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Since Beck, Katz, and Tucker (1998), the standard method for modeling time dependence
in binary data has been to incorporate time dummies or splined time in logistic regressions.
Although we agree with the need for modeling time dependence, we demonstrate that time
dummies can induce estimation problems due to separation. Splines do not suffer from
these problems. However, the complexity of splines has led substantive researchers (1) to
use knot values that may be inappropriate for their data and (2) to ignore any substantive
discussion concerning temporal dependence. We propose a relatively simple alternative:
including t, 2, and % in the regression. This cubic polynomial approximation is trivial to
implement—and, therefore, interpret—and it avoids problems such as quasi-complete
separation. Monte Carlo analysis demonstrates that, for the types of hazards one often sees
in substantive research, the polynomial approximation always outperforms time dummies
and generally performs as well as splines or even more flexible autosmoothing procedures.
Due to its simplicity, this method also accommodates nonproportional hazards in
a straightforward way. We reanalyze Crowley and Skocpol (2001) using nonproportional
hazards and find new empirical support for the historical-institutionalist perspective.

1 Introduction

Whether it is the primary focus or not, political scientists are often interested in how the
phenomena they study change over time. For example, are democracies more stable the
longer they have been established? Are congressional incumbents more likely to survive an
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Table 1 Use of splines and time dummies

No hazard (%) Interpret hazard
Splines 88 (96.7) 3 (3.3) 91
Time dummies 24 (85.7) 4 (14.3) 28
112 (94.1) 7 (5.9) 119

election the longer they have been in office? Are two recently warring nations more or less
likely to become embroiled in another conflict as time goes on? In answering questions
such as these, we should first think theoretically about the mechanisms that cause our sub-
ject of interest to change (or not) over time. Furthermore, in our empirical analysis, we need
a method that is flexible enough to allow for a variety of theoretical relationships between
time and the phenomenon being studied.

Increasingly, researchers have access to refined (or higher resolution) versions of event
history data. In one common form of this data, a binary dependent variable represents
whether an event (such as government transition or war occurrence) occurred or not during
some slice of time. First advocated by Beck, Katz, and Tucker (1998), logistic regression
with time dummies or splined time has become the standard method for analyzing this type
of data. Researchers who study a wide variety of topics in international relations, American
politics, and comparative politics have all adopted the Beck, Katz, and Tucker (1998)
(hereafter, BKT) recommendations.

We should be clear in stating from the outset that we completely agree with BKT that
scholars should ““take time seriously.” However, the vast majority of researchers have trea-
ted temporal dependence in binary data models more as a statistical nuisance that needs to
be ““controlled for,” rather than as something that is substantively interesting. Indeed, most
of those who have followed BKT’s advice subsequently ignore temporal dependence in
discussions of empirical results.

Consider Table 1, which summarizes all published articles we found that follow BKT’s
advice on using time dummies or splines.’ We have further classified the citations accord-
ing to whether the authors interpreted the effect of time or not. Table 1 demonstrates that
despite both splines and time dummies being extensively used in every substantive field of
political science, virtually no one actually plots and interprets the hazard. In fact, out of 91
studies that utilize splines, only 3 actually plot and interpret a hazard. The track record for
time dummies is slightly better, but out of 28 studies that utilize dummies, only 4 plot the
hazard. In short, the discipline’s track record shows that rarely is temporal dependence
taken seriously in a substantial way.

What accounts for researchers taking BKT seriously, but not time? We suspect it stems from
the difficulties in either the implementation or interpretation of the two methods they propose.
As we will show, serious practical problems can arise in the implementation of time dummies.
Researchers can avoid those problems by using one of many available spline techniques—
procedures for creating a “smooth” relationship between two variables (here, between the
dependent variable and time). However, most substantive researchers do not seem to under-
stand what splines are. This is suggested in part by the fact that many researchers employ

'We compiled this list by locating all published articles that cited BKT in the Social Sciences Citation Index as of
July 2006. We then went through all the articles to determine whether they implemented either splines or time
dummies and whether they interpreted the hazard.
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Fig. 1 Binary representation of duration data.

the parameters (e.g., “knot” values) that BKT use, regardless of whether they are appropriate
for the researchers’ data. And, as Table 1 shows, the dependent variable’s temporal depen-
dence, controlling for the regressors, is rarely ever discussed when splines are employed.

In this article, we propose a simpler alternative that has advantages in terms of both
modeling and interpreting time dependence: using ¢, 1%, and #* in one’s regression, which
serves as a third-order Taylor series approximation to the hazard.? As we later show, the
cubic polynomial approximation does not cause the same data problems as time dummies.
Moreover, the cubic polynomial is related to splined time but much easier to implement
and to interpret. Indeed, modeling nonproportional hazards is relatively straightforward
with the cubic polynomial approach. In the online Web Appendix to this article, we provide
R and Stata code for both the cubic polynomial and spline approaches.

This article proceeds as follows. In the next section, we briefly discuss the link between
duration models and their binary data equivalents. Following that, we examine the imple-
mentation and interpretation issues with time dummies and splines. Next, we show via
Monte Carlo analysis that our method outperforms time dummies and generally per-
forms as well as splines. Following that, we replicate the original findings in Crowley
and Skocpol (2001) and then extend its analysis using a nonproportional hazards model.
Our nonproportional hazards version provides new, richer empirical support for the theory
of Crowley and Skocpol (2001).

2 Time Dummies for Dummies

The starting point for BKT is the important observation that, increasingly, the binary data
we use in political science is a disaggregated (or less aggregated) form of event history
data. Although BKT refers to this data as binary time-series cross-section (BTSCS) data,
the focus is really on temporal dependence, rather than cross-sectional interdependence.
We similarly focus on the temporal component here.

To help make this more concrete, consider the upper half of the time line of events
displayed in Figure 1. Here, we have three events, denoted by the black dots. The durations,
or time between successive events, are shown along the top: 6, 3, and 5. If we were an-
alyzing duration data, our observations would generally correspond to these, along with the

2Here, “” refers to the time (or duration) since the last event was observed (e.g., war).
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last right-censored observation of length 4. Vast literatures exist on duration (or survival)
analysis (see, e.g., Box-Steffensmeier and Jones [2004]). Rather than reviewing that lit-
erature, we simply point out that there are well-known techniques for modeling temporal
dependence in duration data. Parametric models like the Weibull, log-logistic, or log-
normal allow the analyst to estimate whether the hazard is increasing, decreasing, or non-
monotonic with time. Alternatively, researchers sometimes opt for the (semi-parametric)
Cox model.

