<T,/4forn> Ny,

such that for every sequence {Ty }ynso with T, =T for 0 < n < No and 0 < T,, < min(Ty,, T,_1/4) for
n > Ny, for p., ¢. defined in (2.23), we have

(T = 1)/ DI (g, - do) € LV(C), (T —)» TP Di(p, — po) € L¥(C), ¥ j € Zso. (3.3)

Lemma 3.3. Let T = 1. There exists ¢ € (0,T) such that

(T -t/ iDigy e L), (T—1)p T Dipye L(C), V€ Zso, (3.4)

— 2B —
(T =18 (8,0 — |Dxpo|)(t,x) =G, (T —1)pTpo(t,x) >¢, V(t,x)eC. 3.5
Let’s first prove Proposition 2.7 by admitting Lemma 3.1~Lemma 3.3 for the moment.

Proof of Proposition 2.7.

Step 1. Construction of the sequence {7}, },,>0. Let Ay > 0 be given by Lemma 3.1 and the sequence
{i,}nzo be given by Lemma 3.2. Let 7, = T for 0 < n < Ny and T,, = min(i,,A;l/k",Tn_l/ét) for
n>Ny.Then0<T, <T,-1/4,T, < T},, A,,T,]f" < 1,forall n > Ny, and NIEEW Tn = 0. So, there hold

(3.2)for j € ZN [0,kn], (3.3), (3.4), and (3.5) with ¢ € (0,T) given by Lemma 3.3.
Step 2. Proof of (2.25). As 8 > 1, (T —t)B~! € L*(C), we get by (3.3) that

(T -0)P™DI (¢ — po) = (T =t} " N(T = 1)/ DI (¢ — §o) € L™(C), VY j € L3y,

28 . _ 28 . . o .
(T —0) 7T DI (p, = po) = (T = )P " NT = 1) » TP DI (p, — pg) € L¥(C), V j € Zso,

which, along with with (3.4), implies (2.25).
Step 3. Proof of (2.26). By (3.3), we have (for some C; > 0)

(T = 1)(|8: (6 — do)| + D1 (b, — o)) + (T = )P TP p, —pol <€) in C.

Now we take ¢y € (0,7) such that co + cjg e | < ¢, where the existence of such a ¢ is ensured by
B> land ¢ > 0. Then for (¢,x) € C,T —t < co, we get by (3.5) that (as T — ¢ > 0)

(T =1 (Bi¢ = ID¢l) 2(T = 1)P(8i¢0 = |Dxpol) = (T = )P (18 (¢ = po)| + D (¢« = o))

>c— (T -1)Plc) >¢c- cgfl(h = o,
and

28 28 28 — — _
(T—0)7Tp. 2 (T =071 pg = (T =1)7 |p. = pol 2 &= (T = 1)P7'C; 2 T- 7' Cy = co.
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Step 4. Proof of (2.27). We fix A > 0, j € Zyo. As _lim kx = +oo, there exists N| € Zp, such

N —+00

that ky > A+ j for N € Zs n,. Then by (3.2) and A,,T,]f” < 1, we have
IDVE.(1,x)] + D7), (t,x)| < An (T = 1) < ANTAN (T = 1)V < (T - 0)kv < (T - 1)4,
forT —t € [Tn+1,Tn], (1,x) € C, N € Zsn,. As limy 400 Ty =0, we have
|D/E.(t,x)| +|D/J.(t,x)| < (T —t)', VT -te(0,Ty,], (t,x) €C. (3.6)

As p., . € C®([0,T) x RY) (see footnote 6), we have E., J. € C*([0,T) x R?) by (2.24). Thus, there
exists a constant C(j, Tn,) > 0 such that

|D/E.(t,x)| +|D/J.(t,x)| < C(j,Tn,), VT —te[Tn,T], |x| <2T.
Then (recall that C = {(t,x) € [0,T) xR : |x| < 2(T - t)})
|DVE.(t,x)| +|DJ.(t,x)| < C(j.TN)T (T =)', VT —1€[Iy,.T], (t.x) €C,

which along with with (3.6) implies (2.27). ]

3.2. Proof of main lemmas

We define the following auxiliary spaces

Yo = {f € C([0,+0)) : £ =0in [0,1] U [2,+0)}, 3.7)

n T—
X = {f(t,x, s) = ij(t,x)nj (Tt) 1n € Zso, fj € Xa,nj € Y, Vj}. (3.8)
=

Note that n € %, % is aring, and X} is a linear vector space.
Lemma 3.4.

(i) Let A, u€C, f e Xy, g€ X, Thenof € Xy », fg € Xy, 0f0ag € &’j‘m_z.

(ii) Let A,u e Rand j € Zsg be suchthat A > j+u. If f € X%, then (T —t)™ "D/ f € L*(C x (0, 1]).
Here the operators O, d, and D are only acted on (¢, x) and not on s.

Lemma 3.5.

(i) Let A, ueC feX;,g€X,; Then Af € X}, 0, f€X; | fg€ ﬁl’jm.
(i) Let Ad,u e Rand j € Zsg be suchthat A > j+u. If f € X5, then (T — t)_“D‘)’;f e L=®(C x(0,1]).

Proof. By the definition of 27, it suffices to prove the result for f(t, x, s) = fi1 (¢, x)n (%), g(t,x,s) =

g1(t,x)71 (E5L) for some f; € La. g1 € Lo m 11 € %o
In this case, Af(t,x,s) = Afl(t,x)m(%). By Lemma 2.3 (i), we have Afi € 235, thus
Af € &;_,. We also have

0, f(t,%,5) = 8, fi(t,)m (T =) /s) + (T =)' fi (£, )2 (T = 1) /)

with 172(z) = —zn](z) € % (as m2 = 0, ny = 0 in [0,1] U [2,+c0)). By Lemma 2.3 (i), we have
6tf1 € X1, (T - l‘)_1 e X1, (T - l‘)_lfl € X-1, thus 6,f € ‘%‘;—1'

In this case, (fg)(t,x,s) = (f1g1)(t,x)(m)71)(%). By Lemma 2.3 (i), we have figi € Ly, as
%, is aring we have 1777 € %, thus fg € .El"/’l"w. This completes the proof of (i).
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Assume that @y, - - ,@q € Z>q are such that a; + - - - + @4 = j, then we have

(T =)oy -+ 0xf f(t,x,8) = (T =) 03" -+ Oxf fi(t,x)m (T = 1) /).

Then (ii) follows from Lemma 2.3 (ii) and n7; € L*([0, +0)). m]
Proof of Lemma 3.4. ByLemma?S(l) we have fg € & /l+ AfeX] L, 0feX Bzfe o
thus Of = -02f +Af € 1_,- As a consequence, we have I:l(fg) € (*/H'u) 5 (Df)g € (/l 2
fog € Xy, , - hence 6”f0ag =(ao(fg) —(Oof)g - ng)/2 €Ty, o

Assume that g, @1, - ,aq € Zso are such that g + --- + @4y = j. By Lemma 3.5 (i), we have

o f € Sl”jfao. Then by Lemma 3.5 (ii) and A —ag > j' +pu (here jJ =a1+--+ag = j—ap), we have

(T = )79 - 05 f < (T = 1) ™|DL 9™ f| € L*(C x (0, 1]).
This completes the proof. O

Now we are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. Fort € [0,T),x € R, s € (0,+c0) and N € Zsy, let

Pn«(t,x,5) —an(t x)b" +77(T )pN+l(t x)bN+l
n=0

Ons(t,x,5) = Z¢n(l x)b" +n (T )¢N+1(f x)bNH,

Then by (2.23), for all N € Z3 n,—1, we have
px(t,x) = pN«(t, X, TN+1),  @u(t,X) = dNi (1, %, TN+1), VT —1 € [Tn+1,Tn], (1,x) €C.
Let
Ene=pR, + N0 ONOabN« — DOPpNs, I =209 pN2Oa®N« + PNOPN-. (3.9
Then by (2.24), for all N € Z n,-1, we have
E.(t,x) = En«(t,x,Tn+1),  Ju(t,X) = INa(t,x,TN41), VT —t€[Tna,Tn], (t,x) €C.
Now (3.2) is reduced to the proof of
(T — 1) N (D/En.,D/In.) € LY(Cx (0,1]), VjeZn[0,kn], N€Zsn, 1. (3.10)
Fort € [0,T),x € R s € (0, +00), let

pn(t:x) nGZﬂ[O,N]

ONn(t,x,s) =1 pp(t,x,s) n=N+1 ,
0 ne€Zsny
on(t,x) neZn|0,N]

ON.n(t,x,8) =4 ¢r(t,x,5) n=N+1

0 neEZsn

where

p,*l(t,x,s) 5=77((T_t)/s)Pn(t’x)’ ¢;(I’x’s) ::n((T_t)/s)¢n(t7x)’ VHEZZO. (311)
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Asp, € Xy, ¢n € Xy, forall n € Zyo, we have p;;,, oy € Sl"ljn, &, N n € &”/l*n for all n, N € Zsy.
Fort € [0,T),x € R, s e (0,+00) and N € Zs(, we have

N+1 N+1
pN*(t’x’ S) = Z pN,n(t,X, S)bna ¢N*(t’x’ S) = Z ¢N,n(t,-x7 S)bn
n=0 n=0

Then by (3.9), (2.5) and pn (2, x,5) = pa(t,x) forn € Z N [0, N], we have

p(N+1) 2(N+1)
En:(t,x,5) = Z Ey (6, x,9)b",  JINn.(t,x,5) = Z Jn . (tx,5)b", (3.12)
n=N+1 n=N+1

with (note that px ,(f,x,5) =0forn € Z>n42)

E;/,n = Z PN.,mPN,ny """ PN,n, + Z pN,n16a¢N,nzaa¢N,n3 — 0PN, n-1,

ny+-+np=n nj+npy+nz=n
* a
JN,n =2 Z 0 PN ,ny 8G¢N,n2 + Z PN OPN -
ni+ny=n ni+ny=n
By Lemma 3.4 (i), we have E}, , € &, Jy, €EXL where we have

2n(B-1)-2pB/(p- 1)’ (2n+1) (B-1)-2pB/(p-1)’
used the facts that y,, +---+,unp = Up-1 —2ifn +- +np =0, Up, +Ap, Ay =2 =pp 1 -2 =

20(B—1) = 2pB/(p — 1) if my + s +n3 = nand iy, + Ay, =2 = (20— 1)(B—1)=28/(p— 1) =2 =
Cn+1)(B-1)=2pB/(p - Dif ny +ny =n.
Ifn>N+1landj € Zn[0,ky], then we get by (3.1) that
@Cn+D)(B-1)=2pB/(p-1) —j>2n(B-1)=2pB/(p-1) -]
>2N(B-1)=2pB/(p—1)—j>3kn —j > 2kn.

Thus, by Lemma 3.4 (ii), we have (T — 1)V D/E}, € L¥(Cx (0,1]) forn € ZN [N +1, p(N +1)],

and (T —1)"**VD/J}, € L¥(Cx(0,1]) forn € ZN [N +1,2(N +1)], which along with (3.12) implies
(3.10). m|

Next we prove Lemma 3.2.

Proof of Lemma 3.2. For (t,x) € [0,T) x R4, and any fixed {7}, },>0 satisfying 7, = T for 0 < n < Ny
and 0 < T,, < T,,_1 /4 for n = Ny, we define p., ¢. by (2.23), then ((p};,, ¢;,) is defined in (3.11))

pe(t,3) = 3 PR X T)B",  ¢u(t,2) = ) 5, (1,x, T,

n=0 n=0
(p- = p0)(1.2) = 3" (6., T)B", (¢ = o) (8.3) = D 63(6,x, T,)b".
n=1 n=1
Recall that p;, € 2}, and ¢;, € ,El”jn for all n € Z5p. By (2.22), we have

Li=j=@n-1D)(B-1)=j>@m-1)(B-1)~j. VYnel,

J_Zn(ﬁ—l)——ﬁ—1> (ﬂ—l)——ﬁ—J, VneZ,.
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Thus, by Lemma 3.4 (ii), for any j,n € Z, there exists a constant B,, ; > 0, which is independent of
the sequence {7, }, >0, such that for all (¢, x) € C, we have

. . 28 . .
(T — 1)/~ =DE-D DI g* (1,5, T,))| + (T — ) » 1BV |DI p* (1,x,T;,)| < By},

which gives (recalling that n((T —t)/T,,)) # 0 implies T — ¢ < 2T},)

. . 28 | - .
(T = 1) 1D ¢}, (1, %, T) | + (T = ) p TP DI p* (1,x,T,,)| < By, ;(2T,,) DB,

Letfn ;=T for 0 < n < Ny and for n > Ny we let

B, =2" OﬁngllxN B, ;, T, := min (E;l/[(n_l)(ﬁ_l)]/l T,,_l/4) .
<js<n-No

Now we prove that {T; }n>0 is a desired sequence for Lemma 3.2.

_ Let {Ty}u>0 be such that T, =T for0 < n < Npand 0 < T, < min(i,,Tn_l/4) for n > Ny. Then
B, (2T;,)""DB-1 < | for n > Ny. Fix j € Zso. For any (1, x) € C, we have

(T =)D (¢, — do) (1. 5)| + (T = )P TP DI (p, — po) (1,3)]

> . . 28 | . .
< D@ =I5 (1 T+ (T = )77 P4 DI p (1,37,

Z Bn’j(zTn)(n—l)(B—l) < Z Bn’j(zfn)(n—l)(ﬁ—l)

<

n=1 n=1

No+j-1 o0
< > BT IED L N 9B, (2T, e

n=1 n=No+j

No+j—1 No+j-1

< Z By, (2T,) "~V 4 Z 27 < Y B L)V E 4,
n=No+j n=1
which implies (3.3), as the right hand side is a finite constant independent of (¢,x) € C. )

Finally, we prove Lemma 3.3.

Proof of Lemma 3.3. By (2.7), Lemma A.6 and Lemma 2.3 (iii), we obtain (3.4). It suffices to prove
(3.5). By (2.7), we have

ai0 = (T =07 ((B=1do(2) +Z8y(2)), .00 = (T =) PG (2).

It follows from (2.12) that

~ o _(B=Dgp2)v(2) ~ . (B-D¢o(2)
#o(Z) = = Zvz) Z¢o(Z) + (B-1)¢o(Z2) = @) (3.13)
Hence,
N e $(2) (1= v(2))
(T =1)” (8,90 — |Dxgol) = (B 1) -7v(2) (3.14)
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Since 8 > 1, 50(2) > 0,v(Z) € (-1,1),Zv(Z) < 1 forall Z € [0, +c0) and ¢g, v € C=([0, +0)), we
know that the right hand side of (3.14) is strictly positive and continuous. Thus, there exists ¢; € (0,7)
such that

. $0(2)(1 - v(Z)]) _ -
AV o

On the other hand, by (2.7), we have (T — 1)?#/(P=V) py = 5o(Z). As p(Z) > 0 and p € C([0, +)),
there exists ¢z € (0,7) such that infze[92] po(Z) > ¢2. As a consequence, letting ¢ := min(ci,¢;) €
(0,T), we have (3.5). O

4. The blow-up solution of nonlinear wave equation

Fix T = 1. Recall that C = {(¢,x) € [0,T) xR? : |x| < 2(T —1)}. Let w, € C*(C;R), ¥, € C*(C;R)
be such that both (2.28) and (2.29) hold; moreover, (2.27) also holds for E., J. defined by (2.30).

4.1. Derivation of the error equation

We construct a blow-up solution  to Ou = |u|”~'u of the form u = (1 + h)w,e'®:, where h is complex-
valued. First of all, we deduce the equation for the error A.

Lemma 4.1. Assume that u = (1 + h)w, e'® solves Ou = |u|P~'u. Then h satisfies

0w

* - - E*_J*
dah = (p = DWP he = wP o () + = (14 h), (&)

a
Wy W

Oh+2i0°®,.0,h +2
where hy = Re h = (h+ h)/2 and
o1(h) = (IL+hP™ = 1= (p = DAY (1 +h) + (p = Dhch = O(|h]).
The converse is also true.
Proof. This is a brute force computation. If u = (1 + h)w,e!®, then for any & € Z N [0, d], we have
Aot = ghw.e'® + (1 + h)dow.e'® +i(1 + h)w,e'®d,D..
Hence,

(Qu)e ' =(Oh + 2i0hd D)W, + 20,70 %W,
+ (1 + h)(Ow, + 210w, 09D, — W0 D, 0, D, +iODP,w.)

