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CENTER POINTS OF NETS
C. L. ANDERSON, W. H. HYAMS, AND C. K. McKNIGHT

1. Introduction. Suppose x = (x,) is a net with values in a metric space
X having metric p. If a point z in X can be found to minimize

(1) R(z) = lim sup p (¥, 2)

then z is called a center point (c.p.) of x. The space X is (netwise) c.p. complete
if every bounded net has at least one c.p.; it is sequentially c.p. complete if
every bounded sequence has a c.p. Netwise c.p. completeness implies sequential
c.p. completeness, and the latter implies completeness since any c.p. of a
Cauchy sequence will necessarily be a limit point of that sequence.

These notions are related to the set centers of Calder et al. [2]. Let M be a
bounded infinite subset of X and consider the directed set D consisting of
pairs @ = (4., %.), where 4, is a finite subset of M and x, is any point of
M — A,. The set D is directed so 8 follows a if Ag D A4,. Then a c.p. of the set
M, in the sense of Calder et al., is precisely a c.p. of the net (x,:a € D).
We say X is setwise c.p. complete if every bounded infinite subset has a c.p.
One of the purposes of this paper is to settle some questions concerning set
centers which were left open in [2]. Our other goal is to develop some basic
theory of centers of nets in Banach spaces. Some of these concepts have proven
useful in the area of fixed point theory [1; 3].

THEOREM 1. For a metric space X,

(1) netwise c.p. completeness implies setwise c.p. completeness;

(2) setwise c.p. completeness implies sequential c.p. completeness, provided X
has no isolated points;

(3) separability and sequential c.p. completeness together imply selwise c.p.
completeness;
(4) sequential c.p. completeness implies completeness.

Proof. Statements (1) and (4) are obvious. Statements (2) and (3) follow
easily from the following two lemmas.

LEMMA 1. Suppose x = (x,) and y = (v.) are nets of points in X and
0 (Xay Vo) — 0. Then any c.p. of x is a c.p. of v.

LeMMA 2. Suppose x = (x,) is a sequence of distinct points in X. Then a
point of X is a c.p. of x if and only if it is a c.p. of the set of values of x.
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2. c.p. complete Banach spaces. In this section we give sufficient
conditions for a Banach space to be (netwise) c.p. complete. Our first two
theorems in this section are straightforward generalizations of theorems in [2].
The third theorem is presented ad hoc to show that the sequence space ! is
netwise c.p. complete, thus settling a question left open in [2].

THEOREM 2. Let X be a reflexive Banach space with distance defined by the
norm N. Then X is netwise c.p. complete.

Proof. Let x = (x,) be a bounded net in X and consider the function
R : X — [0, ] defined by equation (1). For any ¢ € [0, ®0) the set K, of
z € X satisfying R(z) =< tis convex, bounded, and closed in the norm topology,
hence also in the weak topology. Thus, with respect to the weak topology, R is
lower semi-continuous, and hence it attains a minimum on the compact set K ,,
which is non-empty if ¢ is sufficiently large.

The next theorem must be phrased in terms of a property called ‘‘property
(H)” in [2]. Since the term ‘‘property (H)" is widely used in a different sense,
we will refer instead to the ‘‘chained exchangeability property’. The property
is meaningful for an arbitrary metric space X. If B and b are (open) balls in X,
of radius R and r = R respectively, we will say that these balls are e-exchange-
able, where ¢ = 0, if there exists a ball B’ of radius 7 such that B’ 2 BM\b
and such that the center of B’ is within a distance e of the center of B.

Definstion. A metric space X is said to have the chained exchangeability
property if for every r > 0 there exist sequences (r,), (k,) of positive real
numbers such that

(1) r, — r monotonically from above;

(2) h, — 0 monotonically from above and 3,4, < ©;

(3) every ball of radius 7,4, is h,-exchangeable with every ball of radius 7,.

