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Slow-wave coplanar waveguides based on
inductive and capacitive loading and
application to compact and harmonic
suppressed power splitters
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In this paper, a slow-wave transmission line implemented in coplanar waveguide technology, based on simultaneous inductive
and capacitive loading, is presented for the first time. The shunt capacitors are achieved by periodically etching transverse
strips in the back substrate side, connected to the central strip through metallic vias. The series inductors are implemented
by etching rectangular slots in the ground plane. The effect of these reactive elements is an enhancement of the effective
shunt capacitance and series inductance of the line, leading to a significant reduction of the phase velocity (slow-wave
effect). Consequently, the guided wavelength is also reduced, and these lines can be applied to the miniaturization of micro-
wave components. Moreover, due to periodicity, these artificial lines exhibit stop bands (Bragg effect) useful for spurious or
harmonic suppression. A compact harmonic suppressed power splitter, based on a slow wave 35.35 V impedance inverter, has
been designed and fabricated in order to demonstrate the potential of the proposed approach. The length of the inverter is 48%
the length of the conventional counterpart, and measured power splitting at the first (3f0) and second (5f0) harmonic frequen-
cies is rejected more than 49 and 23 dB, respectively.
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I . I N T R O D U C T I O N

Slow-wave transmission lines are artificial lines exhibiting
small phase velocity as compared with ordinary lines [1, 2].
This slow-wave effect is typically achieved by externally
loading a host line with reactive elements, including distribu-
ted [3–10] or lumped/semi-lumped (i.e. electrically small)
components [11–34]. Most realizations of slow-wave trans-
mission lines based on lumped or semi-lumped components
use periodic capacitive loading [11–24]. By periodically
loading the host line with shunt capacitors, the effective cap-
acitance of the line is enhanced, and therefore the phase vel-
ocity is reduced. Alternatively, series connected inductances
have been used as a means to achieve the slow-wave effect
(in this case resulting as consequence of the enhancement of
the effective line inductance) [26–29]. Obviously, by replacing

the ordinary lines with slow-wave artificial lines exhibiting the
required characteristic impedance and electrical length at the
design frequency, it is possible to substantially reduce the size
of the microwave components. Additionally, if the slow-wave
transmission lines are periodic, it is possible to suppress
undesired spurious or harmonic bands by virtue of the
Bragg effect, related to periodicity and providing stop bands
in the transmission response of the artificial lines [2, 35, 36].

The implementation of slow-wave transmission lines with
simultaneous inductive and capacitive loading is less
common [32, 37, 38]. The presence of both reactive elements
is useful in order to achieve further levels of miniaturization.
Moreover, further design flexibility can be achieved due to
the presence of both reactive elements. In this paper, we
report a slow-wave transmission line implemented in coplanar
waveguide (CPW) technology by loading the line with capaci-
tive and inductive elements. The shunt capacitors are imple-
mented by means of transverse strips, etched in the back
substrate side of the CPW, similar to the work presented in
[39]. The series inductive elements are implemented by
etching rectangular slots in the ground plane, following the
approach first presented in [28] by some of the authors.
Then these lines are applied to the miniaturization and har-
monic suppression of a power splitter based on a slow-wave
impedance inverter.
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The work is organized as follows. In Section II, the circuit
schematic and the topology of these lines are reported, and
the expressions providing the electrical length of the unit
cell and the characteristic impedance are derived from
Floquet analysis of periodic structures. The number of cells
necessary to efficiently suppress the harmonic responses in
quarter-wavelength impedance inverters (later used for the
implementation of a power splitter) is also obtained in this
section. Section III is focused on the synthesis of a 35.35 V

slow-wave impedance inverter. The designed and fabricated
power splitter is reported in Section IV. Finally, the main
conclusions are highlighted in Section V.

I I . S L O W - W A V E T R A N S M I S S I O N
L I N E : T O P O L O G Y , C I R C U I T
S C H E M A T I C , A N D A N A L Y S I S

The topology (unit cell) and circuit schematic of the proposed
slow-wave CPW transmission lines are depicted in Fig. 1. The
host line is described by the characteristic impedance Z0, and
by the electrical length (kl), where k is the phase constant and
l is the total (physical) length of the unit cell. The loading
reactive elements are the series inductance, Lls, and the
shunt capacitance, Cls. Losses are excluded in this model.