0 (Oh +2i0,h07 D) w. +20,h0%w. + (1 + 1) (WP +iJ. — E.),

[ulP~Vu =|1 + 1P~V (1 + h)ywP el

By the definition of ¢, we have 1 + (p — 1)h; + h + @1 (h) = (1 + h)|1 + h|P~!. Thus,

%W,
=(1+(p=Dhe+h+@ (R)wP™!

0w, _ _
id doh — (p — DHw? 1hrzwf lcpl(h)+

Ou = |ulP'u & 0h + 210,y h +2

duh+ (1+h) (Wf‘l g B E)
Wy

E.—1iJ,

— 0h+2i0®,0,h +2 (1+h).

@
w *

This completes the proof of Lemma 4.1. O
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We fix a bump function ¢ € C2°(R; [0, 1]) such that supp & € [—1, 1] and &|g 4/5) = 1. We define the
vector fields X, Y by®

3 Dw.(t, 3
X(t,x) 1= D®, (1, x)& (%) . Y(tx) = ww(ftx))c)f (5(T|x_| t)) (4.2)
for (t,x) € [0,T) x R?. We also define the functions on [0, T) x R4 by
_ 3 E.—ilJ, 3
Vo(t,%) = (p - w? l(t,x)é:(S(T|x_| t)), N.(t,x) = W—l(t,x)§(4(T|x_| ;))‘ “3)

Then X,Y € C*([0,T) xR%; R4 and V, € C®([0,T) xR¥;R), N, € C®([0,T) xR?; C). Moreover,
we have

supp, N.(t,-) c {x e R : |x| <4(T —1)/3}, Vre[0,T). (4.4)

Let ¢y € (0,T) satisfy (2.29). Let C; := {(t,x) € [T —co,T) xR? : |x| < 4(T —1)/3} c C. Using
(2.28), (2.29) and (2.27), we have Xy(t,x) > 0,V.(t,x) > O for all (¢,x) € C;. The following lemma
gives more useful properties.

Lemma 4.2. There exists a constant M > 0 such that

DX DV,
T-n/! 0' i+ 2 <, @.5)
1 1
il NP <Xo < M(T-1)7P, il N <V, <MT -1 (4.6)

on Cy. Moreover, for any j € Zs,
(T =P DIX|+ (T =)™ DY+ (T —0)PY DIV, + (T =)' |D/N,| € L*(C)).  (4.7)
Forany j € Zxo and A > 0, there exists a constant M 3 > 0 such that
ID/N,| < Mj (T -t)* on Ci. (4.8)
Proof. On C;, we have
X =D®,, Y=Dw,w, V.=(p-Dwl" (4.9

By (2.28), we have (T — 1)#Xy = (T — )88, ®, € L*(Cy) and (T - 1)*V, € L*(C;). By (2.29), we
have (T - t)8Xo = (T — )83, ®, > co, (T - )PV, = (p = (T - )BwP™ ' > (p - 1)cg“ on C;. This
proves (4.6).

It follows from (2.28) that (T — 1)8*!|DX| = (T - t)P*!|D*®,| € L*(C)), hence by (T — 1) Xy > ¢
on Cy, we have (T — t)|DX|/Xo € L*(C;). Similarly, by using (2.28) and (4.6), we get (T —t)(|Y| +
|DV,|/V.) € L*(Cy). This proves (4.5).

Next we prove (4.7) and (4.8). Recall the product rule: for smooth f, g and (ag, a1, - ,@q) € Z‘Q)l,
we have (see [24])

8Here we explain the notations to avoid ambiguities. For a smooth functlon f (¢, x), we denote the action of the vector field
Xonfby Xf,ie,Xf =Xq0%f = X%sf, where Xg = 8;®.&, X% = =X and X = X/ = 0j®. & for j € Zn [1,d].
The same clarification holds also for Y. Moreover, in (4.2), although D®, (¢, x) is only defined for (7, x) € C, we just simply let
X (t,x) =0for (¢, x) € ([0,T) xR¥) \ C, noting that & (3|x|/(5(T —1))) = 0 near the boundary of C. The same clarification
holds also for Y, and Vi, N, in (4.3).
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Haotar+ - +aq @ @ @d @\ (a1 ay
e (R = YD ()()()
Q a Q,

R T D0 oo \o/\n Jd

Jotji+:+ja ap—jorai—ji+ -+ @a—ja
f g

Jo aJ1 Ja @o—jo qa1—ji @a—ja "
oloall .. pl proignTI . g

Xd
Hence,
n . . n . .
ID"(f9)] <u 3 IDIFID" gl IDI(f9)] $u Y IDIFIDY gl VneZsy,  (410)
j=0 j=0
n-1 ) )
2D 1 $u ID"(fQ)+ Y IDI FIID" |, VneZ,. (4.11)
j=0
As X = DO, on Cy, we get by (2.28) that
(T -0)P|D/X| € L™(C1), VY j € Zso. (4.12)
Now we use the induction argument to prove that
(T - |DIY| € L®(C)), VY j € Zso. (4.13)

By (4.5), we know that (4.13) holds for j = 0. Assume that (4.13) holds for all j € Z N [0,n — 1] for
some n € Z,. Note that Dw, = w,.Y on Cy, hence by (4.11) we have

n
[w.D"Y| <, |D™(Dw,)] +Z |D/w,||D"Y| on (.
=

Using (2.29), (2.28) and the induction assumption, we obtain
l+n| yn 1 l+n+¥ n
(T -0)™D"Y| < —(T -1) P-T|w,D"Y]|
co
n
28 28 . . . .
Su (T =0 21D w4 3 (T = 7T DI |(T = )" D" Y| € L™(C).

J=1

This proves (4.13).
Now we prove that

28 . .
(T —)p "™ D/ (W) € L¥(C1), VmeZy, Y jeLs. (4.14)

By (2.28), we know that (4.14) holds for m = 1. We assume that (4.14) holds for m — 1, where
m € ZN [2,+00). By (4.10), for j € Z( we have

J
|DI(w™)| = [DI (Wi w,)| 55 Z |D (W H] D ],
i=0

which gives

NEemtjnyjm Aj N (m-V)+i i me] NEej-i i
(T = 0)p ™ DI (wm)] 55 > (T =17 D' (W H| (T = 1) 7T DI |
i=0
ELm(Cl).
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By the induction argument, we have (4.14). Letting m = p — 1 in (4.14), we get (using (4.9))
(T -0)*PY|DIV,| € L™(C1), Y j€Zso. (4.15)

Finally, we estimate N.. Let E(t,x) = EQ3Ix|/(MT —1))). Then by Lemma 2.3 (iii), we have
(T —1t)/D/¢é € L™(C). Let N, := (E. —iJ.)&, then N, = N, /w.. By (4.10), we have

|Dfﬁ*

J

si ) |Di(E. ~i1)| D],
i=0

hence by (2.27), forall 1 > 0 and j € Z5( we have

(T -1~ |Df N,

J
$i YT =0 DiE, —ig)| (T -0y [DITE e L7(0).  (4.16)
i=0

Now we use the induction argument to prove that

(T =) D/N,| € L*(C)), YV j€Zsp, VA>0. 4.17)
For j =0, (4.17) f_gllows from (4.16) and (2.29). Assume that (4.17) holds for all j € Z N [0,n — 1] for
some n € Z,. As N. = w.N,, we get by (4.11) that

n
D"N, +Z|Djw*||D"*fN*| on (.

Jj=1

[w.D"N.| <n

Using (2.27), (2.28), (2.29) and the induction assumption, for any 4 > 0 we obtain
1 4 2B
(T =) YD"N,| < —(T = )" 51 |w.D"N,|
o

28 —
<o (T =07 (T =) )D"N*

n
28 . R . .
# 2 (T =0)p T DI, [ (T = 1)~ DTN, € L2(Cy).
J=1
This proves (4.17) for j = n. By induction, we have (4.17), which is equivalent to (4.8).
Taking A = 1 in (4.8), we get
(T -)"™ID/N,| < T/**(T - 1) D/N,| € L*(C1), ¥ j € Zso. (4.18)
Therefore, (4.7) follows from (4.12), (4.13), (4.15) and (4.18). m]

4.2. Energy estimates for the linearized wave equation

Lemma 4.3. Let T. € (0,co) and h € C([T - T.,T) x R4, C) be such that supp, h(t,-) C {x € R? :
|x| <4(T —1)/3} forallt € [T —T,,T). We define the linear operator

Lh:=0h+2iXh+2Yh-V.h,, 4.19)
where hy = (h + h)/2 and energy functionals
1
Eo[h](1) := 5 / (IDA( O + Vil ) lhe(r,0)P) dv, Vi€ [T-T.7), (420
R4

E,[h] := Eo[D}h), VjeZ,. 4.21)

https://doi.org/10.1017/fmp.2025.7 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.7

22 F. Shao, D. Wei and Z. Zhang

Then there exist positive constants My > 1 and {C;} jez,, such that

JE; (r)<c/ ( ) 3 %d& Vie[T-T.T),VjeZs  (4.22)

Proof. LetT, € (0,cp) and h € CX([T - T.,T) x R%; C) be such that
supp, h(r,-) c {x e RY : |x| <4(T —1)/3}, Vrie|[T-T.T).
We define the energy momentum tensor 7'[ /] by
T[h)y = Re (a,,hav_h) - %m,,v (a%aTm V*hf) . VYuvezZnlo,d], (4.23)
where we have used the Einstein’s convention in (9"}1@. Then we have
Eo[h](r) = /]Rd T[hloo(t,x)dx, Vte|[T-T,T). (4.24)
We define
PX[h] :=T[hlwX”, YueZn[0,d]. (4.25)
Let’s first claim that there exists a constant ¢y > 0 such that
PY[h] < T [hlooX" < 0onC, = {(t,x) € [T - T.,T) xR : |x| < 4(T - 1)/3}; (4.26)

and there exists a constant C, > 0 such that

0 PX[h]| < C.(T = 1)# ((T ~ )7 TR0 + \/T[h]00|£h|) on C., 4.27)

and moreover, for all j € Z,

|

J
e, ;(T — )y BWIE[h(t) Vite[T-T.,T), (4.28)

where the implicit constants only depend on X, Y, V., N, (and they are independent of /).
Now we prove (4.22) by the induction argument. We first consider j = 0. Forallt € [T - T,,T), by
(4.24), X° = =Xy, supp, h(t,-) € {x € R? : |x| < 4(T —t)/3}, (4.26) and (4.6), we have

PG M
Eo[/’l](t) < ‘/Rd mdx < ,C.,—O(T—t) ‘/R:d _PO [h](t,x) dx. (4.29)

Let

Eo[h] (1) = /Rd —PX[h](1,x)dx >0, Vie[T-T.,T).

By the divergence theorem (recall that 3° = -8y = —0,), we get

d ~
aEg[h](t)z/Rd 60P8([h](t,x)dx=/Rd OMPY[h)(t,x)dx, Vi€ [T-T.,T).
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Using (4.27), (4.24) and Cauchy’s inequality, we obtain

’%EOUZ](I) < CUT =07 (T =07 Eal) (1) + VEGTRIONLA ()2 ) Vi€ [T~ T..7).

Hence, by (4.29) and h € CZ([T - T..,T) X R9; C),forallt € [T —T.,T) we have

Eolh() < 21— 0P Eolnl(r) < Lz~ 1p / AT
co Cco t dr

T
P np [C @0 (-9 Bl )+ VETRID LA ;) ds.

<

By Gronwall’s lemma, we have

MCy/Ey+B

MC. (T (T -1t z
VEo[h] (1) < 260/ (m) ILh(s)ll;2ds, Vi€ [T-T.,T).
t

Letting M| := m > 0, we know that (4.22) holds for j = 0.
Let n € Z,. We assume that (4.22) holds for all j € Z N [0,n — 1]. Then by (4.22) for j =n — 1 and
(4.28), fort € [T — T.,T) we have (also using (4.20) and (4.21))

T_I)Ml L \DLLDh(s) ]l 2
)

_ _ n—-1-j
T-5s = (T - s)( DB

/T T - \Mic ||D§;”Lh<s)||L;+Z{;O<T—s>-f>’-‘+i-wE,-[h](s>d
"Jo \T-s (T - 5)(n=1-0)B

T
‘/En[h] (t) = \/Enfl [th] (t) <n / (

<

1
s
J=0

T (T - \M & IDLLA(S) 2
S"/z ( ) Zmd”’"”)’

where

n-1 Jj T _ M, o )
(1) :=ZZ[ (;—_;) (T — s)~*~d==DB[E [ 1] (s) ds.

7=0 i=0

ForT-T,<t<s<T,j>i>0wehave0<T -5 <T,<cy<T=1and (T —s)"*7-(=NE =
(T — s)_l_(n_i)ﬂ"'(j_i)(ﬁ_l) S (T —_ S)_l_(n_i)ﬁ (asﬁ > 1). Then

L,(1) Snnz_]‘/T(
i=0 V1

Using the induction assumption and Fubini’s theorem, we have

n-1 i T _ M1 T _ o\ M iﬁh 2
L) $"ZZ (T =0)/(T -s)) / (T s) D (T)IILXd ds

N

-\ -8 JETHICS)
T (T -5) E;[h](s)ds.

per e R (T — 5)!+(n-DB T—71 (T —1)-DB T
ol LT o \MUIDICR(DI [T ds
D)) ) -
m ) \IT-T (T -7)=DB J (T —s)t+(n=0B
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n-l BT M\ pJ
T — \M IDLLA(T)]|2 !
SZZ/ ( ) LadiaSRl?: @
T \IT-T (T = 7)=DB (T — 7)(n-DB
b fT o \MUIDLLR(D) 2
nZ/ t - Lx dr.
o \I'—-7 (T —7)(n=DB

1
Jj=0

IA

Therefore, we obtain (4.22) for j = n. This proves (4.22) for all j € Zy.
Thus, it remains to prove (4.26), (4.27) and (4.28). We start with

d
PY[h] = T[hloy X" = T[hlooX" + > T[Rlo:X".
i=1

OnC, c Cy, by (4.2), we have —X° = X = 9,®, and X’ = X; = ;®, fori € ZN[1,d], hence by (4.23)
and Cauchy’s inequality,

d

D Tlhloix'

(0,11 + Db
i=1 2

< ) 10:h|0:h|6;®.| < [0:h]|Dxh||D®.| <
i=1

< T[h]00|qu)*|-

d
|D @,

On the other hand, by (2.28) and (2.29), there exists a constant ¢y € (0, 1) such that
3®, — | D ®,| > co(T —1)P > 8@, >0 on C.

Thus, we have |X| < [9;D.| + |DxD.| < 20,D, = 2Xj and

d
D TR0 X' | < T[hlool Dx®.] < Thloo(1 = G0)3;®. = T[Aloo(1 = )Xo,
i=1

hence
PE[h] < T[hlooX° + T [hloo(1 = c0)Xo = T [h]ooX" <0 on C..

This proves (4.26).
As for (4.27), we compute

OMT[h],y = Re (uhﬂ) +Re (aﬂhaﬂﬂ) - %av (6"h8a_h + V*hf)
= Re (0hd,h) + %Re a, (0,h0¥ ) - %ay (09 hBaR) = hydyhiV. - %hfavv*
= Re (uhﬂ) — hedyhV, — %hfayv*
for v € ZN [0, d]. Hence,
0Py [h] = T[]y 0" X" + (O*T[h]yy) X~
= T[h]y (7X)** + Re (uhXVﬂ) — XY, h,V, — %hfxvavv*

— 1
= T[h]y (7X)** + Re (DhXh) ~ V.hiXhe = SHEXV.,
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where we have used the fact that X” is real-valued for v € Z N [0, d], Xh = XV, h and we define

I1XY + 5" X"

X\uv ._
(m)H” 3 :

Vou,veZn0,d. (4.30)

Hence, it follows from (4.19) that

— 1
9*PX[h] = TR (T5)" + Re (thh) ~ VehiXh; = ShEXV.

= T[h] (X1 — %thV* +Re (ﬁhﬁ) _2Re (Yhﬁ) . 4.31)

By (4.23), we have |T[h] | < T[h]oo for all u,v € Z N [0, d] and |Dh|? < 2T [h]oo. Thus, by (4.31),
|X| < 2Xp, (4.5) and (4.6), on C, we have (note that | X V.| < | X||DV.|, |Xh| < |X||Dh|, |Yh| < |Y||Dh|,
see footnote &)

[DV.|

*

< T[hloo(T = 1)™" Xo + [ Lh|XoT [ oo
< (=07 (7= 07 Tlhloo + VT DIl £A1)

|0# PX [h]| < T[hloo| DX| + T [h]ooXo +|Lh||X||Dh| + |Y||Dh||X||Dh|

which gives (4.27).
Finally, we prove (4.28). By (4.19), we have

LDyh—DyLh=-2iD;X%3oh — 2D, Y*0oh + DV, - h;.

