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AN EXTENSION OF M. RIESZ'S MEAN VALUE 
THEOREM FOR INFINITE INTEGRALS 

B. CHOUDHARY AND ASHOK KUMAR 

1. Introduction. Isaacs [4] has proved the following theorem. 

THEOREM A. If 0 < a < 1 and 

r t*-\(t)dt 

is convergent, then for u < w, 

a.!» (a) Jw r(«) uf-^dt 

< ess. bound. 
WKV<OD 

h r « - *T-\w T(a) 

In the case where g (t) = 0 for t > c}c finite, this becomes Riesz's Inequality. 
The object of this note is to extend Theorem A (in the case of absolute 

convergence) by replacing the function ta~1/T(a) by a general function G(t). 
The role of the related function / ~ a / r ( l — a) is then played by a function 
H(t) such that 

(1.2) fG(y t)H(t)dt = 1 , for y > 0 
= 0, for y = 0. 

A similar extension of Riesz's inequality has been given by Bosanquet [1]. 
In [2], Bosanquet has shown the existence of more than one pair of functions 

G{t) and H(t) which satisfy (1.2) as well as the conditions laid down in our 
theorem in section 3 below. 

2. Lemmas. In order to prove our theorem we need a few lemmas. The 
proof of Lemmas 1-5 is given in [1]. 

LEMMA 1. If G(t) and H(t) are positive for t > 0, and satisfy (1.2), and if 
R(i) 6 L(c, x), where x > c, then 

J *x nx pu 

R{t)dt = G(x - u)du I H(u - t)R{t)dt, 
c *J c *Jc 

the inner integral existing for almost every u in (c, x). 
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RIESZ'S MEAN VALUE THEOREM 1017 

LEMMA 2. IfG(t) is positive for t > 0, G(t) Ç L(0, x - c) andR(t) 6 L(c, x), 
where x > c, then 

J *x s*t r*x pu 

G(x — t)dt I R(w)dw = \ du \ G(u — w)R(w)dw1 
c *J c J c J c 

the inner integral on the right existing for almost every u in (c, x). 
LEMMA 3. If G(t) is continuous for t > 0, and R(t) £ L(b, c), where b < c, 

then the function 

f(w) = fbG(t- w)R(t)dt 

is continuous for w < b. 

LEMMA 4. If G{t) is continuous for t > 0, G(t) £ L(Q,y), y > 0, and R(t) is 
bounded in every finite interval (c, x) then the function 

h(x) = j G(x - t)R{i)dt 

is continuous for x > c. 

LEMMA 5. If G(t) is decreasing and positive for t > 0, and G(t — x)R(t) Ç 
L(a, b), where x < a, then R(t) Ç L(a, fr). 

LEMMA 6. Let G(t) and H(t) be decreasing and positive for t > 0, and let (1.2) 
/wZd. Then if H(t) —» A > 0 as t —> &> we have 

(2.1) lim f G(w)^ = 4» 

and conversely. 

Proof. If 0 < € < A/2, choose k > 0 so that 4 - € < # ( / ) < -4 + € for 
t > k. 

Write, for x > k, 

(2.2) 1 = f*G(x - t)H(t)dt = y j + j J G(x - t)H(t)dt 

= h + U. 
Then, first 

J +x—Jc 

G(u)du and h > 0. 
o 

Therefore, from (2.2), it follows that 

X X—fc 

G(u)du g 2/A, iorx > k> 
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and hence 

J G(u)du 
o 

is convergent. 
Then, since G(u) is positive and decreasing, it follows that G(u) must —> 0 

as u —> °°. Hence 

J ix—k 

G{u)duy forx > k. 
o 

Thus 

îïm J G(u)du ^ 1/(A - e), whenever 0 < e < A/2. 
X->œ Jo 

Since e is arbitrary, we have 

ïïm I G{u)du ^ 1/A. 
x-*x> Jo 

Again, since 

J *x—k 

G(u)du, 
0 

it follows that 

lim I G(u)du ^ 1/A, 
Jo 

which completes the proof of (2.1). 

Conversely, if (2.1) holds, then H(t) can only tend to A. 

3. The main theorem. 

THEOREM. Let G(t) and H(t) be decreasing and positive for t > 0, and satisfy 
the relation (1.2). Let G(t), H(t) and H' (/) be continuous. If g(t) £ L(£, T)tfor 
every T > £, and the integral on the left of (3.1) converges absolutely at the upper 
limit, then for x < £, 

(3.1) \ \ G(t - x)g{t)dt S ess. sup. I I G(t - y)g(t)dt 
I J$ I vett,œ) I Jy 

Proof. We first establish the formula 

(3.2) P G(t - x)g(t)dt = rK(xfy)dy (~ G(t - y)g(t)dt 

for x < £, where i£(x, y) is a certain function of x and y. 
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This will be true if and only if 

(3.3) jœG(t - x)g(t)dt = Jœg(t)dt j G(t - y)K(x,y)dy, 

provided the inversion of the repeated integral is justified. Again (3.3) will be 
established if we show that G(t — x) can be expressed in the form 

(3.4) G(t - x) = J Git - y)K(x, y)dy 

for every x < £, provided at least one side of (3.3) exists. But the left-hand 
side of (3.3) exists by hypothesis. 