Note that in a Banach space, the chained exchangeability property is
equivalent to saying as in [2] that for every & > 0 there existsd > 0 withd < 1
such that every ball of radius 1 — d is h-exchangeable with every ball of
radius 1.

THEOREM 3. If a complete metric space X has the chained exchangeability
property, it is netwise c.p. complete.

Proof. Let (x,) be a bounded net in X and let » = inf {R(z) : z € X}. Take
r, and &, as in the above definition and define z, € X inductively so R(z,) < 7,
and p(3,41, 2,) < h,. Then observe that z = lim, 2, is a c.p. of (x.).

The last theorem in this section concerns a certain class of Banach sequence
spaces of which /! is an important example. Let s be the space of sequences
% = (x(n)) of real numbers. If x € sand 0 < @ £ b < 00, denote by (a|x|b)
the element of s whose n-th term is x(n) when ¢ < » < b and 0 otherwise.
The special cases ¢ = 0 and b = o are denoted by (x|b) = (0|x[b) and
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(alx) = (a]x|o) respectively. A sequential norm [7] is a function N from s
into [0, ] such that (1) N is an extended norm, i.e., N has the usual formal
properties of a norm but can be infinite; and (2) for every x € s, N(x|n) < o
for every n and N(x) = sup, N(x|n). Then B(N) = {x € s : N(x) < o0} is
regarded as a Banach space with norm N, and

C(N) = {x € B(N): N(n|x) >0asn— 0}

is a subspace. A sequential norm N is said to be balanced if for any x, y € s
the inequalities |x(n)| < [y(n)], n =1, 2, ..., jointly imply N(x) < N(y).

Definition. A balanced sequential norm NNV will be said to have the Archi-
medean property if, for all positive real numbers £, K, there exists an integer m
such that N(x) > K for every x € s which can be written as a sum x = x; +
...+ %, where (1) each N(x;) > k, and (2) the x; have pairwise disjoint
supports. Here, by the support of x;, we mean {z : x,(n) # 0}.

It should be clear that the Archimedean property implies B(N) = C(N).
Note also that the usual /! norm has this property.

TuEOREM 4. If N 1is a balanced sequential morm having the Archimedean
property, then B(N) is netwise c.p. complete.

Proof.Letx = (x,) beaboundednetin B(N)andletr = inf {R(z):z € B(N)}.
Let (z,) be a sequence in B(N) such that R(z,) — r. Since (z,) could be re-
placed by a subsequence, we can assume that (z,) converges in each coordinate
to some w € s. Since N(w|m) = lim, N(z,/m) for each m, and since (z,) is
bounded, we know w € B(N). We shall show w is a c.p. of (x,), assuming
without loss of generality that w = 0. By induction, define a sequence (w,) of
points in B(N) and an increasing sequence (a,) of positive integers such that
(1) w, = (a,|wy|d,+1), and (2) there exists some m(n) so N(w, — zym) < 27"
and R(Znm) < r + 27" This is easily done since for given a,, taking m(n)
large enough will ensure N(znmla,) < 47", and then, since B(N) = C(N),
there exists a,y1 > a, such that N(a,11]2mem) < 47" Thus we may take w, =
(@n|Zm@my|@ns1). Note that lim, R(w,) = 7, because of (2), and that, because of
(1) and the fact that N is balanced,

N(xa — w,) Z N((%alty) + (€441]%a)) 2 N(%a) — N(an|%al@nsr).

Thus if there were to exist a positive number £ < R(0) — r, then for any
positive number K, however large, we could find » as in the above definition
and assert that frequently one finds x, satisfying each inequality.

N(dilxalai+l) 2 N(*Xa) — N(xa — wy)

for m consecutive values of 7, and hence satisfying N(x,) > K. Since (x,) is
assumed bounded, we must therefore conclude that R(0) = r and so (x,) has
w = 0 as a c.p.
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COROLLARY. The sequence space I' is netwise and hence setwise c.p. complete.