Let j € Zsp, by (4.10) and (4.7), for any ¢t € [T — T, T) we have

j

IDL(DxX“0ah) (D12 S; Z 1D DX (Ol IDD A1)l 2
=0
j

<j > (T =ty P IE [h] (1)

Similarly, we have (recalling 8 > 1)

) J o J o
IDL(DY *0ah)(0)llz $; DT = 002 INE R (1) 55 Y (T =) P IE[h] (1),
i=0 i=0

By (4.6) and (4.7), we have

.

ID5(DV. - )2

2/\

ZIIDJ Y AWVelleg INVDL bl 2
i=0

J
<j (T =PI R (7).
i=0
Hence, we get (4.28). ]
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4.3. Solving the error equation

Lemma 4.4. There exists a constant c; € (0,cq) that depends only on X,Y,V., N, such that for
any f € C2([T - co,T) x R;C) satisfying |D%f| < |D%N.| for all j € Zs, there is a solution
h e C([T - c2,T) x R4; C) to the error equation

1
Oh +2i Xh+ 2V h =Vl = —— V.1 (h) = Noh = f. (4.32)
Py

Moreover, supp, h(t,-) C {x e R? : |x| < 4(T —1)/3} forallt € [T —c,,T), and there exists a constant
Cy > 0 that depends only on X,Y, V., N, (Cy does not depend on f) such that

|Oh(t,x)| < Ca, Vi€ [T—ca2T), ¥VxeRY, (4.33)

and for any j € Zso, A > 0, there exists a constant C;j 4 > 0 that depends only on X,Y,V.,N. (Cj,
does not depend on f) such that

|D‘)’;h(t,x)| + |6tD‘)’;h(t,x)| < Cja(T - N, Vite[l-cyT), VxeRY, (4.34)

The proof is based on the following lemma.

Lemma 4.5. Let f € CX([T — ¢o,T) x RY;C) be such that |D%f| < |DLN.| for all j € Zso. Let
T. € (0,co). Assume that h € C>([T - T.,T) x R%;C) solves (4.32) on [T — T.,T) x R, moreover,
supp, h(t,") c {x e RY : |x| < 4T —1)/3} forallt € [T - T.,T) and

At Mpo@ay < (T =07, Vie[T-T.,7). (4.35)

Then there exists a constant Cg > 0 that depends only on X,Y,V,, N, (Cg does not depend on f,T,)
such that

|oh(t,x)| < Ca, Vie[T-T.,T), VxeRY, (4.36)

and for any j € Zzo, A > 0, there exists a constant Cj 3 > 0 that depends only on X,Y, V., N, (C; 1
does not depend on f,T,) such that

\DLh(t,%)| + 16, Dsh(1,x)| < C;j (T -0}, Vie[T-T.,T), VxeR (4.37)
Now we present the proof of Lemma 4.4

Proof of Lemma 4.4. Let f € CX ([T —co,T)xR¢; C) be such that |Df;f| < |D§N*| forall j € Zso. We
assume that & € (0, co) satisfies f(¢,x) = 0 for all (¢,x) € (T — &, T) x R%. By the standard local well-
posedness theory (Theorem 6.4.11 in [25]), there is a unique local solution 1 € C*((T - Ty, T) xR%; C)
to (4.32) with (h,d;h)|;=r-c2 = (0,0), where & < T, < c¢o corresponds to the left life span of #;
moreover, if T, < cg, then

lim sup || (2, ) || Lo (ray = +00. (4.38)
t|T-T,

By the uniqueness and f(z,x) = O for all (t,x) € (T — &,T) x R?, we have h(t,x) = 0 for all
(t,x) € (T — &,T) x R%. Moreover, by | f| < |N.], (4.4) and the finite speed of propagation, we have

supp, h(t,)) c {x eRY : |x| < 4T —1)/3}, Ve[l -T,T).
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Let ¢z € (0, cp) be such that Cyp - c2 < 1/2, where Cp s > 0 is given by (4.37). Note that ¢, is
independent of f and T.. We claim that 7} > c¢,. We assume in contrary that € < T, < ¢;. Let

& :={Th € (0.T)) : |n(t, Ypogay < (T =)' forallt € [T =Ty, T)} . (4.39)

Then (0,&) c &. LetTy :=sup& € [&,T,]. By (4.38), wehave Ty < T}, hence Ty € & and Ty < Ty < c3.
By (4.37), we have

1
|h(t,x)| < Coop(T = )P = Copp(T = 1)(T = )P < Copper(T -7 < E(T - 1)
forallt € [T —T,,T) C [T — c3,T). Thus, by the continuity we have T + § € & for some 6 > 0. This

contradicts with T = sup &. Therefore, Ty > ¢z and [|A(t, ) ||« gay < (T -1 forallt € [T —c,,T).
Now Lemma 4.5 (letting T, = c») implies Lemma 4.4. m}

Let’s complete the proof of Lemma 4.5.

Proof of Lemma 4.5. Assume that h solves (4.32). Then (£ is defined in (4.19))

1
ﬁh = FV*(p](h) +N*l’l + f

We claim that for each j € Z, there exists a constant C i > 0 such that

My DY f ()2
JE; (:)<c/( ) %d Viel[l-T.,T). (4.40)

By the definition of ¢, we know that ¢ is a polynomial on (4, h) of the form 1= Docivj<p Cinj hiﬁj,
with ¢; ; € R, thus

loi(h)| < |h*> + k1P, Y hecC. (4.41)
Hence, supp, ¢1(h)(t,-) € {x € R? : |x| < 4T —1)/3} forall t € [T —T.,T). For j € Z5( and
€ [T -T.,T), by (4.10), (4.7) and Poincaré’s inequality, we have

|t

2/\

L -

IDY V() g 1Dk () (D)l

A

i 2T T = 1)” (T — 1) 7 DLy (h) (1)l .2

I
(=}

<) (M= IDdei () ()]l

Using the classical product estimate,
IDY(fON2 Sn If e lIDigll2 + llglliee 1Dl 2. YV n € Zso, (4.42)
and (4.35), we infer
1D (h' R’ )Ile Sniny I NDYAllz, Vnij€Zso, i+ 22,
IDder (02 <5 (IO les + IO ) IDLAD L <5 (T = 0* IDLAD) 2

(AN

$; (T =0T = )P DLl 2 = (T = 1) IDLR() ]| 2

L}
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Similarly, by (4.7) and Poincaré’s inequality, we have

[picv.m), 55 @ =0 1DiRON.
Therefore, for each j € Z5, there holds

HDg;Lh(t)

FESAUSDN NDLRO N2 + IDLF @)z (4.43)

By (4.43), (4.22), forany j € Zsg and t € [T — T.,T) we have

—\M ] (T = )" ID5h(s) 2 + 1D f(S)IILz
JE;[R](2) ~,/ ( ) T (4.44)

i=0

It follows from Poincaré’s inequality and supp, h(t,-) € {x € RY : |x| < 4(T - t)/3} that

(T - 0)'IDLRD N2 s IDI Rz < \2Ej[hI(0), Vie[T-T.T), j€Zsy. (445

Here we also used the definitions of Eq and E; in (4.20) and (4.21). Next we use the induction argument
to prove (4.40).
For j =0, by (4.44) and (4.45), there exists a constant C) > 0 satisfying

M,
VEMD <c; [ (E2L) (VERG +156)l:) & Vier-1.1).
t S

T

By Gronwall’s lemma, we get

T
(T = )M B TR < C / (T — )™M £ () ds
CleCil / (T = )™M £(5)ll,2 ds

for all t € [T — T, T). This proves (4.40) for j = 0. Let n € Z,, assume that (4.40) holds for
j€ZN[0,n—1].By (4.20), (4.21) and B > 1, we have

(T =)~ ID%h(s)I 2 < (T =) "'N2Eu 1 [h](s) < (T = 8)PN2E, 1 [h](s),

for s € [T — T.,T). Then by (4.44) for j = n, (4.45) for j =i < n, and the induction assumption, we
have (asO0 < T -t <T. <cog< 1)

VEL[1](1) <n T (T_¢ ”D,, f(s)||L2+ \/E,[h](s)+||£ L)z
r (T — 5)(n=B

T \D f(s)an
s/( ) Z(T—)(nﬂf”d (),
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where

ST (T -0/T =) T (T - s\M S IDL (Dl
In(t):=Z[ I /S(T_T) Z—(T_T)(j_i)ﬁd‘rds

ra i=0
n-1 j T (T —t M, ||D;f(7)||L)2( T ds
=3 G-p wp 4
7=0 i=0 V! T-71 (T=n)U=9F Jp (T =s)"
n-1 j T M, i
T —¢ ID%f(D)lz2 1
2% (=) T e
S \T-7) (T-0)UDB(T 7))k
n-1 T (T _¢ M, ”Dicf(T)”Li
<n g 4T
L) \T-r (T-71)

Thus, (4.40) holds for j = n. Therefore, by the the induction, (4.40) holds for all j € Z .
As |DLf| < |DLN.| for all j € Zso, by (4.4) and (4.8), for all j € Z>o and A > 0 there exists
a constant M; ; > 0 which is independent of f and T, such that | D% f(¢)|l;> < M; (T — t)* for all

t € [T - T.,T). Using (4.40), (4.21) and (4.45), for all j € Zo and A > 0 there exists a constant
M J’ 1 > Oindependent of f and T. (depending on M;  for some A" > A) such that

1RO ys + 10Dl < M (T =0, Ve[l -T.,T).

By Sobolev’s embedding theorem (H)‘f(Rd) — L;"(Rd)), we have (4.37). It remains to prove (4.36).
By (4.41), (4.35), (4.32), (4.37), (4.7) (j = 0) and (4.8) (j = 0,4 = 1), we know that there there exist
constants Cé >0, Cé > 0 such that

|oh| < C5(T = 1) 2PID="h| + |f] < CH(T — 1) (Coop + Crop)(T =) +|N.| < Cj

on [T —T,,T) x R4, which implies (4.36). m

4.4. Solving nonlinear wave equation

Proof of Proposition 2.8. Let &1 =1 — £, then £]0,4/51 = 0,&1][1,400) = 1. Let
Bni= 22, fultsx) = No(60)E (T = 0)/en), VT =co,T)xRE Vi € Z,.

Then for each n € Z,, we have f, € C®([T - co,T) x R%;C) and supp f,, ¢ {(t,x) € [T — co,
T —4e,/5] xR : |x| < 4(T —1)/3}, hence f, € C([T —co, T) xR?;C); as f, equals to N, multiplied
by a function in ¢ that takes values in [0, 1], we have |D”. f,,| < |D%N.| for all j € Z,. By Lemma 4.4,
for each n € Z,, there exists h, € Co°([T — c2,T) X R4;C) satisfying

1 T -t
Ohy, + 21Xy +2Y hyy = Vi (hp)e — Fv*gal (hy) = Nohp = fo = No&y ( . ) (4.46)

n
on [T —c3,T) X R<. Moreover, for n € Z,, we have
supp, hn(t,)) c {x eRY : |x| < 4T —1)/3}, Vie[T—-cyT), (4.47)
and for j € Z5p, 4 > 0 we have
|Ohn(t,x)| < Co, Yie[T—-cyT), VxeRY, (4.48)

|DLh(1,%)] + 18, D% h(1,x)| < C; (T =1)*, Vie[T—cyT), VxeRY, (4.49)
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where Cy and C;, are given by Lemma 4.4. By h, € CZ([T - c2,T) x RZ;C), (4.47), (4.48),
(4.49) and the Arzela—Ascoli theorem, there exists a subsequence of {4, };’;1, which is still denoted by
{hn}> %, such that h, — hin C'([T = ¢, T) X R?) for some h € C'([T = o, T) x R%;C) and (here

D='f:=(f,Df))

|D="(hn - 27", VnezZ,. (4.50)

hn+1)||L°°([T—c0,T)><Rd) S

Letting j =2, 4 = 1 in (4.49), by (4.50) and the Gagliardo—Nirenberg inequality, we have
I1DxD (hy = huet) || Lo (T =co,7)xRA) < Co2"?, Vnez, 4.51)

for some constant Co > 0 which is independent of n € Z,. Letting j = 0 and A = 1 in (4.49), by the
definition of ¢y, there exists a constant C; > 0 such that for all n € Z, and (¢, x) € [T —c2,T) x R¢, we
have

lo1(hn) = @1 (hns1)| < Cilhn = hs .

Combining this with (4.46), (4.49), (4.7) (j = 0), and (4.8) (j = 0,4 = 1), we know that there exist
constants C, > 0, C3 > 0 such that for all n € Z,, we have'©

|Dhn - I:|hn+l| < 6:Z(T - t)_Z'B |D£1(hn - hn+l)| + éT28n
(4.49) _ _
( < C(T - l)fzﬁ min (2’”, 2(C0»4ﬁ + C1’4ﬁ)(T — t)4ﬁ) + Corep
4750)

< G2t ey)

on [T—c3, T)XR?. Hence, by (4.50) and (4.51) we know that {,, }*° | is Cauchy in C*([T—c,, T)xR%; C),
hence h € C*([T — ¢»,T) x R?;C) and hp — hin C?. Moreover, by (4.49), (4.50) and the Gagliardo—
Nirenberg inequality we know that {D%D='h,} is Cauchy in L®([T — ¢, T) x R?) for all j € Zs.
Hence (also using (4.47)) h(t, ), d,h(t,-) € C(R¥) with supp, h(t,-) € {x € R? : |x| < 4(T —1)/3}.
Moreover, h solves the equation (as f, — N.)

1
Oh+2iXh+2Yh - V.h, — pTlV*(,O] (h)=N.h=N, on [T-cyT)xR%. (4.52)

By (4.49), we have
|h(t,x)| < Coa(T —1), V (t,x) € [T =3, T) xR,

Letc; € (0,¢2) € (0,T) besuchthat Co ey < 1/2,hence |A(t,x)| < 1/2forall (¢,x) € [T—cy, T)xR.
Let

w(t,x) = (14 h(t, ). (t,x)é (5(;')‘_| 5 ) exp (idD*(t,x)f (5(;|x_| - ))

for (t,x) € [T —c1,T) x RY. Then u € C*([T - ¢1,T) x R%;C) with u(t,-), du(t,") € CX(RY)
and supp, u(t,-),supp, d,u(t,-) c {x € R? : |x| < 5(T —t)/3} for t € [T - ¢1,T). Moreover, on

9Then { &, } becomes its subsequence satisfying &, < cp/2".
10Here, we need to estimate | f;, — f,+1 |, Which is achieved by combining (4.8) (j =0, 1 =1) and

T -t T-t enT—t| ,(T-t
a(5)-a (5l LS e (5

for all positive integers m > n, where we have used the fact that supp &/ < [~1, 1].

de < |122&/ ()l (T - 1) &
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Co:={(t,x) € (T—c1,T)xR? : |x| <T—1t} wehave u = (1 +h)w,e'®, and by (4.2), (4.3) and (4.52),
we know that  satisfies (4.1) on Cy, hence by Lemma 4.1 we know that Ou = |u|”~'u on Cy. Finally, by
|h| < 1/2,(2.28) (for j = 0) and (2.29) we have (2.31) on Cy.

This completes the proof of Proposition 2.8. )

5. The linearized operator &
5.1. Functional spaces
In this subsection, we define some functional spaces consisting of smooth functions. Let I C [0, +0)
be an interval. We denote 12 := {x? : x € I} and"
(1) = {f € C™(I;C) : A € C¥(IP) sit. f(Z) = f(Z2), VZe 1} , (5.1)
Co(D) = {f € C¥(10) : 3T € C(P) st f(2) = Z2f(ZD). VZelf. (5.2)

Then C°(1) is a ring, and Cg°(I) is a linear vector space. Note that when I = [0, +00), the definitions
in (5.1), (5.2) are the same as in (2.10), (2.11). For example, we have f(Z) = Z € C°([0,+)) \
C([0,+00)) and f(Z) = Z* € CZ([0,+00)) \ C5°([0, +00)).

Lemma 5.1. Let f € C([0,+0)). Define F(x) = f(|x|) for x € RY, then F € C*(R?).