The unit-cell electrical length, bl, and characteristic imped-
ance, ZB, of the loaded line are given by [2, 40]:

cos(bl) = A (1)

and

ZB = B��������
A2 − 1

√ , (2)

where A and B are the first row elements of the transmission
ABCD matrix of the two-port unit cell (note that expressions
(1) and (2) are valid as long as the structure is symmetric with
regard to the midplane between the input and the output ports).

The circuit schematic of Fig. 1(b) is composed by the
cascade of five simple two-ports, consisting of shunt

capacitors (external two-ports), series inductor (central
two-port), and transmission line sections (intermediate two-
ports). The ABCD matrix of the whole structure is given by
the product of the individual matrices of each constitutive
two-port, given by:

[A]L = 1 Lvj
0 1

( )
(3a)

[A]C = 1 0
Cvj 1

( )
(3b)

[A]TL =
cos(kl) jZ0 sin(kl)
j

Z0
sin(kl) cos(kl)

⎛
⎝

⎞
⎠, (3c)

where the subscripts L, C, and TL are used to differentiate the
ABCD matrices of a series inductance, L, shunt capacitance, C,
and transmission line section with electrical length kl and
characteristic impedance Z0, respectively. From expressions
(3), the ABCD matrix of the two-port of Fig. 1(b) can be
easily inferred, and expressions (1) and (2) are found to be:

cos(bl) = cos(kl) − Lls

2Z0
+ ClsZ0

2

( )
v sin(kl)

− LlsCls

2
v2 cos2(kl/2),

(4)

ZB = −jB
sin(bl) ;

Z0 sin(kl) + vLls cos2(kl/2)
sin(bl) , (5)

where v is the angular frequency. The unit-cell electrical
length, bl, and characteristic impedance, ZB, of the loaded
lines are design parameters, given by the specific application.
An additional bound for the four unknowns (Z0, kl, Lls, and
Cls) is given by the so-called slow-wave ratio, swr, defined by

swr = vpL

vpo
= v/b

v/k
= kl

bl
, (6)

where vpl and vpo are the phase velocities of the loaded and
unloaded lines, respectively. The swr is a fundamental param-
eter determining the miniaturization level. Theoretically, the
physical length of the slow-wave transmission line, as com-
pared with one of the ordinary lines, is dictated by the swr.
However, the reactive elements loading the line have finite
size and, hence, the length reduction given by the swr is not
achievable in practice.

Note that once bl and swr are set to a certain value (the
former given by design specifications and the latter dictated
by the compactness level required), kl is given by (6).
However, the three remaining parameters characterizing the
unit cell of Fig. 1(b), i.e. Z0, Lls, and Cls, are not univocally
determined by equations (4) and (5). As Z0 increases, Cls

increases and Lls decreases (see Fig. 2). Hence, a tradeoff is
necessary in order to avoid extreme values of Lls and Cls.

Another important parameter is the number of cells of each
transmission line section under consideration, N. This

Fig. 1. Topology (unit cell) (a) and circuit schematic (b) of the slow-wave
CPW transmission line under consideration.
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parameter determines the bandwidth and position of the stop
band of the periodic structure, and is therefore relevant in
applications where spurious or harmonic suppression is
desired. Of particular interest is the cutoff frequency of the
slow-wave transmission line, which corresponds to the onset
of the stop band. This frequency can be determined from
(4). Let us consider that the required electrical length of the
slow-wave transmission line is u, and that such line is imple-
mented with N unit cells (i.e. bl ¼ u/N). In the limit of the
first transmission band, bl ¼ p (just above this frequency b

is purely imaginary). Therefore, the cutoff frequency, fC, can
be inferred from the first frequency satisfying:

−1 = cos swr
u

N
v

v0

( )
− Lls

2Z0
+ ClsZ0

2

( )
v sin swr

u

N
v

v0

( )

− LlsCls

2
v2 cos2 swr

u

2N
v

v0

( )
(7)

and note that this frequency depends on N, as anticipated.
Inspection of (7) reveals that this equation has multiple solu-
tions. In particular, the frequencies satisfying

swr
u

N
v

v0
= (2n + 1)p,with n = 0, 1, 2, ... (8)

correspond to the upper limits of the multiple stop bands that
these periodic structures support. The solution that results by
considering n ¼ 0 provides the upper limit of the first stop
band, the one of interest, i.e.

vs = 2pfs =
Nv0p

swr · u . (9)

For which concern the lower limit of that band, fC, it is not
possible to obtain it analytically from (7). Despite the fact that
such frequency can be solved numerically, it can be estimated
from the approximate lumped element model of the structure,
given in Fig. 3, namely [2]

fC = 1

p
�������������������
(L + Lls)(C + Cls)

√ . (10)

Note that the validity of this approximation improves as
the loading reactive elements increase as compared with the
element values describing the host line (L and C), as discussed

in [2]. Since large element values are necessary to achieve
small slow-wave ratios, swr, it follows that the estimation of
fC from the lumped element model is reasonable in applica-
tions where high compactness levels are pursued.