The corollary answers a question left open in [2]. We have not settled the
question, by the way, as to whether /! has the chained exchangeability property.
Certain related questions can be answered, however, by considering the
balanced sequential norm N, defined by

N(x) = (lell® + [lx]f)"72.

This sequential norm N is equivalent to the /! norm on B(N) = I' and, be-
cause N also has the Archimedean property, B(V) is still c.p. complete. How-
ever, Calder, et al. 2] prove that, for Banach spaces having the chained ex-
changeability property, strict convexity implies uniform convexity. Hence
B(N) lacks the chained exchangeability property, since it is obviously strictly
convex. As a matter of fact, B(NV) is uniformly convex in every direction, as
defined in [2]. Hence the example also shows that uniform convexity in every
direction and setwise c.p. completeness do not jointly imply reflexivity. This
question was also raised in [2].

3. Banach spaces lacking c.p. completeness. A rich source of examples
is provided by the following.

THEOREM 5. Let N be a balanced sequential norm for which B(N) # C(N).
Suppose also that for each non-zero x € B(N), N(x) is strictly greater than
T(x) = lim, N(n|x), which is the distance of x from C(N). Then neither B(N)
nor C(N) is sequentially c.p. complete.

Proof. Take any point w € B(N) such that w ¢ C(N), i.e.,, T(w) > 0, and
set x, = 2(w|n) € B(N). Suppose z € B(N) is a c.p. of the sequence (x,) and
note that R(z) cannot be greater than T'(w) = lim,, N(m|w) because

N(m|w) = lim sup N(x, — x, — (m|w)) = R(x,, + (m|w)).

Since R(2w) = 27T (w), we know z # 2w and therefore
T(z — 2w) < N(z — 2w) = lim N((z — 2w)|n)

< limsupN(z — x,) = R(z) = T'(w).

Since T inherits the homogeneity of NV and the triangle inequality, it follows
that

TG =2TQRw) — TQ2w — z) > T(w).
On the other hand
T(Z) = T(z—xn) éN(Z_xn) = T(w)+fn
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where ¢, — 0, so we have a contradiction. Thus B(N) is not sequentially c.p.
complete. To show that C(N) is not sequentially c.p. complete, consider the
sequence whose nth term is x, = (w|n) € C(N). For any 2 € C(N), R(z) is no
less than lim sup, N((z — w)|n) = N(z — w), which is strictly greater, since
z # w, than 7'(z — w) = T'(w). Since a proper choice of m will make lim sup,
N(x, — (w|m)) arbitrarily close to T'(x), we see that 7'(x) is an unattainable
greatest lower bound for {R(z) : 2 € C(N)}.

COROLLARY. There exists a Banach space whose conjugate is not sequentially
c.p. complete.

Proof. The Banach sequence space given in the example of [6, p. 69] is a
conjugate space, by other results in [6], and the norm is clearly of the type
described in the theorem.

Some related questions are still open. Can the conjugate of a Banach space
always be renormed to attain c.p. completeness? If the conjugate of a Banach
space is separable, is it then c.p. complete?

4. Miscellany. (a) For applications to fixed point theory, as in [1], it is
important to consider more generally a subset K of a metric space X, and a net
x = (x,) with values in X. 4 K-center of x is a point s € K which minimizes
R(z) subject to z € K. See [2] and [5] for some extensions in this direction.

(b) It may be recalled that a Banach space X is Chebychev c.p. complete
if every bounded subset M of X has a Chebychev c.p., i.e., a point z € X for
which sup {p(m, z) : m € M} is minimal. It was shown in [2] that setwise c.p.
completeness implies Chebychev c.p. completeness. We do not know whether
sequential c.p. completeness implies Chebychev c.p. completeness or whether
setwise c.p. completeness implies netwise c.p. completeness. Garkavi [4] showed
that the conjugate of a Banach space is Chebychev c.p. complete. Compare
this result to the Corollary of Theorem 5.
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