Now consider the binary data shown below the time line and denoted as y;. As BKT
notes (and Alt, King, and Signorino [2001] demonstrates), if the data-generating process is
temporally dependent, then the use of a model such as logit with only a linear xf3 spec-
ification is inappropriate since it implies a constant hazard. The question then becomes one
of how to allow for temporal dependence in binary data without being too restrictive con-
cerning the form of that dependence.

As BKT shows, derivation of the binary data version of a Cox model is relatively
straightforward (Prentice and Gloeckler 1978; Katz and Sala 1996; Beck, Katz, and Tucker
1998; Meyer 1990; Narendranathan and Stewart 1993; Cameron and Trivedi 2005, 601-3).
Let us assume the longest duration is T periods. For observation i, let x; be a 1 X k row
vector of k covariate values, f index the time since the last event (i.e., duration so far), and 8
be a k x 1 vector of parameters. If one starts with the assumption of a Cox relative risk
model with hazard

h(t]x;) = ho(t)exp(xif3), (1)

then the equivalent binary data model is a complementary log-log (cloglog) model, which
can be written as

Pr(y; = lx;, x;) = 1—exp(—exp(x;f+xx)), (2)

where x;isa 1 x Trow vector of time dummy values [xy; 1, . . . k73], and aisa T x 1 vector
of coefficients associated with the time dummies.

It is important to note that the “time dummies’ are not just the time variable ¢. Rather,
time dummies are duration-specific fixed effects, where each time dummy represents a par-
ticular duration r € {1, 2, 3, ..., T}. Returning to Figure 1, we have displayed three trans-
posed time dummies below the dotted line. For example, x; will be one whenever r = 1 and
0 otherwise. Similarly, k, will equal one whenever ¢ = 2 and O otherwise. In general, one
needs a k., for each observed value of ¢ in the data (although more about this later). If the
time unit of analysis is the year and the longest duration in the data is ten years, then there will
be ten time dummies. If it is thirty, then there will be thirty time dummies. The researcher can
include all time dummies and drop the constant or include the constant and drop 1 time
dummy. Based on this formulation, it is easy to see that if time dependence is present in
data and it is not modeled, then omitted variable bias is present, which can bias other
coefficients of interest in commonly used binary dependent variable models even when
the omitted variables are not correlated with included variables (Yatchew and Griliches
1985).

The cloglog model in equation (2) has the nice feature that we do not have to assume any
particular hazard shape (e.g., increasing, decreasing, or nonmonotonic). In principle, this
allows consistent f§ estimates, even if the true shape of the hazard is unknown (Meyer
1990). As BKT demonstrates, the logit model very closely approximates the cloglog when
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the probability that y = 1 is relatively low. However, if the percentage of observations for
which y = 1 is relatively high, cloglog and logit can diverge significantly.? One particularly
attractive aspect of cloglog for many researchers is the fact that it is consistent with the
popular Cox proportional hazards model. However, BKT correctly points out that there is
usually no good reason to privilege the cloglog distribution over logit. Therefore, BKT
recommends that researchers use logit (or probit) since they are so widely available. This
is not really an issue anymore since cloglog is now widely available in statistical packages.
Nevertheless, we will maintain the use of logit throughout this article.

2.1 Potential Problems with Time Dummies

The fact that the time dummies model can be derived directly from the Cox model would
suggest that it should be the “go to” model for researchers. However, there are at least two
potential problems with the time dummies: inefficiency and separation. The first problem,
inefficiency, is clear from the preceding explication of the time dummies model: the greater
the number of time periods in the data, the greater the number of parameters that will need to
be estimated. A maximum duration of 30 years in the data will often be represented by 30 time
dummy parameters. Assuming the hazard is relatively smooth, the time dummies approach is
inefficient compared to splines or the cubic polynomial approach—the latter requiring esti-
mation of only 3 additional parameters. Of course, as with any estimation problem, ineffi-
ciency is a matter of degree. It will be worse when the researcher needs to estimate many time
dummies but has a small sample of data. As BKT also notes, inefficiency problems will likely
be negligible when fewer time dummies are estimated or the sample is very large.

The issue of separation is potentially more problematic, especially when the dependent
variable and regressors are dummy variables. In binary data, separation occurs when values
(or ranges of values) of our regressors perfectly determine whether y; is zero or one. In
practice, individual dummy regressors are most often responsible for separation. However,
separation need not be the result of a single variable. In general, data are completely
separated if there exists some vector of coefficients 5, such that for all observations
x; >0 when y; = 1 and x;§ < 0 when y; = 0. Quasi-complete separation holds when these
conditions are replaced by weak inequality, when at least one observation is satisfied by
equality, and the f§ vector is not zero. If neither complete separation, nor quasi-complete
separation hold, then the data are said to “overlap” (Albert and Anderson 1984; Santner
and Duffy 1986).*

These three cases, complete separation, quasi-complete separation, and overlap, are
mutually exclusive. However, only in the case of overlap do noninfinite maximum likeli-
hood estimates (MLEs) exist (Albert and Anderson 1984). If the data exhibit either com-
plete or quasi-complete separation, no MLEs exist and MLE routines will push the value of
the estimated f3 for the offending regressors to o or —oo. Many canned logit/probit pro-
cedures in commonly used software such as Stata will automatically check for separation in
the data and drop any offending variables and observations stating that the variable ““per-
fectly predicts” y in some number of cases. Alternatively, researchers may opt for more

3In the online Web Appendix, we provide Monte Carlo experiments that assess logit’s performance when the data-
generating process is cloglog.

“Even though Albert and Anderson (1984) only deal with the logit case, cloglog and probit are similarly affected.
Data with an ordinal dependent variable can also fall into this classification. See So (1995) for an intuitive and
nontechnical explanation. See Zorn (2005) for examples of overlap versus separation with a continuous regressor.
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Table 2 Separation in binary data with three time dummies

Observation i t K Ko K3 Vi
1 1 1 0 0 1
2 1 1 0 0 0
3 2 0 1 0 1
4 1 1 0 0 0
5 2 0 1 0 0
6 3 0 0 1 1

complicated estimation methods such as penalized maximum likelihood (Firth 1993;
Heinze and Schemper 2002; Zorn 2005).

Table 2 provides a simple example of quasi-complete separation. The table displays
six observations of a binary dependent variable y and three time dummies: x, x5, and
k3. As the time index ¢ shows, the data consist of three durations split into binary data,
where the first duration lasts one period, the second lasts two periods, and the third lasts
three periods.