According to the lumped element circuit model, the elec-
trical length of the unit cell can be expressed as

bl = u

N
= 2pf0

�������������������
(L + Lls)(C + Cls)

√
. (11)

Consequently, the cutoff frequency and the design fre-
quency are related by

fC

f0
= 2N

u
. (12)

Expression (12) is fundamental in order to determine the
number of cells, N, necessary to efficiently suppress spurious
or harmonic bands. For quarter-wavelength impedance inver-
ters, with u ¼ p/2, and devices based on it, the first harmonic
band appears at 3f0. This means that (12) must be smaller
than 3 if the first harmonic band must be suppressed, and, as
a result, N ¼ 1 or 2. In principle, the preferred solution
should be N ¼ 2 for two main reasons: (i) fC is more separated
from f0, avoiding the alteration of the response in the region of
interest, and (ii) the stop band bandwidth is larger since,
according to (9), fs is also larger with N ¼ 2. Nevertheless,
the frequency given by (9) with N ¼ 2 is typically very large,
and the predictions of the model of Fig. 1 in the vicinity of
that frequency do not match with the responses of any
planar implementation of the structure, since the lumped ele-
ments Lls and Cls do not provide a good description of the semi-
lumped (electrically small and planar) components that are
typically used (transverse strips for the capacitors and slots in
the ground planes for the inductors, in the present work,
based on slow-wave CPWs). Thus, in any practical scenario,
the upper frequency of the stop band inferred from (9) is over-
estimated. Despite of that fact, the harmonic suppression effi-
ciency improves by choosing N ¼ 2. Since the device
proposed in this paper, a compact and harmonic suppressed
power splitter, is based on an impedance inverter, the
number of cells of the constitutive slow-wave transmission
line (acting as impedance inverter) is N ¼ 2.

I I I . S Y N T H E S I S O F T H E
S L O W - W A V E I M P E D A N C E
I N V E R T E R

The slow-wave impedance inverter under consideration, to be
later applied to the design of a compact power splitter, has an
impedance of ZB ¼ 35.35 V, and, obviously, an electrical
length of u ¼ 908 (the considered operating frequency has
been set to f0 ¼ 1 GHz). According to the previous section,
the number of cells of the inverter is set to N ¼ 2; consequently,
bl ¼ 458. We have set the slow-wave ratio to swr ¼ 0.4, and,

Fig. 2. Variation of Lls and Cls with Z0 that result from the solution of (4)–(6)
with bl ¼ 458, ZB ¼ 35.35 V, and swr ¼ 0.4.

Fig. 3. Lumped element equivalent circuit of the unit cell of Fig. 1.
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therefore, kl ¼ 188. Note that the remaining unknowns, Z0, Cls,
and Lls, are not unequivocally determined from (4) and (5). We
have set the characteristic impedance of the host line to Z0 ¼

35.35 V, providing the following reactive values: Cls ¼

2.30 pF and Lls¼ 2.30 nH, which are easily implementable in
CPW technology. Nevertheless, the variation of Cls and Lls

with Z0 is depicted in Fig. 2, from which it follows that by
choosing Z0 ¼ 35.35 V, extreme reactive values are avoided.

Once the element values of the circuit of Fig. 1(b) are deter-
mined, the next step is the generation of the layout. As men-
tioned in the introduction, our aim in the paper has been the
implementation of the inverter (and the subsequent power
splitter) in CPW technology by loading the line with inductive
slots in the ground plane and capacitive transverse strips in
the back substrate side (the latter connected to the central
strip of the CPW by means of vias). To this end, we have inde-
pendently determined the slot dimensions providing the
required inductance values, as well as the dimensions of the
transverse strips necessary to achieve the necessary shunt cap-
acitance. Nevertheless, some post-optimization has been
necessary to adjust the characteristic impedance and electrical
length to the design values at the operating frequency. The
layout of the unit cell, as well as the characteristic impedance
and electrical length are depicted in Fig. 4. It can be appre-
ciated that the required characteristic impedance (ZB ¼

35.35 V) at f0 is achieved and the electrical length of the
unit cell is roughly the nominal value of 458 (thus providing
an electrical length of 908 for the two-cell, i.e. N ¼ 2, imped-
ance inverter). The considered substrate is Rogers RO3010
with thickness h ¼ 1.27 mm, dielectric constant 1r ¼ 10.2,
and loss tangent tand ¼ 0.0023.