Proof. As f € C°([0, +00)), there exists a function fe C*®([0,+00)) such that f(Z) = f(Zz) for all
Z € [0,+00), hence F(x) = f (|x]?) for all x € R?. The smoothness of F follows from the smoothness
of fand x — |x|%. m]

We also have the following fundamental properties. Let I € [0, +o0) be an interval, then

feCl(l) = freCy); (5.3)
feCs() = f eCs(); (5.4)
HeCE), e Co() = fifa e CC(D); (5.5)
fieCyI), freCy() = fifo € CO(1); (5.6)
HeCE), LeCo(l) = fifz e CF (). (5.7

Moreover, if Q c C is open, ¢ € C*(L;C) (not necessary to be holomorphic), and f € C°(I) with
f(Z) e Qforall Z € I, then the composition ¢ o f € C°(I). In particular,

feCl()with f(Z) #0VZel= 1/f e CZ(), (5.8)
feC(I)=expfeCo(I), (5.9)
ae€R, feCX(I) with f(Z) >0forall Ze I = f* € C(1). (5.10)

Lemma 5.2. If f € Xy, then 8, f, Zd f,0%f,02f|Z € Zp.

Proof. By the definition of 2 in (2.20), it suffices to prove the result for f = f(Z)T” for some
f € C2([0,+00)) and some n € Zxo.

Asd.f =nf(Z)t""', wehave 3. f € Xy (O f =0forn=0). ~

Note that Zdzf = Zf’(Z)T”,B%f = f"(Z)t",0,f]Z = %f’(Z)T". As f e CZ([0,+c0)),
by (5.3) we have f’ € C([0,+00)), then by the definitions of C:°([0,+00)) and C° ([0, +c0))

"In (5.1), “¢” stands for “even”; In (5.2), “0” stands for “odd”. Please don’t confuse Cg° (1) with “C°(I)”.
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we have Zf’(Z), %f'(Z) € CZ ([0, +00)), by (5.4) we have f” € CZ([0, +0)). Thus, Zdz f, B%f,

0z2f]Z € Xp. m
Now we prove Lemma 2.3.

Proof.

(i) Let f(t,x) = (T - t)/lf(r, Z) for some fe 2o and g(t,x) = (T - )"g(7, Z) for some g € 2o.
Then (fg)(t,x) = (T — )" (f2)(,Z). As 2y is aring, we have fg € 2y and then fg € Lpsp-
It is direct to check that

0f = (T =" 0+ 20, -0, Af= (T =" (33 + (k/2)0z) T.
Since fe 2o, by Lemma 5.2 we have (')Tf, zazf, (9%]?, 6Zf/Z € 2y, which gives
0 +Z07 -0 F e X, 05+ (K/2)02) [ e Zo

Thus, 0, f € -1, Af € Ly-». As a consequence, we have 6t2f € L, 0f = —3,2f+Af € Xnn
and (also using fg € L4y for f € Xy, 8 € L)

0(fg) € Liasw—2> (Of)g € La2)epu>  fO8 € Lpy(p-2)»

hence,

07 fdag = [0O(fg) — (Of)g — fOg]/2 € Lasp-2,
0 (f0a8) = 0" fdag + fOg € Lnsp—2.

(iii) Let 4,4 € R and j € Zxo be such that 4 > j + u. Let f(t,x) = (T - t)’lf(Z) for some
f € C([0,+00)). Assume that ag, 1, -+ ,@q € Zxp are such that @ + - - - + @4 = j. We only
need to prove that

(T —1)7H3™021 - 0% f € L=(C). (5.11)

d

Let f(x) = f(|x|) for x € R?, then by Lemma 5.1 we have fe CPRY). Letj' =a;+---+ag €
Z N [0, j], and we let

fo = (A=) +x-V)(=(A=j =D +x- Vo) (=(A=j+ 1) +x-V)dS - 04 f.
Then f, € C*(R?) and one can check by direct computation that
d

0001 - 354 f(t,x) = (T =)' fo (x/(T = 1)), V¥ (t,x) € [0,T) xR

As |x/(T —t)| <2for (t,x) e Cand A — j — u > 0, we have (5.11).

(ii) Let A,u € R and j € Z5( be such that A > j + u. By the definitions of 2 and ), it suffices
to prove (T — )™ DJ f € L®(C) for f(t,x) = (T - t)’lf(Z)T" for some f € CZ([0, +o0)) and
some 1 € Zsq. Let P(7) := 7" and P(¢) := P(t) = P(—In(T —1)). Then by the induction, for any
i € Zs, there is a polynomial P; () such that P®) (1) = (T — )" P; (7). Hence,

(T -0)*PYD (1) € L¥([0,T)), VieZsy Ye>0. (5.12)

Let (1, x) := (T-t)Af(Z) for (t,x) € [0, T)xR9, then (¢, x) = f(t,x)P(t) for (,x) € [0, T)XRY,
and by (iii) we have

(T -1)" D' f e L™(C), Vié€Zso. (5.13)
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Assume that ag, a1, ,@q € Z>q are such that ag + - - - + @4 = j. It suffices to prove
(T - t)”‘ﬁt"o(*);’l‘ . (9"“(f(t x)P(t)) e L=(C).
By Leibnitz’s product rule, we have

(T =) 13098 - B‘Xd(f(t x)P(1))

=(T-1)* Z (alf’)ﬁ(f) (D891 - 0% F(1,x)
i=0
@)

_ Z (a’o)(T t)/l J /[+LP(l)(t) (T t)J i— /la(zo laall_ a(t‘lf(l x)

i=0
Then (5.14) follows from A — j — u > 0, (5.12) and (5.13).

This completes the proof of Lemma 2.3.

5.2. & acting on &)

33

(5.14)

Let’s first compute the linear operator £, induced by & acting on ;. The following lemma relies
highly on the properties of the leading order profile (pg, ¢¢). For readers’ convenience, we recall some

notations. The linear operator £ is defined in (2.19):

4 ~
g(¢) =07 aa¢ _1:00 paa¢oaa¢065¢ s ¢ = ¢(t’x) = ¢(t’ r)s

where according to (2.7),
_ 1-B7 _ -5 - _r -
¢0(t7 r) - (T_ t) ¢O(Z)’ pO(t,x) - (T - t) P IPO(Z)’ Z= ﬁ’ r= |x|
By (3.13), ¢y satisfies

(B-1o(2)v(2) - ~ . (B=1)$o(2)
T~z 2) Zpy(2) + (B - 1)¢o(Z) = T Zv2)

$0(2) =
and py is defined by (2.12):

(B= V714271 (1 —v(Z>2)v y
(1-2Zv(2) 7

po(Z) =

Lemma 5.3. There exist real-valued Ag, By, D1, D2 € C ([0, +00)) and Eo € C ([0, +00)) with

—Zv(2) - t((2) - 2)* _ 50(Z )QAZ(Z v(2))

ol SET
Ao(Z) = po(Z) (27 Z(1=-v(2)»)’

such that if we define
Bo(Z; Q) := Z7'Bo(Z) + ABo(Z), Do(Z;A) := AD((Z) + 12D2(Z)
and

(Laf)(2) = Ao(2) f"(Z) + Bo(Z; ) f(Z) + Do(Z: V) f(Z),
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then there hold (here & is defined in (2.19) andy :=4B/(p — 1) +2 =Bt - 1) +2)

LT =0 f(2)) = (T =" (Lf)Z) for f € CX([0,+e0)), A€C,

and
Ap(0) =1, Ao(Z)) =0, A\(Z) <0, (5.17)
Ap(Z) >0V Z€[0,Z)), Ao(Z) <0V Ze (Z,+), (5.18)
By(Z) > Oforall Z>0, By(0)=k €Z,. (5.19)

Proof. We first consider the functions in the form of (T — ) f (1, Z), where f is a smooth function and

1 r
=1 Z = = |x|. 2
T nT—t’ ra—y r=|x| (5.20)

Lety :=4B/(p—1)+2=B({—1)+2,andlet f = f(7,Z) and A € C. Now we compute & ((T —1)* f).
We will use the following identities: for A, u € C, f = f(1,2),g = g(1,2),

8 (T =1 f) 60 (T = 1)"g)
= (T =y 72| = (O + 202.f = Af)(0rg + 2028 — ug) + 02.f 023, (5.21)
07 (T =1y o (T =1)"g)) = (T = )*#=2] = (3 + 207 = (A+ 1= D) ((9rg
+Z078 - 19)) + 0z +K12)(foz9)| (522)

Readers can check (5.21) and (5.22) by using direct computation.
By (2.7), (5.22) and y = 4B8/(p — 1) + 2, we have

0% (pR0a (T =Y f)) = (T = Y7 { = (0¢ + 207 = (A= y + 1)) [30(2)(0x + 207 - D ]
+ (02 +k/2) (o201 ) }.
By (2.7) and (5.21), we have
079005 (T =)' f) = (T =) F~ |~(20260 — (1 = B)do) (0r + 207 = O f + 02000z 1 |
It follows from (3.13) that

~(Zi (1~ B)Bo) (9 + 207 ~ D f + bz dudn f = L 1)(20)

=:g(7,2),

(0 +(v=2)0z+A)f

and then %0z ((T — )Af) = (T — 1)*F~1g(r, Z). By (2.7) and (5.22), we have

8% (po " Ba00 9095 (T =0 f)) = 9 (T = 1By "8 (T =150
= (T =" = (9, + 20z = (A= + ) |5y "8(Z0zd0 — (1 = B0

+(02+k12) (py " 80200) |,

https://doi.org/10.1017/fmp.2025.7 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.7

Forum of Mathematics, Pi 35
where ———(3 )+A—pB—1satisfiesu+ (1 -8)—-2=2-7y.By(2.12) and (3.13),
Iz P

(B-1%0(2)?  po(2)?
(1-2v(2)?>  1-v(2)*¥

(B-1go(Z)
1-2v(Z2)

)3 p(ﬁ 1)¢0(Z)

po(2)>P (Zdz¢0 — (1 = B)o) = po(Z)*po(2)" P

Po(Z)*v(2)

iz ~Zv(2) o = 1—v(2)? "
thus
PP (20280 - (1~ Bdn) = L "(22)2 (= 8: + (W(2) - 2007 + ) f.
40,0 —ML(VZ()?( 0r + ((2) = 2)07 + 1) f.
Therefore,

8 (po " 009005 (T~ 1))

ﬁO(Z)Z (
1-v(Z2)?

— 0.+ (W(2) - 2)dz + A) f

}_

Finally, recall that £ (¢) = 8¢ (p(z)aa(p - %po P Oupod? ({)oc')aqﬁ) 507 = { = 1, we obtain

= (T—t)’l‘y{— (0 +Z0z — (A—-y+1))

k\ [po(2)*v(Z
+(GZ+E) [%(—8,+(V(2)—Z)6Z+/l)f

Z(T-0'f)=(T- r)“{ —(0: +Z37 = (A= y + 1)) [po(Z)*(0, + Zdz — D) f]

+(97+K12) (o202 )

po(Z)?
1-v(Z2)2

+(€-1)(0: +Zdz —(/l—y+1))[ (=0 +((Z)-2)0z +/l)f]

—-1 (az ) [FL(VZ()?( 0.+ (v(2) —Z)az+/l)f] }

For any A € C, we define a linear operator &£, by

(Laf)(2) == (202 = (A= 7+ 1) [Po(2) (202 = )] + (92 +Kk/2) (Po(2)*0z 1)

po(Z)?
v(Z)?

+(€—1)(Z§Z—(/l—y+1))[

2)*v(Z
—(-1 (az+Z) [p‘)()—(z()z)(( (2) - 2)07 + ) f|,

(vV(Z)-2)dz+2)f

(5.23)

where f = f(Z) depends only on Z € [0, +c0) (not on 7). Assume that f = f(Z) = f(Z;A) satisfies
(Zf)(Z2) =g(Z) =g(Z;A), then (here & and £, do not act on A)

LT =) = (T -0)"7g(2). (5.24)
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Now it is enough to prove that £, defined in (5.23) can be written in the form of (5.16) with
Bo(Z;4) = Z7'Bo(Z) + ABo(Z), Do(Z; A) = AD1(Z) + A*D(Z) and Ay(Z), Bo(Z), D1(Z), D2 (Z) €
C ([0, +00)), §0 € C ([0, +00)) satistying (5.15), (5.17), (5.18), (5.19).

Comparing the coefficients of 6é (7 =0,1,2)in (5.23) and (5.16), we find

_ po(Z)* Po(Z)*v(Z)

Ao(2) = Po(2)' (1= 2) + (L= )1 Z520(2) = 2) = (= DT 5 ((2) = 2)
o 2 (v(2)-2) (1= Zv(Z))2 ((v(2)-2)
=po(2) ((I—Z)—(K—I)T(Z)z)— 0(2) v(Z)2 ;

Bo(Z;2) = —=Z237(p) — Zpg + AZpg + (A —y + 1) Zp3 + 32 (p; )+(k/Z)
A2 _ A
(0= 1)Za, |2 (v—Z)+M(Zv’—Z—(/l—y+l)(v—Z)+/lZ)
-y 1 -2
Az
<£—1>az(1p° (v=2)= (=177 = 1+ (K/2)(v = 2) + ),

po(Z)? )

Do(Z;2) = —(Z0z — (A -y +1)) (—ﬁﬁo(z)z) +(E-1(20z - (A-y+1) (11 -v(2)?

k) (,00(2)*v(Z)
Senf (AR

Then (5.23) and (5.16) are equivalent and A satisfies (5.152. _
By the expression of By(Z; 1), we have By(Z; 1) = Z~'By(Z) + ABy(Z) with

=2 =2
Bo(Z) =272 + %(22—@—(5 DRy _ 20 L (20 =) + (€= 1)(Z ).

1-v2 1-
po Po
Z0

By the expression of Do(Z; 1), we have D(Z; 1) = AD{(Z) + 12D, (Z) with

po(2)? )
1-v(Z)?

Bo(Z) = kpi + (1 - 29 Z82(P2) — yZ* P +(€—1)(v—Z)[Z2c')Z

72
+ (€ - 1)

(Z(Z oW+ (k+7y)Zv —yZ* - kv2) .

Di(Z) =(Zdz +y - 1) (50(2)2) +(t=-1)(Zdz+y-1) (

—(-1) (az Z) (PO(Z)ZV(Z)) ’

— V(Z)2
=~ 2 50(2)2 _ 2 - V(Z)2
Dy(Z) =— po(Z)~ - (£ - DT(Z)z —-po(Z) T—v 22

It remains to prove that Ag(Z), Bo(Z),D1(Z),D2(2) € C ([0, +00)), By € C ([0, +c0)) and (5.17),
(5.18), (5.19).

By Lemma A.6 we have pg € C([0,+00)),v € C([0,+e0)); by (5.5) and (5.6) we have pj €
C2([0,+0)), (v(Z) — Z2)* € CX([0,+0)) and 1 — v(Z)? € C([0,+00)); by (5.6) we have Zv(Z) €
C([0,+0)), hence 1 — Zv(Z) € C([0, +00)), then using (5.5) we get (1 — Zv(Z))? € CX([0, +o0)).
Therefore, by v € (-1, 1) (see Assumption 1), (5.8) and (5 15) we have Ag(Z) € C°°([0 +00)).

Similarly, by Lemma A.6 and (5.3)-(5.8) we have Bo(Z) € Cy ([0, +00)) and Bo(2), D{(2),
Da(2) € C2([0, +00)).
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It follows from po(0) = 1 and v(0) = O that Ag(0) = 1. By Remark 2.2 and py(Z) > O for all
Z € [0,+00), we have Ap(Z;) = 0 and (5.18). Let Ag(Z) = Az(Z,v(Z)), then by A¢(Z;) = 0 and
Remark 2.2, A{(Z1) = po(Z1)*A}{(Z1)/(Z1(1 = v(Z1)?)) # 0. This along with Ag(Z1) < Ag(Z) for all
Z € [0, Z,) implies Aj(Z1) < 0. So we have (5.17).