Consider the first time dummy, x;. We see from Table 2 that there is no value of «; that
perfectly predicts a value of y. x; = 1 is associated with both y = O (observations 2 and 4)
and y = 1 (observation 1). Similarly, x; = 0 is associated with both y = 0 (observation 5)
and y = 1 (observations 3 and 6). Examining the second time dummy, x,, reveals the same
type of overlap between values of x, and y. Now consider 3. Here, x3 = 0 is associated
with both y = 0 and y = 1. However, k3 = 1 is only associated with y = 1 (observation 6).
In other words, k3 = 1 perfectly predicts that y = 1. If we were to conduct logistic re-
gression in a package like Stata, the program would inform us that x5 perfectly predicts
y = 1. Before proceeding with the regression, it would drop 3 from the analysis, as well as
observation 6. If we were to conduct logistic regression using this data, but without check-
ing for separation, we would expect the coefficient on k3 to be pushed toward o, stopping
only due to the default (or user-set) convergence tolerance.

2.2 Separation Issues in Practice

Substantive scholars are interested, of course, in the practical consequences of separation
on our inferences—in this case, concerning the effect of time on the probability of event
occurrence. In that regard, we might ask: (1) Under what conditions are data separation
more likely? (2) What effect does separation (and its remedies) have on our inferences
concerning time?, and (3) Does separation occur often enough in data analyses that we
should really care about it? In later sections comparing time dummies to other techniques
for modeling time, we will provide ample evidence of the effect of separation on inferences
concerning the hazard. In this section, we focus on the first and third issues.

The conditions under which time dummies tend to produce separation were actually
hinted at in Table 2. There, the separation is associated with the dummy 3 for the latest
time period (¢ = 3), which takes the value one in only a single observation. As we will see,
time dummies will tend to be associated with separation when the data generating process
produces a small proportion of very long durations—and in those cases, the time dummies
associated with the separation will tend to be those representing later periods.

In Section 4, we will discuss in more detail a number of Monte Carlo experiments that
were conducted to compare the various techniques examined here (e.g., time dummies,
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Fig. 2 Percent of time dummies dropped due to quasi-complete separation.

splines, cubic polynomial). The Monte Carlo experiments were conducted using various
reasonable examples of decreasing, increasing, and nonmonotonic hazards.’ For the time
being, consider Figure 2, which displays the percent of time dummies needed to be dropped
due to separation in the Monte Carlo analyses. Figure 2a shows the density of the percent of
time dummies dropped under each hazard assumption. In both the decreasing and nonmo-
notonic hazard scenarios, up to 80% of the time dummies are dropped, with averages of
around 45% and 35% dropped, respectively. The increasing hazard case is not nearly as
problematic. Yet, even there, Figure 2a shows that up to 25% of time dummies were drop-
ped in some Monte Carlo simulations.

Figure 2b provides some insight into the results in Figure 2a. Each circle in Figure 2b
displays the percent of time dummies dropped in a particular Monte Carlo experiment as
a function of the maximum duration in the data.® As the graph shows, there is a fairly
straightforward relationship: data sets with larger maximum durations (which require more
time dummies, all else equal) tend to drop more time dummies due to separation. However,
that’s only part of the story. The other part was seen in Table 2. It is not just the presence of
long durations (and therefore more dummies) that is associated with separation but the
presence of long, unique, durations. In the increasing hazard scenario, failure occurs grad-
ually over time but occurs with increasing probability. In contrast, in the decreasing hazard
scenario, failure tends to occur rather quickly for most individuals. However, those that
survive the higher initial hazard are increasingly likely to have long lives since the hazard is
decreasing. Thus, the decreasing hazard is associated with very long, but rare, durations
that create separation problems in binary data with time dummies.

Returning to our first question: when will separation be a problem for time dummies?
The preceding analysis shows that decreasing hazards are likely to create problems for time
dummies. Nonmonotonic hazards may also suffer from similar problems but that will de-
pend on the form of nonmonotonicity (e.g., single-peaked vs. u-shaped parabolas). Of
course, researchers cannot know beforehand what the true hazard is in their data. However,
they can examine their data for possible problems. In that regard, data sets where 7 is not

>The nonmonotonic hazard here is referred to as “nonmonotonic hazard 2 in Section 4. This hazard has a sharp
rise in failure followed by a gradual decrease over time.

SFigure 2b is based on the nonmonotonic hazard. The graphs for the increasing hazard and decreasing hazard
scenarios look similar and are available in the Web Appendix.
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overly large (i.e., n < 10,000) and where the maximum duration is fairly long (e.g., greater
than 15 periods) are likely to suffer from separation.

Finally, do we actually see separation in empirical analyses? A prominent empirical ex-
ample where quasi-complete separation exists is in the reanalysis of the data by Oneal and
Russettin BKT, where 3 of 34 time dummies are dropped, along with 916 observations. Avery
large n of 20,990 explains why the percentage dropped, =~ 0.08, is smaller than what would be
implied by the graphs in Figure 2 for a decreasing hazard, as the chance that we observe all of
the four combinations of the dependent variable and each of the binary regressors should
generally increase with the number of observations. A reanalysis of Palmer, London, and
Regan (2004) reveals much more severe quasi-complete separation issues, with 19 of 39
dummies and 672 of 2975 observations dropped as aresult. Clark and Hart (1998) essentially
perform a robustness check for the findings of Lemke and Reed (1996) by adding time dum-
mies to the original logit specification. However, the use of time dummies in this case is quite
problematic as quasi-complete separation arises in all the models. For instance, in model 5 of
Lemke and Reed (1996), 12 out of 32 total time dummies (37.5%) are perfect predictors of Y
= 1. The consequences of this are not trivial as it is not possible to plot a significant portion of
the hazard plot and 497 of 7031 observations are dropped from the analysis.

Both Monte Carlo results and empirical examples demonstrate that separation is a po-
tentially serious problem that should at minimum give pause to researchers before they
utilize time dummies, especially if relatively long durations occur in their data. One po-
tential solution is not to include the dummies that induce separation but to ‘““smooth’ across
these missing dummies when producing a hazard plot. This approach would produce a sim-
ilar hazard plot in the replication of the study by Oneal and Russett. However, it would be
much less appropriate in any study that resembles Palmer, London, and Regan. Alterna-
tively, researchers can also aggregate adjacent durations to avoid separation. Thus, in the
example provided in Table 2, a researcher would estimate x; and k3, where ., is the sum
of k, and k5. Although either of these suggestions could be helpful, both seem unnecessary
given that neither a cubic polynomial nor a spline suffers from separation issues. Addi-
tionally, we demonstrate below that time dummies also do a poor job relative to a cubic
polynomial or spline in estimating the hazard. This finding is consistent with the point
made by Beck, Katz, and Tucker (1998, 1270) that time dummies perform poorly due
to imprecise x estimates unless N is very large.