I V . D E S I G N E D A N D F A B R I C A T E D
S L O W W A V E S P L I T T E R

The layout of the designed slow-wave power splitter is depicted
in Fig. 5, where it is compared to the layout of the conventional

CPW implementation. The simulated frequency response of
both structures, inferred from Keysight Momentum, can be
seen in Fig. 6. It can be appreciated that the response of the
slow-wave power splitter is roughly the same than one of the
ordinary splitters in the region of interest (vicinity of f0).
However, the first (at 3f0) and second (at 5f0) harmonic
bands of the conventional splitter are significantly suppressed
in the slow-wave implementation.

The designed slow-wave power splitter has been fabricated
by means of a LPKF-H100 drilling machine. The photograph
is depicted in Fig. 7, whereas the measured response, inferred
by means of the Keysight PNA 5221A vector network analyzer,
is shown in Fig. 8, where it is compared to the simulated

Fig. 4. Layout (a), characteristic impedance (b), and electrical length (c) of the inverter unit cell. Dimensions are: Lw ¼ 3.20 mm, Ww ¼ 4.9 mm, LC ¼ 1.7 mm,
WC ¼ 7.14 mm, w ¼ 3.2 mm, s ¼ 0.32 mm.

Fig. 5. Layouts of the slow-wave (a) and ordinary (b) CPW power splitters.
These layouts are drawn to scale for easy comparison. Relevant dimensions
(i.e. inverter lengths) are: L′ ¼ 13.20 mm and L ¼ 27.27 mm.
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response. The agreement between both responses is very good.
The measured matching at f0 is S11 ¼ 235 dB, whereas the
measured power splitting is S21 ¼ 23.3 dB and
S31 ¼ 23.2 dB. These values are good, with power splitting
very close to the ideal value of 23 dB. Concerning the filtering
capability of the designed slow-wave splitter, the measured
rejection levels at the harmonic frequencies are better than
49 dB (at 3f0) and 23 dB (at 5f0).

Concerning dimensions, it is remarkable that the length of
the slow-wave inverter used to implement the splitter is 48%
the length of the ordinary counterpart. Obviously the form
factor in the proposed slow-wave inverter is worst as com-
pared with one of the conventional inverters, i.e. the new
inverter is wider, due to the inductive slots etched in the
ground plane. Nevertheless, the key parameter for the splitter
in terms of size is the inverter length, since the transverse
dimensions of the whole splitter are dictated by the output
access lines.

Compact power splitters implemented by means of
left-handed or composite right- and left-handed lines with

similar size reduction to the one achieved in this paper have
been reported [41, 42]. In [41], the bandwidth of the reported
splitter is smaller than one of the conventional counterparts,
contrary to the splitter reported in this paper, where band-
width is very similar to one of the conventional splitters, as
Fig. 8 indicates. Moreover, the splitter in [41] does not have
harmonic suppression capability. With regard to the splitter
of [42], size reduction of the constitutive lines is comparable.
However, the device in [42] is focused on dual-band function-
ality, and for this reason, comparing device performance is not
significant in this case.

V . C O N C L U S I O N

In conclusion, a CPW slow-wave power splitter with reduced
size and harmonic suppression capability has been presented
in this paper. Size reduction and harmonic suppression has
been achieved by implementing the 35.35V quarter-wavelength
impedance inverter, necessary to achieve the power division by
the considered topology, by means of a capacitively and induct-
ively loaded slow-wave CPW transmission line. The series
inductors have been implemented by means of rectangular
slots, etched in the ground plane, whereas the shunt capacitive
effect has been achieved by etching transverse strips in the back
substrate side, connected to the central strip of the CPW line
through metallic vias. The device has been fabricated, and the
measured response has shown that the device functionality at
the design frequency has been achieved, with very similar
response to one of the ordinary CPW implementation in the
region of interest. However, because the Bragg effect is asso-
ciated with periodicity, a band gap in the inverter response
opens, and this has been used to reject the first harmonic
bands of the designed power splitter. The proposed structure
is a multifunctional device with power splitting and filtering
capability simultaneously, of interest in applications where
size is a critical aspect.
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