As v(Z) € (0,1), v(Z) < Z for all Z > 0 (see Remark 2.2) and ¢0(Z) > 0 for all Z € [0, +c0),
we have BO(Z) > 0 for all Z > 0; as pg(0) = 1 and v(0) = 0 we have By(0) = k € Z,. This proves
(5.19). O

Next we compute the dual operator of £,. For any A € C, we define an operator &, called the dual
operator of £, by

/0 (Zuf)(2)8(2)2" dZ = /0 FNLi)(D)ZEAZ, ¥ fog e CO((0.40)).  (525)

Lemma 5.4. For any A € C, we have &£} = £_ -2

Proof. By the definition (5.25), it is enough to prove that

[ @n@e@ztoz= [ 1@ &m0 @72t 0z (5.26)
forall A € Cand f,g € CX((0,+)). We fix 1 € Cand £, g € CX((0,+)). Let
f6,x) = (T =0'f(2), 3(t,x) =T -1)"*2g(2), V(1,x)€[0,T) xR,
recalling Z = |x|/(T —t). Then by Lemma 5.3, we have Z f (1, x) = (T =) (Z1f)(Z) and L5 (1, x) =
(T =) * 2L 4y 1 28)(Z), thus (L F-2)(1,%) = (T-1)F2(Lf)(Z)g(Z), and (f- L7)(1,%) =

(T =) %2 f(Z)(Loiry-k-28)(Z). Recall that d = k + 1, Z = |x|/(T - t), then we have (here |S¥| is
the area of the unit sphere S¥ in R? = RF*1)

[T Duna=a -0 [ @n@e@ztaz.
[, 7 200nas =@ -0 [ 12/ i) (212" 02,
for all # € [0,T). Thus, it is enough to prove that
/Rd (ZLf-2)(t,x)dx = /Rd (f - Z2)(t,x)dx, Ytel[0,T). (5.27)
Let J :=%f-%— f- %% Then (5.27) is further reduced to
9 J(t,x)de=0, Vrel0,T). (5.28)
By the definition of £ in (2.19), we can write J in the divergence form J = d* P, with

= = 4 3 & Y
Py = p3(8afg — [0aB) - lﬁpg P8apo(0"p00zfg — f0“$0d58), VaeZn[0,d].

Let E(¢) := fRd Po(t,x) dx for t € [0,T). By the divergence theorem (recalling §° = —dy = —d, and the
fact that supp, P, (t, -) is compact for each ¢ and @), we have

—EE(z)z/ 60Po(t,x)dx:/ 6"Pa(t,x)dx=/ J(t,x)dx, Viel0,7T). (5.29)
dr R4 R4 R4
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Thus, it is enough to prove that E () is constant in 7. We can write Py = Py | — %Pg,z with
=~ 7 3- o 7= _ Faa@
Po.1 = p3(0:f8 — f8i8), Poa = py P0,00(0" #0051 — FO"$0058).
As f(t,x) = (T -Hf(2),5(t,x) = (T — 1)~ **r*24(Z), we have

8 f(t,x) = (T — )" f1(Z) with f1(Z) := =Af(2) + Zf'(Z),
8,8(t,x) = (T — 1) *3¢,(Z) with g1(Z) := —(=A+y — k —=2)g(Z) + Zg'(2).

Thenby(97)y— +2andd k +1, we get

Po1(1.3) = (T = 1) #7350 22 [A(2)8(2) - F(2D)g1(2)]
= (T -1 po(2)*[/1(2)e(2) - £(Z)81(Z)].

As f(1,x) = (T =) f(Z),3(t,x) = (T — 1)~ *r*=2¢(Z), we get by (2.7) and (5.21) that

%00 f(1,x) = (T =P 1(Z), 9%0dz8(t,x) = (T — 1) *3Fgy(2),

where
fr==(Zdz¢0 - (1 = B)$0)(Zdz = ) f + 026002 ],
2= —(Zdz¢0 — (1 - B)po)(Z0z + A=y + k +2)g + 0z $00z8.
Then by (2.7), (A.2) and y = £ +2 = 2<3 2B 4 2B +2,d =k + 1, we have
Po2(t,x)

2(3 p)ﬁ

= (T—1) 1 B ES352 P (B - 1)o(Z) + 26y (D)1 2(2)8(Z) - f(Z)g2(2)]
= (T -0"po(Z)* P[(B - 1)¢o(Z) + Zo, (D)1 /2(2)8(Z) — £(Z)g2(Z)].

As Py =Py — ﬁpo,z, we have Py(t,x) = (T — t)"*H(Z) with

H(Z) = po(2)°[fi((2)g(Z) - f(Z)g1(Z)]

[P0(Z) LB = 1)80(2) + Z8(DILL(2)8(Z) - [(2)82(2)].

Then by d = k + 1, Z = |x|/(T — 1), we have E(t) = [, Po(t,x) dx = |S¥| [ H(Z)Z* dZ, which is
constant in ¢. By (5.29), we have (5.28), thus (5.27) and (5.26). O

5.3. Surjection of &

This subsection is devoted to the proof of Proposition 2.4, i.e., & : &3 — X1, is surjective for all
A € C. For this, it suffices to show that

Lemma 5.5. If R € (k,+00), then the linear operator & : Xy — Xy is surjective for all 1 € Bg :=
{1€C: || < R}, wherey :=4B/(p-1)+2=B(L-1)+2.

From here until the end of this section, we fix an R € (k, +00).
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We consider functions depending analytically on a complex number A. Let I C [0, +c0) be an interval
and let Q c C be an open set. We define

Hol(€2) := {all holomorphic function on Q},
Hi(Q):={f=f(Z;1) e C(UxQ;C) : f(Z;-) € Hol(Q) forall Z € I},
H(Q) = {f e C(UxQ):TfeHp(Q), st f(Z;A) = f(Z52) VZel, 1€Q}.

Then Hol(Q), H; (), HS (L) are rings. Moreover, we have
7'[6[:0,4_00) (Q) = TO,az) (Q)n H(a1,+oo) (Q), VO0<a <ap<+o.

The proof of Lemma 5.5 is based on the following result, which will be proved in next subsection.

Lemma 5.6. There exists ¢ € Hol(Bgr) \ {0} such that if g € CZ([0,400)), then there exists
f=f(Z;2) ¢ H‘E‘O +m)(BR) such that Ly f(-; ) = ¢(Q) - g on (0, +c0) (for all 1 € Bg).
Proof of Lemma 5.5. We first prove that & maps 2 to £,

Recall that £ (¢) = 9 (Péaa¢ - ﬁpé_pﬁa%@%o@acﬁ),pé € Loy pS"’ € X(3-pyug» P0 € Lays
Ao = 1= B, po = —-5; (see (2.22)) and y = 4B/(p — 1) + 2. 1 ¢ € X, by Lemma 2.3 (i), we have

6"’(,0(2)6(,(;5) € Loy, aa(pg_paa(ﬁoaa(ﬁoag;(ﬁ) € &La—y, where we have used that A +2pp -2 =A -7y =
A+ A9 =2+ 3= puo+ Ao — 2, thus Z(¢) € La,.

Now we prove that & is surjective. By the definitions of 2 and &, it suffices to prove that
for every g € C°([0,+)), n € Zsp and A, € Bg, there exists F,, € 2, such that LF,(t,x) =
(T —t)*~7g(Z)t"/n!. Now we fix g € C([0, +o0)) and A, € Bg.

By Lemma 5.6, there exist ¢ € Hol(Bg) \ {0} and a function f = f(Z; 1) € HTO&O@)(BR) such that

Lf(Z;2) = p(1)g(Z) for Z € (0,+c0), 1 € BR. As f € ”H‘EO m)(BR) there exists fe H{0,400) (BR)

such that f(Z; 1) = f(Zz;/l) for Z € [0,+), A € Bg. As A, € Bg, there exist 6, > 0 and m, € Zs
such that By, (1.) € Bg and

P(A) = (1= 2,)"™ (1) with (1) #£0, VA€ Q. := Bys, (1), where ¢ € Hol(Q,).
Here By, (i) := {1 € C: |1 —A,| < 26.} and we have used the fact that if ¢ € Hol(Q) \ {0}, then the
zero set Z(¢p) := {1 € Q: (1) = 0} is discrete. _
Let F(Z; Q) := f(Z;2)]@(A), F(Z; ) := F(Z*;A)for Z € [0,+),1 € Bg.ThenF € H0,400) (24),
FeM, . (Q). F(Z:A) = f(Z:)/@(1). and
LF(Z:0) = p(Vg(2)[9(1) = (A= 2.)™g(Z), VZe(0,+0),1€Q..
By Lemma 5.3, we have
LT =0'F(Z;.0) = (T =)' LF (Z:2) = (T - )7V (1= 2)™g(2)
forall 1 € Q, and Z € (0, +00). Let

F.(t,x;2) = (T -)'F(Z;1) = (T - 1)'F(Z% 1), G(t,x;2) = (T -1)"Y (A= 1,)"g(Z).

Then F,, G € C®([0,T) xR¥xQ,) (as Z% = |x|*/(T —1)? is smooth on [0, T) xR4) and LF. (t,x;1) =
G(t,x;A) on [0,T) x R? x Q, (the case Z = 0 follows by continuity).
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Recall that 7 = In % and then

G(t,x;2) = (T =) e TIT (A= 2,)™g(2) = Y (T = )" —("nT')" (A= 2)"™*"g(Z)
n=0 '

locally uniformly on [0, T) x R x B, (1.). By Cauchy’s integration formula (Theorem 4.4 in Chapter 2
of [69]), we have (for n € Zs()

n 1" A
e
n! 2 [1-2,|=6. (/1 - /l*)m*+n+1

6—m*—n 2 0 i Y
= G(t,x; A, + 6,e'%)e 1+ qg.
271(—1)",/0‘ (t,x e'%e

Now let (for n € Zsq)

F.(t,x) =

(=n" }{ F.(t,x;2) da
|2

2ri =5, (A= A,)metntd
S 10\ —i(m.+n) 0
= F.(t,x; A, + 6,e'%)e” "™ g,
2=y /0 (t,x e'’)e
Then F,, € C*([0,T) xR¥) and ZF,(t,x) = (T —t)*~Yg(Z)t" /n!. It remains to prove that F,, € ..

Ast=In7-, F.(t,x;0) = (T - 1)*F(Z% 2) then

Fu(t,x;) = (T =ty e WTR(Z%2) = Y (T -0

CO -y Fs 0,
=0 '

J

locally uniformly on [0,7) x R x B, (1.), so we have

N 7))
) = Z(T -t ( ‘:) Fu j(Z%), where
. ;!
j=0
~ —1" A AV
Fyj(Z2) = (2—)}{ % 4
mi Jiaca=s, (A—A0)™
(5!_m*_n 2 ‘ N
- W/ F(Z; A, +6,'9)elU—m-"m9 qg.
= 0

As F € H[0,400) () C C*([0,+00) X Q,), we have F, ; € C([0,+c0)), Z Fn,j(Zz) €
C ([0, +c0)) for every n, j € Zo; moreover by Cauchy’s theorem (Corollary 2.3 in Chapter 2 of [69]),
we have I, j = 0 for j > m. +n,n,j € Zso. Thus,

my+n (_ )j

-
Fa(t,x) = ) (T =" = F, j(2%) € L.
. J!
J=0
This completes the proof of Lemma 5.5. O

5.4. Solvability of &,

In this subsection, we prove Lemma 5.6.

Lemma 5.7. For g € C°([0,Z,)), there exists F = F(Z;) € HTO Zl)(BR) satisfying L F = g on
(0,Z1) and F(0; 1) =1 forall A € Bg.
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Proof. By Lemma ,.3, we have By € Cy([0,+c0)) and Ao, By, D1, D, € C ([0, 4+00)). Thus,
there exist AO,BI,Bz,Dl,DQ € C*([0,+0)) such that Ag(Z) = Ao(Zz) BO(Z) BI(ZZ) Bo(Z) =
ZB»(Z%),D(Z) = D1(Z%), D»(Z) = D,(Z?). Then By(Z; ) = Z~ BO(Z)+/lBO(Z) Z7'B1(Z%) +
AZBy(Z2), Do(Z; A) = AD{(Z) + A2Dy(Z) = AD(Z*) + A2D»(Z%). Let Z := Z>. Then for f(Z) =
F(Z%) = f(Z), wehave f'(Z) =2Zf(Z), f"(Z) = 2f'(Z) +4Z2 f"(Z), and by (5.16),
(Zaf)(Z) = Ao(Z)f"(Z) + Bo(Z; 1) f'(Z) + Do(Z; 2) f(Z)
= Ao(ZD)[2f(Z) +AZ> f(Z)] + (27" B\(2%) + AZBy(Z*)] - 22 (2)
+[AD(2%) + 2* D2 (2% f(Z)

=4ZA)(2) " (Z) +2[Ay(Z) + B1(Z) + AZBy(Z)| f(Z) + [AD\(Z) + P*D2(2)] f (2).

Let
A(Z) =4ZAy(Z), B(Z;2) =2[Ao(Z) + B\(Z) + AZB2(Z)], D(Z; 1) = AD(Z) + A°D»(Z).

Then we get

(Laf)NZ) = AZ) f(Z) + B(Z; ) f(Z) + D(Z; ) f(Z), for f(Z) = f(Z), Z=Z*  (5.30)

Let I; = [0,Z2). As Ao, B1, B2, D1, D> € C®([0,+)), we have A € C*(I,), B,D € H;,(C), and
A’ 0) = 4A0(0) = 4A0(0) = 4 # 0 (using (5.17)). By (5.18), we have AO(ZZ) = Ao(Z) > 0 for
Z € [0,Zy). Thus, A(Z) = 4ZAo(Z) = 0 has a unique solution Z = 0 in /1 = [0, Z?).

Moreover, we have B(%,ﬁ) = BI(Z) + ABZ(Z), where BI(Z) = 2[A0(Z) + Bl(Z)],Ez(Z) =
2ZB;(Z), then B, (0) = 2[A¢(0) + B (0)] = 2[A¢(0) + Bo(0)] = 2(1+k) > O (using (5.17) and (5.19))
and B»(0) = 0. As aconsequence, forany A € Candn € Z>o we have nA’(0)+B(0; 1) = 4n+2(1+k) # 0.
As g € C([0,Zy)), there exists g € C*([0, Z?)) such that g(Z) = g(Z?*). By Proposition B.4, there
exists F = F(Z; 1) € Hp, (Br) satisfying

AZ)F"(Z:2) + BZ; )F'(Z;0) + D(Z;)F(Z:2) =3(2),  F(0:0) =1,
where the prime ’ denotes the derivative with respect to Z. Now we define
F(Z;2):=F(Z*1), YZe[0,Z),YA¢€Bg,

then F € H¢

0.2, (BR), F(0;2) = F(0;1) = 1 and & F = g in (0, Z,) by recalling (5.30). o

In view of Lemma 5.3 and Proposition B.4, we let
A, :={1 € C:nAy(Z)) + Bo(Z;14) =0 for some n € Zxq}. (5.31)
By Bo(Z1;4) = Zf1§0(21)+/l§0(21) and Eg(Zl) > 0, we know that A, ¢ Cisanon-empty (countable)
discrete set.

Lemma 5.8. There exists a nonzero polynomial | (1) satisfying {1 € Bg : ¥1(1) =0} = A, N Bg such
thatfor g € C*((0, +c0)), there exists a function F = F(Z; 1) € H (0, +00) (BR) satisfying ZiF =y (1)-g
on (0, +00) and F(Z1;A) =y 1(A) forall A € Bg.

Proof. By Lemma 5.3, we have Ao(Z)) =0, A[(Z1) # 0, Eo(Zl) > 0 and Z, is the unique solution of
A9(Z) =01in (0, +c0). Hence Lemma 5.8 follows from Proposition B.4. O

Taking g = 0 in Lemma 5.7 we know that there exists ¥, = ¥;(Z;1) € 7—[5[’0 z.)(BR) satisfying
Z¥1 =00n (0,Z)) and ¥, (0;2) = 1 for all 1 € Bg. Taking g = 0 in Lemma 5.8 we know that there
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exists Wy = W2(Z;2) € H(0+00)(Br) satisfying Z)'¥, = 0 on (0, +00) and ¥»(Z;;2) = i (2) for all
A € Bgr. We define the Wronski

W(Z;2) =Y (Z; )Y(Z;2) = P(Z; )¥2(Z;2), VZe(0,Z)), VAEBg, (5.32)
where the prime ’ denotes the derivative with respect to Z. Then we have
Ag(Z)W'(Z; ) + Bo(Z; )W (Z; 2) = 0, VZe(0,Z)), Ae€Bg. (5.33)

Lemma 5.9. Fix Zy € (0,Z;). Let Y2(1) := W(Zp; Q) for all A € Bg and A; := y — k — 2. Then
Yo € HOl(BR), 0< —/7.8 <k <Rand lﬂz(/la) #0.