To find the necessary form of K(x, y), we assume first that (3.4) does hold. 
It follows from (3.4) and Lemma 5 that K(x, y) is integrable with respect to 
y in (£, t), whenever x < £ < t. Therefore, by Lemma 1 and (3.4), we obtain 

(3.5) J H(w - t)G{t - x)dt = J K(x,y)dy 

for every x < £ < w. 
For each x < £, (3.5) is differentiate with respect to w for almost every 

w > £ (the exceptional w's depending on x). Thus, by (1.2), 

K(x, w) = - J H'(w - t)G(t - x)dt. 

Now define K(x, w) by the equation 

(3.6) K(x, w) = - I H'(w - t)G{t - x)dt (x < £ < w). 

With this choice of K(x, w) the exceptional sets disappear, since the last 
integral is continuous with respect to w for w > £, by Lemma 3. I t also follows 
from (3.6) and the hypotheses of the theorem that K(x, w) ^ 0 for x < £ < w. 
Further K(x, w) is continuous with respect to x, by Lemma 4, since we know 
that Hf (w — t) is continuous for / ^ £, if w > £. 

We must now show that (3.4) does hold, with our definition of K(x, w). 
For x < £ < w, since K{x, y) ^ 0 in £ < y ^ w, 

PK(x ,y )dy = - Cdy f H'{y - t)G(t - x)dt 

= - f G{t - x)dt J"H'(y - t)dy 

= - f G(t - x){H(w -t) - # (£ - t)}dt, 

Jx 
which is finite. Hence K(x, y) is integrable over the interval £ ^ y ^ w, and 
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we obtain, for x < £ < w, 

f K(x, y)dy = 1 - f H(w - t)G{t - x)dt 

= I H(w - t)G(t - x)dt 

which is (3.5). 
It follows, for x < g < w, that 

f*w nu 

I G(w — u)du I H(u — t)G(t — x)d£ 

r f*u 

G(w — u)du I iC(#, 3̂ )rfy. 

Inverting the order of integration on the left-hand side, and applying Lemma 
2 to the right-hand side, we get 

I G(f - x)dt I G(w — u)H(u - t)dt 

dv I G(v — y)K(x, y)dyf 

i . e . , 

(3 } I Git - x)dt = l du I G(u - y)K(x,y)dy. 

Hence 

(3.8) G(w - x) = J G(w - y)K(pc, y)dy, 

since the left-hand side is continuous with respect to w, for w > x, by hypothe­
sis, and the right-hand side is continuous for w > x, by Lemma 4. 

Thus (3.3) is established. The formula also holds with g replaced by |g|, 
since g may be replaced by |g| in our hypothesis. Since the functions G and K 
are non-negative, it follows that the right-hand side of (3.3) is absolutely 
convergent. This justifies the inversion of the repeated integral and hence 
(3.2) is proved. 

Finally, (3.1) follows from (3.2). For (3.2) implies that, if x < f, 

I G(f - x)g{t)dt S WttXess. sup. G(/ - y)g(t)dt , 

where 

J»oo /'œ nw 

\K(x,y)\dy= K(x, y)dy = lira K(x,y)dy. 
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Since, by (3.5), 

(3.11) J K(pc, y)dy = J H(w - t)G{t - x)dt < 1, 

(3.1) follows from (3.9)-(3.11). 

4. The factor W^tX. Since H(t) is positive and decreasing, it either tends to 
zero or to a positive limit as t —* o°. 

(i) Suppose that H(t) -> 0 as t -> oo# Then, if x < £ < w, 

K(x,y)dy = I - I H(w - t)G(t - x)dt-+ 1 a s w - » o o , 

so that 

W*.x = 1. 

(ii) Suppose that H(t) -> A > 0 as / -+ oo, Then (4.1) implies that 

(4.2) J^.s = 1 - A f GM<^. 
Jo 

It follows from Lemma 6 that, in this case, 

1 > WP,X = 1 - A f G(u)du > 0. 
*/o 

We now give two examples, the purpose of which is to show that case (ii) 
can occur. In the following examples we shall write k(s) for the Laplace 
transform of K (i). 

Example 1. If H(t) = A (1 + *•-* H ) , (4 > 0), then H(t) -> 4 as 
t-^w,h(s) = A (s-1 + H ) , sft(s) = 4 (1 + s*), and (formally) 

ave, for 5 > 1, 

Hence 

G(0 = ^ L F T i ) (*"* + e% J'u^e^du) - e'j 

•i.t nos 

m S. »-'"« 2V(l 

Clearly (put t — u — x), G(t) is decreasing and G it) is 0(t~%) for small t 
and 0(t~zn) for large /. Hence g(s) exists for s > 0, and by analytic continua­
tion g (5) = 1/4(1 + 5*) for 5 > 0. 
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In this case (4.2) becomes 

(4.3) WilX = 1 - -~^r J ye' p u-"*é-*du)il < 1 

since the integrand in (4.3) is positive. 
Further, it can easily be verified that this pair of functions G{t) and H(t) 

indeed satisfy (1.2). 