3 Love the Spline, Hate the Spliner

The second approach to modeling time dependence that BKT advocates is to use splines. Like
Cox models, time dummies can produce a “bumpy’” hazard plot. BKT, therefore, recommends
the use of natural cubic splines when researchers want a relatively smooth plot of the hazard.
In theory, splines are a powerful tool for creating a smooth function of time (or almost
any variable that is approximately continuous). In practice, there are many different types
of splines (e.g., piecewise linear splines, quadratic splines, natural cubic splines, B-splines),
many of which are available in statistical packages such as Stata, SPSS, and R. An enormous
statistical literature has been generated on the subject of splines. In general, we agree with
BKT that this is a perfectly reasonable approach to modeling time dependence in binary data.

Thatsaid, we saw in Table 1 that mostresearchers employing splines never actually discuss
the effect of time. As we have noted, we suspect this is because splines are a relatively un-
known (and somewhat complicated) technique for most political scientists. Indeed, many
authors are quite upfront about viewing splines as an opaque method that controls for a sta-
tistical nuisance. One author refers to them as ‘““so-called cubic splines” that are used ‘“‘to
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control for any temporal correlation” (Dorussen 2006, 95). Another set of authors criticize the
standard approach as ‘“hiding” important linkages ‘““in the peace-year spline variable”
(Goertz, Jones, and Diehl 2005, 747). Because of the complexity of splines, researchers have
tended to use BKT’s software with its default parameter settings (specifically, concerning
knot placement, more about which later). These default parameter values may be inappro-
priate in many cases and result in biased inferences concerning the hazard.

Explaining the details of all variants of splines is beyond the scope of this article. We
instead refer readers to Keele (2008) for a recent introduction to splines by a political sci-
entist. However, some intuition concerning splines will be helpful for at least two reasons.
First, as Table 1 indicates, existing work on splines does not provide enough detail for users
to comfortably employ splines either in the regression analysis or in plotting the hazard.
For those who want to model time dependence using splines, this section will help re-
searchers understand, implement, and interpret splines in modeling time dependence.
We introduce basic types of splines, relate them to the BKT approach for modeling tem-
poral interdependence, and address issues with splines that practitioners should be aware
of. We also provide (in the Web Appendix) R and Stata programs that researchers can
modify and use to conduct their analyses and then plot the hazards. Secondly, the (much
simpler) cubic polynomial technique we introduce in Section 4 is related to cubic splines.
Although the technique performs just as well as splines in most reasonable situations, it
will be useful for researchers to understand the trade-offs between the two approaches.

3.1 Splines

For our purposes, we can think of a spline as a smoother—a procedure that allows us to
smooth the relationship between two variables, say a dependent variable y and time ¢. Most
splines allow one to specify points in # where the relationship with y changes substantially.
Those points are referred to as “knots.” Fewer knots will lead to a smoother relationship
but may miss important changes in the relationship. Specifying more knots allows for more
changes to be modeled. On the other hand, the greater the number of knots, the less smooth
the relationship. Moreover, the spline may pick up on idiosyncratic changes in the relation-
ship, not general trends.

A key component to all spline techniques is that they generate a set of vectors that are
a function of the independent variable (here time 7) and associated with the knots. These
vectors are referred to as basis vectors and the set of vectors is referred to as a basis matrix.’
A basis is a set of linearly independent vectors, the linear combination of which can span an
entire vector space (i.e., reach any point in that space). Most importantly for substantive
researchers, these basis vectors can be included as regressors in our statistical analysis,
allowing us to estimate a wide array of smooth functions of time.

To illustrate this, let us consider two of the simplest splines: a piecewise linear spline
and a simple cubic spline. Suppose we believe the probability of some event (e.g., war) in
observation i is explained by a set of regressors x; and some smooth function of time s(#;).
We can specify the logit equation for this situation as

_ 1
~ 1+exp[—(xif+s(n).]

Pr(yi = ]|Xi7f)

"Suppose we have some vector space S such that it is possible to express every vector in S as a linear combination
of k (x1, x, . . ., xz) vectors. Then, if the k vectors are linearly independent, the set of k vectors forms a basis for S.
See Searle (1982) for more details.
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For the piecewise linear spline, s(z;) takes the form

s(ti) = oti+ Z k(=1 +» (3)

k=1

where the function (¢; — 7;) + returns the difference between t; and 7, when it is positive, but
equals zero otherwise. The 7, are the k user-specified knots. If one were to use a piece-wise
linear spline (something we do not necessarily recommend), one would include ¢; and the
(t; — )+ vectors as regressors. The i and o coefficients would then be estimated in
the logistic regression. An interesting special case of the piecewise linear spline is when
aknot is placed at each time point in the data. In this case, the piecewise spline is equivalent
to time dummies, and the estimated results are identical.

The simple cubic spline is conceptually very similar:

K

s(t) = oclti+oc2tl.2+ac3t,-3+ Z 0k [(li_’?k)+]3- 4)
k=1

The main differences here are the inclusion of the #; polynomials, as well as the cubed
(t; — 1)+ terms for each knot. Again, if one were to use a simple cubic spline, one would
include ¢;, tiz, and ti3, and the [(t;— ”Ik)+]3 vectors as regressors and then estimate the f§ and o
coefficients via logistic regression.

Commonly used splines, such as the natural cubic spline employed by Beck, Katz, and
Tucker (1998), are just more complicated versions of equation (4), but which have certain
nice properties. For example, natural cubic splines are linear beyond their boundary knots.
B-splines are similar to natural cubic splines but have the nice properties that the basis
vectors will be orthogonal to each other (i.e., no multicollinearity issues) and vary between
0 and 1 (i.e., no numerical instability issues). For the practitioner, the steps to employ these
splines in a regression are the same as above: (1) choose knot locations, (2) use the chosen
spline procedure (with selected knots) on the time variable #; to generate basis vectors, (3)
include those basis vectors as regressors, and (4) estimate coefficients for the substantive
regressors and the spline basis vectors.