Proof. As ¥(Z;1) € ’Hf[’o Zl)(BR), Y12(Z;1) € H+0)(Br), by (5.32) we have W(Z;1) €

H(0.z,)(Br), then by Zg € (0,Z;) we have y(1) = W(Zp;4) € Hol(Bgr). As g > 0, £ > 1,

y=B(-1)+2,2;=y -k -2, we get by (2.9) that
Ap=y-—k=-2=BLl-1)+2-k-2=8((-1)—-k <B-1)-p+Vo) <0, (5.34)

and R > k > k — B(£ — 1) = =4 > 0, then Aj € Bg. It remains to prove that ¥>(4;) # 0.
We consider the dual &} of Z, defined by (5.25). On one hand, we get by Lemma 5.4 that

ng = 3/15 = A()a% + B()(-;/lz;)az + D()(ﬁ/lB). (535)
On the other hand, by (recalling that Dy (-; 0) = 0)
Lof = Ad% + Bo(+0)07 = Agd% + Z7' By

and (5.25), we compute that

(L2 = o (B AN@) - 02Z B2, VZeOre) (530

Comparing the coefficients of 9z in (5.35) and (5.36), we obtain

Z7'Bo(Z) + A;Bo(Z) = Bo(Z; Af) = [202(Z* Ao)(Z) - Z*7' Bo(2)]/ 2%
=2kZ7 Ag(Z) +24}(Z) - Z7' By(2)

for all Z € (0, +c0). Letting Z = Z;, we get(as Ayp(Z;) =0, see (5.17))
Z7'Bo(Z1) + A,Bo(Z1) /2 = AY(Zy). (5.37)
For any n € Zsq, by (5.37), (5.17), (5.19) and /13 < 0 (.e. (5.34)), we have

nAY(Z1) + Bo(Z1345) = nA)(Zy) + Z; ' Bo(Z1) + Ay Bo(Z1) 538)
= (n+1)A}(Z)) + 43Bo(Z1)/2 < 0, )

It follows from (5.31) and (5.38) that A ¢ A.. Then by 4; € Bg and Lemma 5.8, we have 1 (4;)) # 0.
Let fi = Wi (3 4) and fo = Y2 (- 4), then fi € C([0,Z1)), f2 € C((0,+e0)) and (Z; f7)(Z) =0
for Z € (0,Z;), j € {1,2}. By (5.35) and (5.36), we get

02(Z* Ao f)(Z) — 87(Z*'Bof)(Z) =0, VY Ze(0,Z)),j€{1,2}.
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By fi, Ao, Bo € C([0,Z1)), k > 3 we have [82(Z* Ao f1)(Z) — Z¥'Bo(Z) f1(Z)]]12=0 = O, s0
0z(Z*Acfi)(Z2) - Z'Bo(2) 1(2) =0, Y Z € (0,Z)). (5.39)
For f, since Ag(Z;) = 0 (see (5.17)), we have

37(ZF Ao £2)(Z) = ZF'Bo(2) 2(Z) = [02(Z* Ao 2)(Z) — ZK7' Bo(2) £(2)]|2-2,
= ZVANZ1) 1(Z1) = ZE'Bo(Z0) fo(Z1) = ZF(AN(Z1) = Z7' Bo(Z)yn () =: €7 (5.40)

for all Z € (0,Z;), where we have used f>(Z;) = ‘PZ(ZI;/l(’;) = w](/lz‘)) (recalling Lemma 5.8).
Moreover, by (5.37), 4 < 0 (in (5.34)) and Bo(Z;) > 0 (in (5.19)), we have A}(Z;) — Z;'Bo(Zy) =
/lSEO(Zl)/Z < 0, then by ¢ (1) # 0 we have C” # 0. We claim that

fi(Z)+0, VZe(0,7)). (5.41)
Indeed, if fi1(Z*) = 0 for some Z* € (0, Z;), by the uniqueness of solutions to (5.39) in (0, Z;) with

f1(Z*) =0, we have f1(Z) =0 for all Z € (0, Z;), which contradicts with 1 = f;(0) = limz_0+ f1(Z).
This proves (5.41). As fi = W1(+;45), fo = Pa(+; 47), by (5.32), (5.39), (5.40), (5.41) and C” # 0, we

have
ZKANZIW(Z; ) = ZX Ao (Z) [ [1(Z) £5(Z) - £1(2) 2(2)]
= f1(2)02(Z* Ao 2)(Z) — 0z(Z* Ao £1)(2) f2(2Z)
= A(Z2)[Z*'Bo(2) f(2) + C'] = Z*"'Bo(2) f1(Z) o(Z) = C' fi(Z) # 0,
for all Z € (0, Zy). Thus, W(Z; 4j) # 0 for all Z € (0, Zy), and y2(45) = W(Zo; A;)) # 0. O

Now we fix Zy € (0, Z1), 2(2) = W(Zo; A), A, := v — k — 2. Let /1 () be given by Lemma 5.8 and
@A) ==y 1(DyY2(A) forall 1 € Br. Let g € C°([0, +00)), we need to prove that there exists a function
f=f(Z;2) ¢ H?o,m) (Br) such that £, f(-; 1) = ¢(A) - g on (0, +c0).

We first consider the case when g is supported near Z = 0.

Lemma 5.10. Assume that g € CZ([0,+00)) satisfies suppg C [0, Z;), then there exists a function
f=f(Z;2) ¢ H?0,+oo) (BR) such that Ly f(+; A) = ¢(A) - g on (0, +00).

Proof. By Lemma 5.7, there exists fy € ’H?O ) (Bg) suchthat £, fo = g on (0, Z) with fy(0; 1) = 1 for

all 1 € Bg. We assume that supp g C [0, §) for some § € (0, Z), then (£, fp)(Z) =0 for Z € [6, Z)).
For A € By, let
Ci1(A) := fo(6; ) ¥5(6; 1) — f3(8; 1) ¥2(652) € C, (5.42)
Co(A) = f(6: )P1(6: ) = fo(6: )W (6:2) € C. (5.43)

Then Cy, C, are holomorphic functions on Bg and for all A € Bg there holds

W(8; ) fo(6;4) = C1 (D)WY (5;2) + C2(1)¥2(6; 1),
W(6;2) fy (6;2) = C1(AD)P[ (55 2) + C2(1)W5(5: 2).

By the uniqueness of the solution on [d, Z;), we have

W(6;/1)f0(Z;/l) = Cl(/l)‘I’l(Z;/l) + Cz(/l)lyz(z;/l), VZe [5, Z]), VAe BR.
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For A € Bg, let

£Z:2) = {W(é;/l)fo(Z;/l) ~CIYI(Z:A) i Z €[0.2),

Cr()Y2(Z;2) if Z € [8,+00).
Then f. € HT(),+oo)(BR) and Ly f. = W(6;4) - g on (0,400). By (5.33), we have W(Z;1) =
W(Zo: e P = yo(De A FD with AL(Z:2) = [ BED4Z € Hiz,(Br) (using
Lemma 5.3). Recall that ¢ = 15, ¢ is a polynomial, then ¢(1) = 1 ()W (5;2)e?* (%D and the
result follows by taking f(Z; 1) := g (1)e?* (5D £,(Z; 1) for Z € [0, +c0), A € Bg. O

Now we consider the case when g is supported away from Z = 0.

Lemma 5.11. Assume that g € C;° ([0, +00)) satisfies suppg C (0, +c0), then there exists a function
f=f(Z;2) ¢ HT0,+00)(BR) such that Z,f (3 ) = ¢(A) - g on (0, +0).

Proof. By Lemma 5.8, there exists fo = fo(Z; 1) € H(0,+00) (Br) suchthat £ fo = 1 (1) -g on (0, +00).
We assume that supp g C (8, +o0) for some 6 € (0, Z;), then (£, fy)(Z) = 0for Z € (0,5]. For A € Bp,
let C;(A1), C2(Q) be defined by (5.42) and (5.43) respectively. For the same reason as in the proof of
Lemma 5.10, we have

W(6;0) fo(Z;4) = CL(D)Y1(Z; ) + C2()Y2(Z; 1), VZe(0,6], VA€ Bg.
For A € Bg, let

W(6; Q) fo(Z; A1) = Co()W2(Z;4)  if Z € (0, +00),

Then f, € ’H‘EO +oo)(BR) and £y f. = W(6; )y 1() - g on (0,+0c0). As in the proof of Lemma 5.10,

we have (1) = ¢ (D)W (5; e and A, (Z;1) € H(0.z,) (Br), then the result follows by taking
F(Z;2) =28 f£,(Z: Q) for Z € [0, +0), A € Bg. O

Now we are in a position to prove Lemma 5.6.

Proof of Lemma 5.6. We fix Zy € (0,Z1), $2(1) = W(Zp;A), 4 := vy — k — 2. Let ¢1(4) be given
by Lemma 5.8 and ¢(2) := ¢1()y2(4) for all 1 € Bg. By Lemma 5.9, we have A; € Br and
Y2 € Hol(Bg) \ {0}. By Lemma 5.8 we have | € Hol(Bg) \ {0}. Thus, ¢ = 14, € Hol(Bg) \ {0}.

Let £ € C®(R;][0,1]) satisfy suppl C (Z;/2,4) and ((Z) = 1 for Z € [3Z,/4,+0). Let
21(2) = ¢(2)(1 - {(2)), £2(Z) = g(Z)¢(2) for all Z € [0,+00). Then

supp g1 C [0’ 321/4]’ supp g2 C [21/2,+OO), 81,82 € Cgo([o’ +Oo))’ g =81+82.

By Lemma 5.10, there exists f; = fi(Z; 1) € HS (Bgr) such that £, fi = ¢(1)g; on (0, +c0). By

[0,+00)
Lemma 5.11, there exists f, = f2(Z;1) € Hf[’o,m) (BR) such that £y f> = ¢(4)g2 on (0, +c0). Let

f=fi+ fothen f € Hy,  _ (Br) satisfies Zif = ¢(2)g on (0,+00). o

A. The derivation and properties of ODE (2.8)
A.1. The derivation of ODE (2.8)

Lemma A.1. Let > 1 and v = v(Z) € C*([0,+c0); (=1, 1)) be given by Assumption 1. We define
60(Z), po(Z) according to (2.12) and we define ¢o(t,x), po(t,x) by (2.7). Then (¢o, po) solves the
leading order equation (2.6).
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Proof. Recall that Z = r /(T — t) with r = |x|, we know that ¢ = ¢o(z,r) and pg = po(t, r) are radially
symmetric. Hence, (2.6) is equivalent to

pb ™ = 18ig0? + 10, 001> =0, =0, (p3did0) + 0, (030, bo) + épéarqbo =0, (A1)
where k =d — 1 € Z,. It follows from (2.7) that
drdo(1.x) = (T =) P ((B~1)¢0(2) + Zd(2)),  d,¢0(t.%) = (T = 1) P4y (2), (A2)
where the prime ’ stands for the derivative with respect to Z. By (2.12), we have

B-Ddo(2)(2)
1-2v(Z)

¢0(2) = ((B=1)¢o(2) + Z¢},(2))v(Z) = ¢4(Z), (A.3)
thus

(T-0)P(B-1do(Z)v(Z)
1-2v(Z) ’

— N BB =1
autn(rx) = T L0E g g1, -

and then we have

(T -0 (B-124o(2)’(1 - v(2)*)

2 _ 2 _
|at¢0| |ar¢0| - (1 _ ZV(Z))2

Using (2.7) and (2.12) for pg and py, we obtain the first equation in (A.1).
Now we define

_ 6@ (1 -v(@2)PT _ (D) (1-v(2))F

{= P +1>1, ¢o(2): T-Zv )" (T=Zv )" > 0. (A.4)
Then we compute that
P30 po(1,x) = (T =) (B~ 1) go(2),
P30 $o(1.) = (T =) PE(B = 1) do(2)v(2),
8, (p30:$0) (1, x) = (T =) P71 (B = 1) (BESo(Z) + Zy(2)),
9r (P30 po) (1.x) = (T = ) PL(B = 1) ($ov) (2),
k k ~
P30, do(t,x) = (T =) P B = D 2 (d0v)(2).
Therefore, the second equation in (A.1) is equivalent to
— — — k ~ _ —
Blo+Z¢y = (dov)" + — (dov) &= (BL = V' = kv[Z)¢o = (v = Z)¢y. (A.5)

Recall from (A.3) and (A.4) that

L S AT A
d o 1—v2 " " 1-2v

-1 ! yAM
_eB-Dv o, VV—(f—l) LA

1-2Zv 1-Z 1-v2  1-2Zv
_ By LA 0(Z—-v)v ’
1-Zv 1-v2  (1-v2)(1-2v)
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hence (A.5) is equivalent to

, kv aé_ﬁfv(v—Z) v(v—Z)v'_ (v -2)>'
ﬁg_v_?"(v_z)%" 1—Zv 1= (=)(1-2v)

or equivalently,

Bviv—-2) kv, v(v-2Z) (v —2)%"
kA g (-1 -2Zv)
BL(1 —v?) B ﬁ (1 =2Zvp’ tv-2)%

1-2v  Z 1-v2  (1-v2)(1-2v)

which is a direct consequence of (2.8). O

A.2. Properties of solutions to ODE (2.8)
In this part, we prove Remark 2.2.

Lemma A.2. Under Assumption 1, we have v(Z;) = vy, where

k vy = B_\/Z (A.6)

Zyj=—
T NEk-pe-1) k=B
Proof. We define a function Fy € C* ([0, +0)) by
Fo(Z) :=1=2Zv(Z) +Vt(v(Z) - Z), ¥ Z € [0, +). (A7)

Then Fy(0) = 1 and Fy(1) = (V€—1)(v(1) = 1) < 0, where we have used that v(1) € (-1, 1), recalling
Assumption 1. By the intermediate value theorem, there exists Zy € (0, 1) such that Fy(Zp) = 0. Thus,
A7(Zo,v(Zo)) = ZoFo(Zo)(1 = Zov(Zy) — NE(v(Zo) — Zy)) = 0. Then we have A, (Zy,v(Zp)) =
Az (Zy,v(Zy))V'(Zy) = 0, ie., A, (Zy,v(Zy)) = Az(Zy,v(Zp)) = 0. On the other hand, it is direct to
check that

{(Z’ V) € (0’+Oo) X (_l’ 1) : AV(Z’ V) = AZ(Z’ V) = O} = {(Zl’vl)}a (AS)

where Z1, v are given by (A.6). Moreover, it follows from (2.9) that 0 < v; < Z; < 1. Hence, we must
have (Zy,v(Zy)) = (Z1,v1), which implies that v(Z;) = v;. O

Lemma A.3. Under Assumption 1, let Ao(Z) := Az (Z,v(Z)) for Z € [0, +0), then we have Ay(Z) > 0
for Z € (0,Z), Ao(Z) < Ofor Z € (Zy,+c0) and A((Z;) # 0.

Proof. By the definition of A¢(Z), we have Ag € C*([0, +0)) and (see (2.8))
Ao(Z) = ZFy(Z)Fo(Z), Y Z € [0,+), (A.9)
where Fy € C*([0, +0)) is defined by (A.7) and Fy e C* ([0, +00)) is defined by
Fo(Z) :=1-2v(Z) =Vt (Z) - Z), VY Z € [0,+). (A.10)

If Ao(Z,) = 0 for some Z, € (0,+c0), then A, (Z,,v(Z.)) = Ao(Z.)v'(Z,) = 0, and by (A.8) we
obtain Z, = Z;, hence (using Lemma A.2, (A.8) and (A.9))

{Z € [0,+00) : Ag(Z) =0} = {0, Z; }. (A.11)
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Now we prove that Aj(Z;) # 0. By the proof of Lemma A.2, we have Fo(Z;) = 0. Then by (A.7)
and (A.10), we have Fo(Z;) = 2(1 = Z1v(Zy)) > 0. Thus (using (A.9)), A{(Z)) = Z\F}(Z))Fo(Z)).
Assume on the contrary that Aj(Z;) = 0, then Fj(Z;) = 0.

Let A1(Z) := Ay (Z,v(Z)). Then (2.8) becomes Ag(Z)v'(Z) = A1(Z). Taking derivative with
respect to Z at Z = Z; on both sides, we obtain(using A¢(Zy) = 0) A{(Z) = A(Z)v'(Z1) = 0
and A;(Z;) = 0. By (2.8), we have A((Z) = Fi(Z)Fi(Z) with F1(Z) := Z - g1(v(Z)), F1(Z) =
(1 =v(2)H)(BL+ (k = BOV(Z)?), g1(v) := kv/(BE + (k — BE)v?) (note that O < B¢ < k using (2.9)).
Asv(Zy) € (-1,1), we have E(Zl) > 0, then by A{(Z;) = 0 and A{(Z;) = 0 we have Fi(Z;) = 0,
A(Zy) = F{(Z1)F1(Z1) = 0and F{(Z;) = 0. Thus, 0 = 1 —g{ (v(Z1))v'(Z1) = 1 -g{(v1)v'(Z1) (using
Lemma A.2).