Example 2 [2, Example 5]. If G (J) = H r ' / r ( | ) , then 

1 
«(*) = (s + 1) 

1
 1th(s) = ( ^ + 1 ) V 1 = + 

1 

(s + iy^ S(s + iy 
Therefore 

H(t) = ^jrArh-' + r(i) — I w 2e~udu) 

(4.4) 
i + 

1 I °° - 3 / ? -uj 

2T(iJ J , " g **" 
It is clear from (4.4) that i?(£) decreases to 1. 
In this case also (1.2) is satisfied and W%tX < 1. 

5. The best possible factor. Next, we consider whether the factor W$yX is 
best possible. We have obtained the inequality 

I C°° I Cœ 

G(t - x)g(t)dt ^ Wt,xess. sup. I G(* - y)g(t)dt 
By taking g(t) = 0 in (F, oo), (5.1) becomes 

I r r I I r Y 

G(t - x)g(t)dt S Wt,xess. sup. G(t- y)g(t)dt 

From Theorem 7(b) [1, with R(u) — 1], we have 

\ CY I \ CY 

(5.2) G(t- x)g(t)dt S Ws,x, Y ess. sup. I G(t — y)g(t)dt 

where 

W^§ y = J G(* - x)#(F - /)d/f 

and equality occurs in (5.2) if and only if 

g(t) = £ T ( F - 0 i n t t , F). 

But 

Wt,s,Y-+WttX a s F - ^ o o . 
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Hence WçtX is best possible, i.e., cannot be replaced by a smaller number. 

6. Equality. We deduced from (3.2), since K(x, y) è 0, that 

G(t - x)g{t)dt\ S K(x,y)\ G(t-y)g(t)dt\dy 

^ J K(x,y)dy 

I G(t - y)g(t)dt . 
„^.~, J v I 

Therefore 
I r*00 I I C°° I 

(6.1) L G(t - x)g(t)dt S ^ , * e s s . sup. \ \ G(t - y)g{t)dt . 

Now equality occurs in (6.1) if and only if 

J~ G(t - y)g(t)dt 

is of constant amplitude for almost every y > £, and 

f° G(t - y)g(t)dt\ 

equals its ess. sup. in (£, oo), i#e#) if a n d o n l y if 

(6.2) f(y) = f°°G(* - y)g(t)dt = C p.p. in ft.oo), 

where C is a complex constant. 
If H(0 - > 4 > 0 as *-> oof and g(J) = 4 C , then (6.2) is satisfied, since 

G ft - y)dt = C, i.e., AC G(u)du = C, 
y ^ o 

by Lemma 6. 
Hence g(t) = AC is sufficient for equality in (6.1), if lim H(t) = 4̂ > 0. 
We have not been able to settle whether g(t) = AC is also necessary for 

equality in (6.1) under the hypotheses of our theorem. However we get the 
desired result under the additional assumptions in the following theorem [3]. 

THEOREM B. Assume that 
(i) G(t),— Gf (t), Hit) —H' (t) are positive and continuous for t > 0, and satisfy 

I G(y - t)H(t)dt = lfor y > 0, = Ofor y = 0; 
t / o 

(ii) \G'(t)\/G\t) is non-increasing and is 0(t~l) as t—> °° ; 
(iii) \H'(t)\/H(t) is non-increasing and is Oit-1) as t —> °°. 
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If f(x) is defined for almost all x > 0, and there is a function g(x) such that 

J»oo 

G(t- x)g(t)dt p.p. for x > 0, 
X 

then 

(6.3) g(x) = lim I - — I H(u - x)f{u)du) p.p. for x > 0. 
tt>->oo \ dx J x / 

From (6.2) and (6.3), we get 

g(f) = Clim ( - j x £lf(y - x)dy) 

^6 '4 ) = C lim H(w - *) 

= AC, 

which proves the necessity. 
Now, when H(t) —> 0 as t —» o°, (6.2) cannot hold unless C = 0. For, assume 

that (6.2) holds with C ^ 0. Then, from (6.4) we get g(t) = 0 p.p. which 
contradicts (6.2), since C ^ 0. 

Thus in this case, g (t) = 0 p.p. is necessary and sufficient for equality in (6.1). 

Remark. Excluding the trivial case in which g(t) = 0 p.p., the argument 
given above shows that equality in (6.1) is possible only if 

(6.5) lim Hit) > 0. 

It is worth noting that (6.5) is consistent with the hypotheses of Theorem B. 
In Example 1, this is true. 

We are indebted to Professor L. S. Bosanquet for his valuable suggestions 
and criticisms. We are also grateful to the referee for useful comments. 
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