Estimating the f§ and « coefficients is, of course, only the first step in substantive anal-
ysis. Researchers may interpret the effects of substantive regressors in the usual ways (e.g.,
first difference, plots of fitted values, etc.). Rather than simply including the basis vectors
produced by splines as regressors and stopping there, researchers should think theoretically
about whether and why temporal dependence is present in their data. For example, is the
temporal dependence due to omitted variables? Or, does the temporal dependence reflect
a part of the process that needs to be modeled?

Although BKT provides Stata code for generating splined time basis vectors, no direc-
tions are given concerning how to interpret the results. Table 1 showed the result: almost no
one using splines interprets the results. It is not difficult to imagine why this would be the
case. It is one thing to insert basis vectors into a regression equation and to estimate the
coefficients associated with the basis vectors. However, how does one then interpret the
estimated results for the basis vectors?

It is important to note first that the estimates for the individual spline basis vectors are
not substantively interesting. For example, we are not interested in the individual effect
ofthe ti2 variable or of the [(t;—1,) +]? vectorin equation (4). We want to interpret the temporal
dependence in our dependent variable, conditional on the regressors. More roughly put, we
want to interpret the effect of time 7 on the estimated Pr(y; = 1|x;, 1). Of course, time is not an
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independent entity that acts on our dependent variable. In this case, it is a stand-in (like
a dummy variable) for something we have not yet modeled functionally or via the included
Iegressors.

Assuming one has already conducted logistic regression and included the spline basis
vectors as regressors, the steps for plotting the estimated hazard are relatively straightfor-
ward. First, construct a new time vector f = {1, 2,3,...,max (Z) } This will be used in the
next step and will serve as the x axis for the plot. Next, apply the spline function that was
used for the data analysis in exactly the same way (i.e., same number and location of knots)
to the £ vector. This will provide basis vectors for 7 that correspond to those used in the
regression. The ordering of the observations will also correspond to the ordering of time in
i. Then, using the logistic regression’s parameter estimates, calculate Pr (y,- = 1|x,-,f) for
each row in the newly generated () basis vectors, substituting those basis vectors into their
corresponding locations in the regression equation, while holding all other (nonspline)
variables constant at some value (e.g., their means or medians). The estimated probabilities
will be ordered according to the ordering in 7. The researcher then needs only to plot the
estimated Pr (y,- = l‘xi, t) with £ along the x axis. In the Web Appendix, we provide R and
Stata programs that demonstrate the above steps.

3.2 Knot Selection

Although we have ignored it to this point, one of the most important aspects of implement-
ing splines is appropriately selecting the knots #;. The number of knots determines the
number of basis vectors that are included in subsequent regression analysis. The locations
of the knots determine where the relationship between the dependent variable and ¢ is al-
lowed to change significantly. How, then, should a researcher select the knot locations?

When the dependent and independent variables are both continuous, knots are often
selected using an “‘ocular” diagnostic—one simply examines a scatterplot of y versus ¢
and chooses knot locations where the relationship appears to change. Ruppert, Wand,
and Carroll (2003, 57-72) illustrate at length how a researcher can choose knot locations
based upon a visual examination of two-dimensional scatterplots. However, with a binary
dependent variable, knot selection is more difficult. A plot of the binary data versus ¢ will
generally not provide any guidance concerning where to place knots. Moreover, the quan-
tity of interest here, Pr(y; = 1]x;, f), must be estimated in order to plot it as a function of 7.
We do not know what it looks like before estimating it—and what it looks like after es-
timating it will depend on the knots we chose.

In this case, substantive researchers may want to base knot placement on theory and/or
an empirical selection criterion. Unfortunately, political theory is typically not very spe-
cific concerning knot placement. The most we can usually hope for is a sense of whether the
theory implies an increasing, decreasing, or a nonmonotonic failure rate. However, that is
of limited use in choosing knot locations. Given the difficulty in choosing theoretically
informed knots, most researchers, such as Schultz (2001, 270-1), have employed the same
knots as in Beck, Katz, and Tucker (1998) (i.e., knots at ¢t = 1, 4, and 7). Others, such as
Senese (2005) simply provide no discussion of knot selection at all.

One alternative is to base knot selection on some criterion associated with model fit.
Beck, Katz, and Tucker (1998, 1279) choose knots via ““a sequence of F-tests”’—basically
comparing the fit for various knot combinations. It is important to note that the BKT knots
are based on an empirical selection criterion tailored to their specific example (analysis of
Oneal and Russett [1997] of trade and conflict). There is no reason to believe that these
knots will be appropriate for other substantive issues or data. Depending on the number
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of time intervals in the data and the shape of the underlying hazard, knots att = 1, 4, and 7
may actually produce a biased estimate of the hazard. We provide an example of this in the
next section.

Finally, automated smoothing methods are an extension of this empirical selection
approach. Generalized cross-validation (GCV) and a random-effects—based techniques es-
sentially choose many knots but penalize the influence of knots to balance smoothness
versus overfitting. Although a more detailed discussion of automated smoothing techni-
ques is beyond the scope of this article, we have included examples in the plots of the
Monte Carlo analyses in Section 4.® Our intention is not to rule out the use of either splines
or automated smoothing techniques. However, the issues discussed in this section, com-
bined with the experimental and empirical evidence we provide in the next section, suggest
that a simpler cubic polynomial approximation performs just as well as splines in most
substantive settings but without the additional complexity.

4 Time Cubed

Having discussed the technical details of time dummies and splines, we now recommend
an alternative method for modeling time dependence. In fact, our recommendation is
almost embarrassingly simple: include 7, £, and #* as regressors.” To make this concrete,
suppose a researcher with regressors x; wanted to conduct logistic regression, control for
temporal dependence, and interpret the effect of time on Pr(y; = 1|x;, #). Using this
approach, her logit equation would take the form

1
Itexp[— (uproutitoaat+osr))]

Pr(y: = 1|x;, 1) (5)

where s(t,) = ot; + oot,> + a5ty is a cubic polynomial approximation to the hazard. Notice
that the cubic polynomial is a special case of the simple cubic spline in equation (4)—one
with no knot terms.

Why use a cubic polynomial? In principle, any order of polynomial could be chosen. As
with splines, the polynomial approach can be taken to a higher order (e.g., t*, °, etc.).
Generally, polynomials of odd order are preferable to polynomials of even order. Polyno-
mials of odd order asymptotically have a smaller mean-squared error than polynomials of
even order (see Fox [2000] for a simple illustration of this). We recommend a cubic poly-
nomial because it will capture any hazard shape that is recovered by commonly estimated
parametric duration models (e.g., Weibull, log-logistic, log-normal) and typically seen in
semiparametric models such as the Cox proportional hazard model. At the same time, the
cubic polynomial avoids the overfitting associated with higher order polynomials (e.g.,
plots with “kinks” that are sensitive to a small proportion of observations). That said,
if there are strong theoretical reasons for using a higher order polynomial, then the poly-
nomial approach is easily extended.