Similarly, by (A.7), we have Fy(Z) = F2(Z)F>(Z) with F»(Z) = g2(v(Z)) = Z, F>(Z) :=v(Z) + ¢,
g (v) = (1 + V&v)/(v + VO), and F»(Z;) > 0. Thus, F»(Z;) = 0, Fj(Zy) = 0 (using Fo(Z;) =
Fj(Z1) =0)and 0 = g/ (vi)v'(Z)) - 1.

Now we have 1 = g{(vi)v'(Z)) = g5(v1)v'(Z1) and g{(v1) = g5(v1). On the other hand,

kv 1+\/Zv_ (1 = v2) (kvVe - BE(1 +Vev)
BE+(k=BOVE v (BL+ (k= BOVA)(v+ D)
(1= (k = BOVE(v = v1)
B+ (k= BOVY(v + VD)

g1(v) —ga(v) =

here we used (A.6), thus

(1-v)(k - BOVC N
(BC+ (k= BOVH(vi +VD)

g1(vi) —g53(vy) =

which is a contradiction. Therefore, A(’)(Z]) # 0.
By Fy(0) = fO(O) =1>0, (A9), and (A.11), we have A¢(Z) > 0 for Z € (0, Z,). Finally, using
A((Zy) # 0 and (A.11), we have A((Z1) < 0and Ag(Z) < 0 forall Z € (Z, +o0). O

To finish the proof of Remark 2.2, it remains to show that v(Z) < Z and Zv(Z) < 1 for all
Z € (0, +00). We use the barrier function method. For any V € C'((0, +)), we define

(AV)(Z) = -Az(Z,V(Z)V'(Z) + A, (Z,V(Z)), V Z € (0,+0). (A.12)

Then o/v = 0 if v is given by Assumption 1.
Lemma A.4. Under Assumption 1, we have v(Z) < Z for all Z € (0, +c0).

Proof. Since v(Z) € (—1,1) for all Z € (0,+c0) by Assumption 1, it suffices to prove v(Z) < Z for
all Z € (0, 1). We first show that v(Z) < Z for all Z € (Z;, 1). By (A.9), Fy(0) = 1, Fy(Z;) = 0 and
(A.11), we have

{Z € [0,+c0) : Fo(Z) =0} = {Z;}.
As Fy(1) < 0Oand Z; € (0,1), we have Fy(Z) < Oforall Z € (Z;, 1), hence

Vez -1
Vi-27

Next we prove that v(Z) < Z for all Z € (0, Z;). Let V| (Z) := Z for all Z € [0, +c0), then we have

v(Z) < <Z, VYZe(Z,]).

(AV)(Z)=(Bt—k-1)Z(1-2*)* <0, YZe(01), (A.13)
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where we have used 8¢ — k — 1 < 0, which follows from (2.9). On the other hand, letting Z — 0+ in
dv/dZ = A, (Z,v(Z))/Az(Z,v(Z)), by L'Hopital’s rule, we have

_ OZAV(()? 0) + aVAV(O’ O)V,(O)
~ 9zA2(0,0) + 0,Az(0,0)v’(0)

v'(0) = Bt —kv'(0),

hence v'(0) = B¢/(k +1) < 1 = V/(0). As v(0) = 0 = V;(0), there exists ¢ € (0,Z;) such that
v(Z) < Vi(Z) for all Z € (0,6). Assume for contradiction that Z, € (0,Z;) C (0, 1) satisfies
v(Z) < Vi(Z) for all Z € (0,Z.) and v(Z,) = Vi(Z.) = Z., then v'(Z.) > V/(Z.). Thus, by
Az(Z.,Vi(Z,) = Az(Z,,v(Z,)) = Z.(1 = Z2)* > 0, we have

(*Q{VI)(Z*) = _AZ(Z*, Vl(Z*))Vl’(Z*) +AV(Z*a VI(Z*))
> Az (Z,v(Z)WV(Z.) + A (Z.,v(Z.)) = (Av)(Z.) =0,

which contradicts with (A.13). Therefore, we have v(Z) < V|(Z) = Z for all Z € (0, Z;).
Finally, by v(Z;) =v| < Z; < 1, we obtain v(Z) < Z for all Z € (0, 1). O

Lemma A.5. Under Assumption 1, we have v(Z) < 1/Z for all Z € (0, +0).

Proof. Since v(Z) € (-1,1) for all Z € (0, +c0) by Assumption 1, it suffices to prove v(Z) < 1/Z for
all Z € (1,+00). Let Vo(Z) :=1/Z for Z € (0, +0), then we have

(AV:)(Z) = (B - 1)€Z (1 - 1/22)2 >0, VZe(l,+0), (A.14)

where we have used 8 > 1 by (2.9). As v(Z) = v| < 1 = V,(Z)), there exists § > 0 such that v(Z) <
Vo(Z) for Z € [Z1,Z) + 6). Assume for contradiction that Z* € (1, +oo) satisfies v(Z) < V,(Z) for all
Z €(Zy,Z")andv(Z") = Vo(Z"), thenv'(Z*) 2 V;(Z*). Thus,by Az (Z*,Vo(Z")) = Az(Z*,v(Z7)) =
—0(1=2%?2/Z. <0, we have

(AV)(Z7) = =Az(Z" Vo Z)VL(ZY) + A (27, Va(Z7))
< =AzZ(Z5V(ZYIW(Z) + A (Z7,v(Z7)) = (dv)(Z7) =0,

which contradicts with (A.14). Therefore, v(Z) < V2(Z) = 1/Z for all Z € (1, +c0). m]

The proof of Remark 2.2 is completed now. To conclude this appendix, we prove that ao, Do €
CZ ([0, +0)), where ¢ and py are defined by (2.12).

Lemma A.6. Let v € C ([0, +c0)) be given by Assumption 1, and define (Zg, po by (2.12). Then we have
0. po € C ([0, +00)).
Proof. We first claim that

Z
f e ([0, +00)) = F(Z) = /0 f(s)ds € C=([0, +00)). (A.15)

Now we prove that ¢g € C([0,+00)). By v € C([0, +00)), we have 1 — Zv(Z) € C([0, +0)).

Since Zv(Z) < 1 for all Z € [0,+c0) by Lemma A.5, it follows from (5.8) that 0 < % €

C ([0, +00)), hence by v € C°([0, +0)) and (5.7) we have ]*VZ(VZ()Z) € C([0,+00)), then by (A.15)
we obtain

z
8- 1)/ VO 45 e ([0, +00)).
o 1=sv(s)
Thus, by (5.9) and (2.12) we have q?o € CZ ([0, +0)).

https://doi.org/10.1017/fmp.2025.7 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.7

Forum of Mathematics, Pi 49
As for pp, by 0 < % € CZ([0,+00)), and (5.10), we have 1/(1 — Zv(Z)) 7T € C=([0,+00)).

Similarly, using ao € CZ([0,+400)) and ao(Z) > 0 for all Z € [0, +c0), we get $O(Z)2/(P_1) €
C2([0,+00)). It follows from 1 —v(Z)? € C ([0, +)), v(Z) € (=1,1) forall Z € [0, +c0) and (5.10)
that (1 — v(Z)z)ﬁ € C ([0, +00)). Therefore, by (2.12) and (5.5), we ha\ie Po € CX([0,+00)).

Finally, it suffices to show the claim (A.15). By (2.11), there exists f € C*([0,+0c0)) such that
f(Z)=Zf(Z?) forall Z € [0, +). Let

Z
F(2) ;=%/0 f(s)ds, Y Z e [0,+),

then F € C®([0, +o0)). Moreover, we have

72

F(Z) = /Ozf(s) ds = /Ozsf(s2)ds =% i f(s)ds = F(Z%), ¥ Z € [0,+0).

Hence by (2.10), we have F € C°([0, +00)). O

B. Linear ODEs with singular points

In this appendix, we establish the well-posedness theory for a class of second order linear ODEs with
singular points.

First of all, we introduce a preliminary lemma, which ensures that the functions we are considering
are smooth in the sense of multi-variable functions. Let I C R be an interval and let  c C be an open
subset. We define

Hol(Q) := {x = x(1) is holomorphic (or equivalently, analytic) on Q}, (B.1)
H(I)(Q) = {x =x(t;1) e CUXQC) 1 x(;2) e C7() forall A € Q,

x(1;-) € Hol(Q) for all 7 € I and 8] x € L™ (I x Q) for all j € Z5o}, (B.2)
Hi(Q) :={x=x(;1) € C¥(I x;C) : x(t;-) € Hol(Q) forallt € I}. (B.3)

Then Hol(€2), ”H(I) (Q), H; (L) are rings and the definitions in (B.1), (B.3) are the same as in section 5.3.
This appendix is only used in the proof of Lemma 5.6, which does not require the definition of Z in
Z = |x|/(T -t).

So, with abuse of notation, we replace Z by ¢ and use x to denote a general function of (¢;1). We
stress that here (7, x) has nothing to do with the coordinates in R!*¢,

Lemma B.1. Let I C R be an interval and Q C C be an open subset. Then 'H(I) (Q) c H;(Q).

Proof. Let x = x(t;1) € HY(Q). Pick 29 € Q and let r € (0,1) be such that B, (1) := {1 € C :
|4 — 2| < r} c Q. By Cauchy’s integration formula (Theorem 4.4 in Chapter 2 of [69]), for any
t € 1,1 € Q we have

x(12) = Y X (A= A0)", (B4)
k=0
where
1 x(£; 1) rk /2” i0) -iko
fH=— T _da= — t; A +re?) e dg B.5
(0 = 5 /M_M:, A=10) “7 2x Jy x (1520 +ret%) e (B-5)
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forall t € I,k € Zx. Since x(-;4) € C*([) for all 1 € Q and 6,jx € L®(I x Q), by (B.5) and the
dominated convergence theorem, we have x; € C*(I) and

||x](<j)HL°°(1) < 10/ xll=axayr™. ¥ j € Zz0, ¥ k € Zap. ®.6)

Using (B.6), we know that 3. x]((j ) (1)ay((4 —10)¥) is uniformly absolutely convergent on I X B, 12(A0)
forall j € Zspand @ € (Zsg)?, hence (B.4) implies that x € C*® (IXB,2(Ap)). Since A9 € Qis arbitrary,

we have x € C*(I x Q). Hence x € H;(Q). O

Remark B.2. As smoothness is a local property, we have ’H(I) 1o () C H (L), where
H(I)’IOC(Q) = {x =x(t;1) : IxQ —> Clx € ’H(}(Q) for any compact sub-interval J C I} .

Moreover, we have H; (Q) C ’H? loc (Q') for any open subset Q’ cC € (i.e. there exists a compact set
K such that Q" c K C Q).

Lemma B.3. Let I C R be an interval and let A(t) € C*(I;C) be such that A(t) = 0 has a unique
solutiont = tyinI"?with A’(ty) # 0. Let Q C C be an open subset and let B(t; 1), D(t; 1) € C*(IxQ;C)
be such that B,D € H® . (Q), which implies

1,loc

N, = sup |[max{3,—Re +1;}] < +oo.
0 /leg( { ( A’(IO)

Then there exists No > N such that for all N € Z N (No, +0), if f € HY . (Q) is such that

1,loc

lf ()]

1ol € L™(J x Q) for any compact sub-interval J C I, B.7)
— 1

then the linear ODE (here the prime ' refers to the derivative with respect to t)
A)x"(t; ) + B(t; D)x' (t; 1) + D(t; D)x(t;2) = f(£; 1) (B.8)

has a (complex-valued) smooth solution x(t; A1) on I X Q such that x € H;(Q).

Proof. Without loss of generality, we assume that zp = 0 € I, and there exists §p € (0, 1) such that
Iy = [-60,60] C I orly=[0,00] = 1IN [, 0]
Step 1. Existence of a C? local solution. We define the Banach space

Yy = {y € C(IpxQ:;C) : y(t; 1) /1t)N € L®(Iy x Q) and y(r;-) € Hol(Q) ¥V 1 € 10} ,

where N > 3 is an integer, with the norm ||y|ly, := ||y(t;/l)/|t|NHLm
We define a linear operator Ty : Yy — Yy by

(10><Q) :

D(s; Q)
A(s)

(Tay)(5:2) = /O (B/ii;f)y(s;m

/ y(‘r;/l)d‘r) ds, Vtely, VAeQ.
0
By the hypotheses on the coefficients A, B, D, we have

sB(s;A)

A(S) sely,1eQ

sD(s; )
A(s)

M = sup € (0, +c0). (B.9)

sely

+
sely,1eQ

Als)

2]t means that {r € I : A(z) =0} = {#(}, and also for Proposition B.4.
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Hence, for all r € Iy ¢ [—1, 1] and for all A € C we have

(Tay) (6] = ’/0’ (sB(s;ﬁ)y(s;ﬂ) N-T SD(S;/I)l/OS YT dT) ds

A(s)  sN A(s) s ™
M
< 1V 1yl
which gives
M
TN llyy -y < — VN €ZnN[3,+). (B.10)

N»

We also define an operator Fy : Yy — Yn by

t ,/l
FSD 4 Vien vaeco.

(FNH(5:A) = A

Using (B.9), we know that Fy : Yy — Yy is a bounded linear operator with || Fx flly, < %IIfIIyN
for all f € Yy . Now we take Ny € Z such that No > Ny +2M.Forany N € ZN (No, +00), by (B.10) we
know that || 7 |lyy —vy < 1/2,henceid+Ty : Yy — Yy is invertible, then (id+7n) ' Fn : Yy — Yy
is a bounded linear operator with

2M

”(id"'TN)_l‘FNHYN—»yN < H(id"'TN)_IHYN—»YN PN llyy -y < N

For any N € Z N (Ny, +00), given f € H?, (Q) satisfying (B.7) (then f € Yy ), we define

I ,loc
t
y=(G{d+Tn) " Fnf e VN, x(1;2) :/ y(s;A)ds, Veely, YAeQ,
0

then x € C(Ip x Q), x(-;2) € C1(Iy) forall A € Q, x(¢;-) € Hol(Q) for all € Iy,

oo [(BEA o D@ [T
X (l,/l) —‘A (—WX (T,/l) - W}C(T,/’.) + m) dr, Vtel,6 VAaeQ,

and x’(t; 1) = y(t; 1), x(¢; ) = Ot x'(s;4)ds fort € Iy and A € Q. Moreover, we have (recalling 7y = 0)

x(t; )
|t|N+]

X' (1;2)
2N

€ L™ (I x Q), € L™ (Iy x Q). (B.11)

On the other hand, since x’(¢; ) = fOt X(s;A)ds for t € Iy, A € Q, where

X(s;4) = —Bzis(;;l)x’(s;/l) - Dji;;)x(s;/l) + ff(xs(s/)l)
_ SB(s; ) x'(s540) vy sD(s;A) x(s54) s f(s;0) noy
TTTAG) sV S T AL v YA N0

for s € I\ {0} and A € Q, thus there exists a constant C > 0 such that we have | X (s;1)| < C|s|N~! for
s€ly\{0},1€Q. As N > 1, we know that x’(-; 1) € C'(Ip) (thus x(-; ) € C*(Iy)) and x”’(0; 1) =0
for A € Q. Hence, x solves (B.8) on (#,1) € Iy x C. We also have

x"(t; 1)
|[|N—1

€ L¥(Ip X Q). (B.12)
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Step 2. Smoothness of the C? local solution. In this step, we show that x(-;1) € C®(ly) for any
A € Q. By standard ODE theory, we have x(-; 1) € C*(l \ {0}) for all 2 € Q. We claim that for any
k € Z N [0, N], there exists a constant Cr > 0 such that

xB0;0)=0  and | xP ()] < CltNTK Viel, YieQ. (B.13)

We use the induction. By (B.11) and (B.12), we know that (B.13) holds for £ € {0, 1,2}. Assume
that for some K € ZN[1, N —1], (B.13) holds for all k € ZN [0, K]. Now we prove that (B.13) holds for
k = K+1. By our induction hypotheses, x(-; 1) € C) (1) and x KD (0; 1) = lim;_o(xK) (£; 1) /1) = 0
forall 2 € Q. For ¢ € Iy \ {0}, taking derivative K — 1 times on both sides of (B.8) with respect to #, we
obtain

K
AOxED (1;2) + Z Ak (60x (150 = FED(12), Veelp\{0}, VieQ, (B.14)
j=0

where A k’s are linear combinations of A, B, D and their derivatives, hence A; g (;) e C¥(IXxQ)N
L®(Ipx Q) forall j e ZN[0,K]."> As f € H(I)JOC(Q) satisfies (B.7), we have® £ (r; ) /|f|N % €
L®(Ip x Q) for all k € Z N [0, N]. Therefore,

KED @] PEED - T A (020 1)

= € L™ (1) x Q).
TEE0] I[N -ED (T x )

This proves (B.13) for k = K + 1. Hence, (B.13) holds by the induction and thus x(-; 1) € CN (Iy) for
all 1 € Q and

sup  |x®(1;2)] < +00, VkeZn[0,N]. (B.15)
tely,1eQ

Next we claim that for k € Z N [N, +c0) we have

sup xR (1;2)] < +oo. (B.16)
telp\{0},2€Q

By (B.13), we know that (B.16) holds for k = N. Assume that for some k € Z> ) we have

sup XN (£, 2)] < 400, -+, sup Ix®) (£;0)] < +o0. (B.17)
telp\{0},2€Q tely\{0},2€Q

Fort € Iy \ {0} and A € Q, by (B.14) for K = k + 1 and footnote 13 we have

ADxE 2 (1;0) + (kA" (1) + B(1;))x%*V (1, 2) = Fi(1;.2), (B.18)
k
Fi(t:d) := fO @00 = 3 A ()20 (1:.2). (B.19)
j=0

Then by f € ’H(I)O(Q), (B.15) and (B.17) we have sup, ¢y \(0},1eq [Fk(1;4)| < +oo. Let Z(t) =

/01 A'(ts)ds and B(1;2) := B(t;4) = sl A(r) for t € Io,A € Q, then B(0;2) = 0, A € C*(Iy),

13(B.14) and the properties of Aj k’s holds for all K € Z, (not merely for K € Z N [1, N - 1]), and we also have
Ag k(t;0) = (K -1)A'(t) + B(t;2) forall ¢ € Ip, A € Q.

“Indeed, (B.7) implies that £ (%) (0;2) = 0 for any k € ZN [0, N — 1] and any 1 € Q. As a consequence, we have
If N-D(;0)] = fot F M) (s:0) ds‘ < (supsE,O,AGQ |f(N)(s;/l)|) |z| for all ¢t € Iy, A € Q, where we have used f €

7{90 (). Similarly one shows that £ (K) (£; 2)/|z]NV =% € L®(Iy x Q) forall k € ZN [0, N].
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B e CllyxQ) for A € Q 8B € L Iy x Q) and A(1) = A(r)/t for t € I \ {0}. Thus,
B(t; )/t € L*(Iy x Q) and B(t; 1) /A(t) € L*(Iy X Q) (using (B.9)).

B(0:1) =
Let n(r; ) := |t| 7O exp (/Ot % ds) then (here 7 is different from the one in (2.23))

1. Re B(0;1) Re B(0;1)
CoHt O < ()] < Gyl A0, Viel\ {0}, V1eQ (B.20)

for some constant C;, > 0. We also have n € C*((Ip \ {0}) x Q;C\ {0}) and

n'(4) _ B(t:0)  BO0;A) _ B(4)  BO;A) A(r)  B(0;1) _ B(t;4)
G - A A | A() | A(0) AQ) T A0y | A Vitelp\{0}.

Here we used Z(t) = A(z)/t. It follows from (B.18) that
(A0 1 0x %V @) = A @ VR, Vel \{0) VaeQ.

By (B.14) for K = k and (B.15), (B.17), we have A(1)x**D (#;1) € L*((Iy \ {0}) x Q); using (B.20),
|A(t)| ~ |t] ast — 0 and

k2N > No> - inf Re (B(0;)/A"(0)) +1, (B.21)
we have
tli_r)r(l)A(t)kn(t;/l)x(k“)(t;/l) =0, VaeQ,
hence
A n(t; D)xF (1,2) = /Ot A Ip(s; D) Fe(s:0)ds,  Vriely\ {0}, VAeQ.
As a consequence, we have

fot A(s) (s ) Fr(s;2) ds) /Oltl sk=1 Re(BOD)/A(0) 4

< Cr1 — < Cisi
IA@®) ¥ (; D) |¢|¥ |¢|Re(B(0:0)/4(0))

|x(k+1)(t;/l)| _ |

for all € Iy \ {0} and 2 € Q, where Cry; > 0 and Crs+1 > 0 are constants. Here we have used
k +inf c0 Re(B(0;2)/A’(0)) > 0, which follows from (B.21). This proves (B.16).
Next we use once again the induction to prove that

x®(0; 1) exists and lin(l)x(k) (;2) = x50 (0 2), VAeQ, VkeZn [0, +0). (B.22)
-

We know from (B.13) that (B.22) holds for k < N. Now we assume that for some k € Zsy, (B.22)
holds for 0, 1, - - - , k. Then by (B.19), we have Fi(-; 1) € C(1p), by (B.16) with k replaced by k + 2 and
A(0) = 0 we have lim,_,o A()x**? (¢; 1) = 0, and by (B.18) we have

FOD o yaeq

limx**V () = ——2=—— e,
Nim ) = 0+ B

where we have used kA’(0) + B(0; 1) # 0, which follows from k& > —inf,cq Re(B(0;2)/A’(0)) (see
(B.21)). Finally, we get by L"Hopital’s rule that

x®) (1;2) = xR (0)
t

kD) (0; ) = lil’l(l] = lin(l)x(k“)(t;/l), Va1eQ.
- s
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This proves (B.22) for k+1. Then (B.22) holds for all k € Z > by the induction. Hence, x(-; 1) € C*(ly)
for all A € Q. Moreover, combining (B.15) and (B.16) gives that

xeL®(IyxQ), VjeZs. (B.23)

Step 3. x € C*(Ip x Q). Recall that x € C(Iy x Q) satisfies x(¢;-) € Hol(Q) for all # € I (in Step 1)
and x(-; 1) € C®(lp) for all A € Q (in Step 2). Using (B.23) we have x € ”H(I)O(Q). Then Lemma B.1
implies that x € C*(Ip X Q).

Step 4. Extension of the smooth local solution. For any fixed 1 € Q, we have constructed a local
solutionxy (-; ) € C*(Iy) of (B.8) on Iy C I. Moreover, wehavex; € C*(IpxQ) andxy (z;-) € Hol(Q)
for all € Iy. By standard ODE theory, the initial value problem

’” ’ 5 A
x(132) + B (12) + 2D x(1;.2) = LED,

x(00/2;2) =x1(60/2; 1), x"(00/2; 4) = x7 (60/2; A)
has a unique solution x = x(#; 1) on ((0,+00) N 1) x Q and x € C*(((0, +o0) N I) x Q). Moreover, by
the analytic dependence on parameters (Lemma B.5), we have x(¢;-) € Hol(Q) for all ¢t € (0, +o0) N 1.
Hence, x;. can be extended to be a smooth solution of (B.8) on ((0,+o0) N I) X ; Similarly we can
extend xy, on the negative direction (for the case Iy = [—80, dp]). And for the extended solution x, we
have x € Hj(Q). O

Proposition B.4. Let I C R be an interval. Let A(t) € C*(I;C) be such that A(t) = 0 has a unique
solution t = to in I with A’(to) # 0. Let B(t;4), D(1; 1) € H;(C). Assume that B(t; 1) = B(1) + AB(1)
fort € I and A € C, where B, B € C*(I;C). Suppose that

either B(t9) #0 or B(ty) = 0 and — B(t)/A’(t) ¢ Zso. (B.24)
We define
A :={2€C:nA’(ty) + B(tg; 1) = 0 for some n € Zp} . (B.25)

Then A, C C is a (probably empty) discrete set. Let R € (0,+00). There exists a nonzero polynomial
W1(A) satisfying {1 € Bgr : ¥1(1) = 0} = A. N Bgr such that for every f(t;1) € Hi(C), the
inhomogeneous ODE

(B.26)
x(t0;4) =¢1(D), A € Bg,

{A(t)x"(r;z) + BN (50 + D(E)x(5) = g1 (D (5:0), 1€ 1,4 € B,
where the prime ' refers to the derivative with respect to t € I, has a solution x = x(t; 1) € Hy(BR).
Moreover, if B(tg) =0, then y1(A) = 1.

Proof. We first show that A, is a discrete set. If B(1g) # 0, then A, = {—-nA’(0)/B(to) — B(to)/B(to) :
n € Zso}, hence A, is a discrete set. If E(l()) 0, then A, € A, if and only if 0 = nA’(t0) + B(to; Ax) =
nA’(19)+B(ty) = 0for some n € Zs(, which implies that — —B(t9)/A’ (o) € Z>0,and thisis a contradiction
with our assumption (B.24). As a consequence, if B(tg) 0 (and B(to)/A (to) & Zxp), then A, = 0.

Next, we construct (1). Let Ny be given by Lemma B.3 (for Q = Bpg) and fix an integer
N > max{Ng + 1, —inf e, Re (B(fg; 1) /A’ (to)) + 1}. Let ¢1 (1) := 1 for the case B(to) = 0 and
Y1 () == T105" (A’ (t0) + B(to, 1)) for the case B(to) 0.

Claim 1. (1) is a nonzero polynomial. If B(l()) 0, then (1) = 1 is a polynomial of degree 0; if
B(to) # 0, as B(tg, 1) = B(ty) + /lB(to) then ¢ (1) is a polynomial of degree N.

Claim 2. {4 € Bg : y1(1) = 0} = A. N Bg. If B(to) = 0, then {1 € Bg : y1(1) = 0} =
0 = A, = A. N Bg. For the case B(ty) # 0, if (1) = 0 then jA’(ty) + B(tp, 1) 0 for
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some j € ZN [0O,N — 1] and 2 € A,, thus {1 € Bg : ¢1(2) = 0} C A, N Bg. On the other
hand, if 19 € A. N Bg (and E(t()) # 0), then nA’(t9) + B(tp;dg) = O for some n € Zso, and
n = —B(tg;Ag)/A’(t0) < —infiep, Re (B(tp;1)/A’(t9)) < N —1,thus n € ZnN [0,N — 1] and
Y1(29) =0.SoAx. N Br C {1 € Bg : ¢y (1) =0}.

It remains to construct x(z;4). For any n € Z N [0, N] and A € C, let 1 ,(4) := 1 for the case
B(1o) = 0 and ¢ (1) := Hj-\’:;ll (jA’(10) + B(t0, 2)) (here ¢y n () := 1) for the case B(ty) # 0. Then
Y1(A) =y1,0(2) forall 2 € C.

Claim 3. Ifn € ZN [0, N], g(t; 1) € H;(C), 8ig(tp;A) =0 fori € Z,0 < i < n. Then
A()Y" () + B(t; )y (1; ) + D(; )y(t;A) = ¥1,,(Dg(t;2), y(to;4) =0, 1 € Bg,  (B.27)

has a solution y = y(#; 1) € H;(BR).

Let g(£;2) = f(¢t; 1) — D(¢t; 1), n = 0, then by Claim 3, (B.27) has a solution y = y(¢t; 1) € H;(Bgr)
withn = 0. x(t; 1) = y(£; ) +¥1(4) € H;(Bgr) solves (B.26) (using ¥1(2) = ¢1,0(12)).
It remains to prove Claim 3. We use the (backward) induction. We need to prove that:

(i) Claim 3 holds forn = N
(ii) if j € ZN [0, N — 1], Claim 3 holds for n = j + 1, then Claim 3 holds for n = j

Proof of (i). As g € H;(C) c HY 110 .(Br),n = N, by Taylor’s theorem with integral remainders, we
have g(t; 1)/t — to|N € L (I x C), and we also have ¢/ ,(1) = 1 n (1) = 1. Then the result follows
from Lemma B.3

Proof of (ii). We fix j € ZN[0,N — 1] and assume g(t;1) € H;(C), 8ig(to; 1) = 0 fori € Z,
O0<i<j.Fortel,AeC,letx;(t) = (t — fo)7*!, vi(t;2) = A(t)x;’(t) +B(t /l)xj(t) +D(t; )x;(1),
then x; € C*(I), x;(to) =0, y;(t; 1) € H;(C), and

loc

Yi(652) = A0+ D =10}~ + Bt ) (j + D (1 = 10) + D(1;2) (¢ = 1)+,
By Taylor’s formula, we have 8}y (19;4) = 0fori € Z,0 <i < j and

yj(t; ) ()

=7l =7l |
& yi(10;:2) = JHm 7 T A G+ D Bl )G+ 1)

=ji(+ DA () + (j + D!B(10: 1) = (J + 11(jA (t0) + B(to; 1)).

For the case of E(to) #0,leta; = (j+1)!,b;(1) = jA'(to) + B(to; A) then a; # 0, b; € Hol(C).
As Y1 ,(A) = j-\]:;ll (JA'(to) + B(1t9;4)) for n € Z N [0, N] we have ¢ (1) = bj (A1, j+1(A) and
8l yi(to; ) = (j + DI(A’(10) + B(io; 2)) = ajb;(A) forall 1 € C.

For the case of B(t()) = 0, we have jA'(t9) + B(tg,d) = jA (1) + B(t()) # 0 (using (B.24)). Let

= (j+ DA (to) + B(1)), b; () =1thena; # 0, b; € Hol(C), 8] y;(t0;1) = a; = a;b;. As
c,lrl’n(/l) =1forneZn[0,N] we have U1,j(A) = b (A)yn ]+1(/l) forall 1 € C.

Thus, we always have a; # 0, b; € Hol(C), Y1 ;(A) = b; (D)1, j+1(A), 8] yj(to;/l) =a;b;(1).

Fort € I,A € C, let g(t;1) = b;j(A)g(t; ) — 8tjg(t0,/l) yj(t;A)/a; then g € H;(C)," and
8]8(10;2) = 0. As 8l g (103 2) = 0, 8y (10;2) = Ofori € Z,0 < i < j, we have 8/ g(19; 1) = 0, fori € Z,
0 <i<j.Thus, 8/g(tg; 1) =0,fori € Z,0 <i < j.

By the induction assumption (for n = j + 1), there exists y(z; 1) € H(Bg) such that

A@)Y"(1;2) + B(t; )Y (1) + D(; )¥(1;2) = ¢y, (Dg(#:4),  ¥(t0;4) =0, A € Bg.

15Here we use the fact that if x € H; (Q), then x(") € H; (Q) for any n € Zsy.
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Forallt € 1,4 € Bg,lety(t;4) := }’(t;/l)+zﬁ1,j+1(/l)étjg(to;/l)-xj(t)/aj,theny € Hy(Bgr),y(to; 1) =0
and

A" (t;2) + B(t; )y (t; 1) + D(t; ) y(t; 1)
=y, (Dg(H ) + l!/1,j+1(/1)afg(lo;/1) vt ) /aj =11 (Db (gt A) = 1, () g(t; ),

where we have used y ; (£; 1) = A(t)x}’(t)+B(t;/l)x;.(t)+D(t;/l)xj(t),§(t;/l)+0fg(to;/1)~yj(t;/l)/aj =
bij(A)g(t; ) and ¢y j(A) = b; ()1, j+1(A). Thus, y € H;(Bgr) solves (B.27) for n = j. This completes
the proof. O

In the end of this appendix, we prove the analytic dependence on parameters of solutions to linear
regular ODEs. The following lemma has been used in Step 4 of the proof of Lemma B.3, to show that
the extended smooth solution is analytic with respect to the parameter A.

Lemma B.5. Let Q c C be an open set and I C R. Let p(t; 1), q(t; ), f(t; 1) € C®(I x Q;C) be such
that p(t;-), q(t;), f(t;-) are analytic on Q for each t € I. Let xo(1), x1 (1) be two analytic functions on
Q and let tg € 1. For each A € Q, let x(t;2)(t € I) be the unique smooth solution to the initial value
problem

xX(62) + p()X (50 + q(6:)x(:2) = f(1:2), x(10:2) = x0(2), x" (103 4) = x1(2),

where the prime ' refers to the derivative with respect to t € I. Then for each t € I, the function

A € Q> x(t; Q) is analytic.

Proof. By the standard ODE theory, we know that x € C* (I x Q). For any complex function ¢ = ¢(1) :
C — C of class C! seen as a function on R2, we can define the Wirtinger derivatives

31600 = 3 (D) +i0g (D). Dap(d) = 3 (Brp(D) ~ idag (D).

Now it suffices to show that d3x(#; 1) = 0 for all (r,2) € I X Q. Since x € C* (I x Q), the derivative
with respect to ¢ and d; are commutable. By the analyticity of coefficients and the initial data, we know
that dyx satisfies

(030)"(£; ) + p(£; ) (93x) (1, 1) + q(£; ) 03x(1; 1) =0,  95x(t9; A) = (93x) (295 1) = 0.

By the uniqueness, we have d;jx(#; 1) = 0 for all (£r,1) € I X Q. O
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