Using this technique, interpreting temporal dependence is straightforward. Indeed, it is
no different than any regression that includes quadratic or cubic variables. As with splines,
we are interested in plotting the fitted Pr(y; = 1|x;, #), rather than interpreting the individual
polynomial terms. Having estimated the model, the researcher simply creates a new time

8Several forms of GCV can be implemented using the mgcv package in R. See Ruppert, Wand, and Carroll (2003)
and Keele (2008) for details on automated smoothing methods.

“See also Efron (1988) for an application of a cubic polynomial in estimating Kaplan-Meier survival curves using
binomial count data.
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vector 7= {1,2,3,...,max(r) }, along with its square and cube, {? and 7 3, respectively.
The fitted values for Pr (y,- =1|x;, f ) are calculated by inserting these into the estimated
regression equation, holding all other variables constant at some interesting profile of val-
ues (most commonly means). The estimated Pr (y, = 1’)(,7 ) is then plotted on the y axis
with 7 on the x axis.

Finally, although we have found the cubic polynomial method to be relatively insen-
sitive to computational issues in practice, researchers should be aware of two potential
issues. First, it is generally well known that the 7, 7, and r* variables will be highly cor-
related. For large data sets, this is almost never a problem. Moreover, we have found no
evidence that it presents any problems in numerous Monte Carlo experiments and empir-
ical reanalyses. Nevertheless, researchers suspecting multicollinearity may want to de-
mean ¢ before squaring and cubing it. This will reduce (although not completely eliminate)
collinearity. Second, numerical instability is always an issue in any maximum likelihood
estimation. One common source of numerical instability is when one of the regressors is
three or four orders of magnitude larger than all the other regressors. Using cubic poly-
nomials, instability could result from large differences in magnitude between r° and other
regressors, given that > can be quite large depending on the maximum value of r. For
example, if the maximum duration is ¢t = 25, then £ varies from 0 to 15,625. The solution
here is no different than what common practice should already be. Simply examine the
range of all the variables in the data, as well as 7, %, and £°, and then rescale Variables
as necessary by dividing by some multiple of 10. We have found that using 1f5 and its
square and cube generally works quite well. Similarly, , £, and 1000 also work well. In
either case, users should remember to use the appropriate scaling when plotting the esti-
mated Pr(y; = 1]x;,1).

5 Monte Carlo Comparison

In this section, we provide a comparison of the various techniques via Monte Carlo anal-
ysis. In order to compare the various methods, we will assume that the data generating
process is logit with time dummies. This allows us to approximate very closely an under-
lying Cox framework. Moreover, time dummies allow us to create hazards of just about any
functional form. Finally, using time dummies to generate the data does not induce any of
the problems associated with their use in estimation. Thus, we will assume the data gen-
erating process takes the form

1
1+exp(—(x;f+ra))’

where for observation i, x; consists of a constant and a single regressor value that is uni-
formly drawn between —2 and 2. All fi’s are set equal to one. As in equation (2), x;isa 1 X
T row vector of time dummy values for observation i. The shape of the hazard is therefore
determined by the o parameters associated with the time dummies.

We conduct Monte Carlo experiments for constant, decreasing, increasing, and two dif-
ferent nonmonotonic hazards. In each, we run 10,000 Monte Carlo iterations with samples
of n = 2000. In each iteration for each hazard shape, we estimate logistic regressions with
time dummies, cubic B-splines, automatic smoothing via GCV, and a cubic polynomial.

Pr(y; = l|x, ;) = (6)
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To assess how well splines perform as implemented in the discipline, we use knots atr = 1,
4, and 7 for the B-spline estimation.'?

Because BKTalready addresses the effect of ignoring temporal dependence on the estimates
associated with substantive regressors, we do not focus on that here. Moreover, our Monte
Carlo analyses confirm an interesting result shown in one of Box-Steffensmeier and Jones
(2004, 91) empirical replications: that the modeling choice for time dependence has little
effect on the substantive regressors’ parameter estimates (i.e., the 5’s above), so long as one
implements a ‘“‘reasonable” modeling technique (e.g., B-splines, automatic smoothing via
GCV, acubic polynomial, or time dummies when separation is not extreme). Choice of mod-
eling technique has more effect on our estimation and interpretation of the hazard itself.

Figure 3 demonstrates how well each method performs on average in recovering the true
underlying hazard. In each graph in Figure 3, the true hazard is depicted by the thick gray
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Fig. 3 Monte Carlo comparison.

19A number of variations of the above were analyzed. For example, in one set of analyses, we assumed the data
generating process was cloglog—consistent with a Cox proportional hazard framework. Those results were
virtually identical to those presented here. We also ran Monte Carlos to assess the impact of a time-trended
covariate. Again, those results were very similar to those reported here. All these are provided in our Web
Appendix.
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line, the cubic polynomial approximation by a solid black line, the automated smoothing
spline by a dashed line, the B-spline (with knots at = 1, 4, 7) by a dotted line, and the time
dummies model by the open circles.

Consider first Figure 3a, where the true hazard is decreasing in time. On average, haz-
ards estimated using the cubic polynomial or either of the spline variants closely match the
true hazard. Time dummies, on the other hand, perform considerably worse. We noted in
Section 2.2 that a decreasing hazard will tend to be associated with a higher incidence of
data separation. We see in Figure 3a the effect of those separation problems. Most prob-
lematic, we would on average infer that a nonmonotonic hazard existed since the time
dummies plot begins increasing sharply at about t = 20. Second, even with the large num-
ber of Monte Carlo iterations, separation prohibits estimating effects for the last few peri-
ods in the data. Third, although not shown here, the 95% confidence interval for the time
dummies plot does not contain the true hazard from approximately ¢ = 28 on."!

Figure 3b displays the results when the true hazard is increasing in time. In this case, the
cubic polynomial and the autosmoothing spline both perform very well, with the autos-
moothing spline having a slightly closer fit. Time dummies also perform reasonably well
here. We noted in Section 2.2 that separation is likely to be less of an issue for increasing
hazards. That is certainly reflected in Figure 3b. The only issue for time dummies in this
particular case is that it cannot estimate effects past about = 28. The method that performs
most poorly here is the B-spline with knots set arbitrarily at # = 1, 4, and 7. The poor fit is
entirely due to the knot selection (relative to the true hazard). Notice the spline fits very
well up to about ¢ = 12. However, the time periods extend along the x axis to about = 35.
Most importantly, much of the curvature in the true hazard exists around ¢ = 20. By placing
the last knot at r = 7, there is no way for the spline to adjust its curvature at later time points.
Thus, researchers should only use a spline with knots at ¢ = 1, 4, and 7 when (1) the longest
time period is around 10 or 12 or (2) they truly believe all the curvature in the hazard occurs
earlier in time rather than later.

Figures 3c and 3d show the results for two different nonmonotonic hazards. The u-
shaped hazard in Figure 3c reflects a situation where the failure rate is initially moderate,
decreases to a very low level, but then eventually rises to a very high level. Mortality in
Western countries takes a form similar to this hazard. As in the two preceding cases, the
cubic polynomial performs very well. The autosmoothing spline fares reasonably well, as
do the time dummies. For the time dummies, the increasing hazard later in time prevents
the really problematic separation issues seen in Figure 3a. However, notice the (somewhat
disturbing) fact that time dummies produce a u-shaped hazard in both Figure 3a (where it is
incorrect) and 3(c) (where it is correct). Finally, the B-spline with knots at = 1,4, and 7 fits
well up to approximately ¢t = 20, but diverges thereafter. The reason is exactly the same as
in the previous graph: placing the last knot at # = 7 constrains it from adjusting to curvature
later in time (e.g., around ¢ = 25).

The nonmonotonic hazard in Figure 3d is produced from the log-logistic distribution
and captures situations in which the probability of observing the event of interest within
a group initially increases sharply but then decreases with time. The cubic polynomial and
spline variants generally perform well in this scenario. Because most of the changes in
curvature occur prior to t = 12, the B-spline fits that part of the hazard quite well but
diverges a bit more after ¢+ = 15. The cubic polynomial tries to fit the hazard overall. Be-
cause of that, it does not fit the true hazard quite as well as the B-spline in the region up to

"Confidence intervals have been calculated for all graphs in Figure 3. These are available in the Web Appendix.
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t = 12. However, it tends to have a better fit from about ¢ = 15 on. Time dummies perform
very well up to about = 12. After that, time dummies suffer from the same separation
problems as in the decreasing hazard plot, and they diverge greatly after ¢+ = 15.

In sum, the cubic polynomial approximation—simply including ¢, £, and 1> as regressors—
tends torecover the true hazard on average and for a wide variety of hazard shapes. The Monte
Carlo results strongly suggest that time dummies should almost never be used. This is a par-
ticularly interesting result, given that time dummies were used as the data generating process.
A spline (whether B-spline or natural cubic spline) with knots at # = 1, 4, and 7 will perform
poorly unless most of the changes in the relationship occur with the region ¢ € [0, 12]. There-
fore, if a researcher wants to implement a spline-based technique, but is not confident of knot
placement, she should opt for an autosmoothing spline.

6 An Application to Associational Formation in the United States

In order to demonstrate empirically the usefulness of the cubic polynomial approach, we
turn to the analysis of Crowley and Skocpol (2001) of why, when, and how membership
associations (such as the Young Men’s Christian Association, or YMCA) formed in the
United States.'> Crowley and Skocpol (2001) focuses on two competing perspectives.
The first perspective, popular among historians, is that socioeconomic modernization
and high levels of immigration were the main catalysts of associational development
(Wiebe 1967; Berthoff 1971; Keller 1977). In contrast, Crowley and Skocpol’s competing
historical-institutionalist perspective argues that the U.S. Civil War played a pivotal role in
associational development (Schlesinger 1944; Skocpol, Ganz, and Munson 2000; Crowley
and Skocpol 2001). In their view, since the U.S. government lacked a large standing army
or well-developed bureaucracy prior to the Civil War, voluntary federations were assem-
bled across the states to aid in raising an army (McPherson 1988). After Northern victory,
civic associational structures built to support the war effort remained in place or were rep-
licated by the founders of new civic associations. Thus, the historical-institutionalist ac-
count implies that associational development was propelled by the aftereffects of
association building and development during the U.S. Civil War (see Crowley and Skocpol
[2001, 814-6]). Crowley and Skocpol (2001, 814, 820) explicitly states that the passage of
time is an important component of their theory.

To assess the support for the two perspectives, Crowley and Skocpol (2001) presents
a new data set that tracks the establishment of state-level chapters for 21 organizations in
the 48 continental states over the period 1860-1929. Each observation, therefore, indexes
by state, organization, and decade. The binary dependent variable represents whether
a state-level branch of a particular membership federation was established in a given de-
cade. States become ““at risk’” of chapter formation for a particular organization once that
organization has been established nationally in at least one other state. For a given state-
organization observation, the duration component reflects the number of decades that state
has been at risk for local chapter formation by that organization. Once a chapter has
formed, that state-organization pair exits the sample. Independent variables represent var-
ious measures of the modernization and institutionalist perspectives. Crowley and Skocpol

12We have replicated a number of other analyses: for example, the reanalysis of Oneal and Russett (1997) by Beck,
Katz, and Tucker (1998), as well as the analysis in Palmer, London, and Regan (2004). In all cases, we find that
a cubic polynomial performs just as well as splines with automatic knot placement. Results are available in our
Web Appendix.
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Table 3 Crowley and Skocpol logit replication

287

Time dummies 1, l2, £ Auto spline
Constant 2.44 (0.43) 2.19 (0.43) 2.09 (0.42)
Urban growth 0.11 (0.06) 0.10 (0.06) 0.09 (0.06)
Manufacturing per —0.06 (0.29) —0.15 (0.29) —0.17 (0.29)

capita

Railroad mile per
capita

Teachers per capita

Percent literate

Percent in union armies

—18.83 (10.64)

—9.49 (9.53)
0.055 (0.053)
0.029 (0.010)

—18.48 (10.52)

—7.13 (8.68)
0.040 (0.053)
0.031 (0.010)

—19.01 (10.58)

—7.42 (8.71)
0.036 (0.053)
0.031 (0.010)

Pension $ per 0.48 (0.08) 0.38 (0.08) 0.39 (0.07)
pensioner

Electoral 0.045 (0.016) 0.043 (0.016) 0.043 (0.016)
competitiveness

Foreign born growth 0.028 (0.09) 0.004 (0.08) 0.002 (0.08)
Population growth —0.0017 (0.0011) —0.001 (0.001) —0.001 (0.001)
0Odd fellows per capita —3.66 (6.69) 0.35 (6.56) 0.92 (6.55)
Percent protestant 0.056 (0.029) 0.072 (0.028) 0.075 (0.028)
Neighbor effects 0.32 (0.05) 0.28 (0.04) 0.28 (0.04)
t 0.55 (0.18)

IS —0.23 (0.09)

I 0.014 (0.014)

Log-likelihood —1508.48 —1544.44 —1546.59

N 2529 2529 2529

Note. SEs in parentheses. Bold estimates: p < .05.

(2001) estimates a logistic regression with time dummies to determine the key determi-
nants of associational formation.

Table 3 displays a replication of the Crowley and Skocpol (2001) regression. Three ver-
sions are presented: one with time dummies, one using a cubic polynomial, and the last using
a spline with automatic smoothing. As Table 3 shows, the substantive results are generally
the same regardless of the technique used to model temporal dependence. The only dif-
ference here is that the variable for percent protestant is statistically significant at p ~ .053
in the time dummies model but at p &~ .01 in the cubic polynomial and spline models."*

6.1 Associational Formation over Time

Although Crowley and Skocpol (2001) nicely analyzes how associational development
was influenced by the Civil War, it has less to say about when these effects materialized
across time. Despite including time dummies as ‘“‘temporal controls,” there is no interpre-
tation of the hazard. As it turns out, both the socioeconomic modernization and historical-
institutionalist perspectives have implications concerning associational formation over
time. Assuming that states do not decrease in modernization over this period, then if

13 Although some of the numbers in the “‘time dummies” column of Table 3 differ slightly from those in Crowley
and Skocpol, the results are exactly the same in terms of statistical significance and substantive effect. The
numerical differences are due only to choices concerning which time dummy to drop and rescaling of certain
regressors. For example, Crowley and Skocpol drops the sixth time dummy, whereas we drop the first. We also
divided several of the variables by a multiple of 10 to ensure all regressors were of roughly the same magnitude.
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Fig. 4 Effect of time (since civil war) on associational formation.

the socioeconomic modernization account is correct, we should expect to see the proba-
bility of state-level formation increase (or at least not decrease) with time. On the other
hand, if the historical-institutionalist account is correct, then we should expect to see an
initially large post-Civil War effect, which then decreases over time.

Figure 4 plots the probability of state-chapter formation as a function of time, holding
all other variables at their means (continuous variables) or medians (discrete variables).
As the figure shows, the probability of state chapter formation initially grows to a relatively
high level in the 30 years after the first chapter is established but then falls to a very low
level over the remaining four decades. Because most of the organizations—all but four—
established either national centers or their first state chapters prior to the turn of the century
(see Crowley and Skocpol [2001, 817]), the hazard in Figure 4 appears to be much more
consistent with the Civil War—based, historical-institutionalist account.

Figure 4 is a starting point for interpreting the role of temporal dependence in associ-
ational formation. However, it only tells part of the story. One of the key Civil War var-
iables, and the most substantively significant, code for the average pension received by
Union Civil War pensioners in a given state. As Crowley and Skocpol (2001, 818) notes,
high pensions tended to be associated with military and political elites, as well as the se-
riously wounded, who were themselves often highly engaged in the community. Suppose
we wanted to assess the hazard at different levels of pension pay in states.

Figure 5a plots the probability of state chapter formation as a function of time and as
a function of average pension pay, based on the cubic polynomial model in Table 3. As the
figure shows, the probability of chapter formation takes the same shape regardless of
average pension pay: it increases over the first three decades and then falls over the next
four. Thus, examining the hazard for one level of pension pay tells us nothing different than
does another level of pension pay. The reason for this is that the hazard in Figure 5a is based
on a proportional hazards model. As Box-Steffensmeier and Zorn (2001) notes, nearly all
duration models commonly used by political scientists assume proportional hazards.'*

“For a technical discussion of the differences between proportional and nonproportional hazard models, see
Kalbfleisch and Prentice (2002), Box-Steffensmeier and Jones (2004, 131-7), or Box-Steffensmeier and Zorn
(2001).
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(a) Proportional Hazard (b)  Nonproportional Hazard

Fig. 5 Effect of pension dollars and time (#, £, £ model).

Indeed, all the models in Table 3 are proportional hazard models (technically, proportional
odds models). When the proportional hazards assumption is incorrect, our parameter es-
timates and SEs may be substantially biased. Moreover, there are many instances where our
theory suggests the hazards are nonproportional.

Fortunately, modeling nonproportional hazards is relatively easy when using a cubic
polynomial or splines. To model nonproportional hazards with a cubic polynomial, we
recommend simply interacting the regressors of interest with 7, 7%, and * (or appropriately
scaled versions thereof). Testing for nonproportionality is also straightforward. The user
first estimates the unrestricted model with both the time variables (e.g., ¢, t2, t3) and the
variable-time interaction terms (e.g., xt, xtz, xt3). Then the same model is estimated, in-
cluding the time variables, but omitting the interaction terms (i.e., restricting their coef-
ficients to zero). The test for nonproportionality is then a likelihood ratio test based on the
unrestricted and restricted models."”

Returning to associational formation, if the historical-institutionalist perspective is cor-
rect, then we should expect that the hazard will differ for states with high average pensions
versus those with low average pensions. In particular, states with high average Union
pensions (and, thus, more federation-oriented community leaders) will have a higher prob-
ability of immediately forming state-level chapters. On the other hand, states with low
average Union pensions will need time for those ideas (and/or pensioners) to take root.

To examine the support for this idea, we only need to conduct one more regression. The
cubic polynomial regression in Table 3 is our restricted model. The second regression, our
unrestricted model, is exactly the same but also includes the interaction of the average
pension dollars variable with each of the ¢, >, and 7° variables. Although not shown,
the parameter estimates on the main regressors remain similar to those in the restricted
model.'® A likelihood ratio test rejects the restrictions at well below the 0.05 level. Thus,
the nonproportional hazard model appears warranted in this case.

"STechnically, a researcher is testing the joint null hypothesis of proportionality for a regressor and that the hazard
is approximated by a cubic polynomial.
'SEstimates for the unrestricted model are reported in the Web Appendix.
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The graph in Figure 5b plots the estimated probability that a federated voluntary as-
sociation forms as we vary both time and the average pension dollars per pensioner in
each state. Compared to the proportional hazard plot in Figure Sa, the results are striking.
First, consider the effect of pension dollars on the hazard. For states with high average
pension per pensioner (e.g., 200250 per pensioner), there is an immediately high prob-
ability of chapter formation (.52), dropping fairly linearly to almost zero after seven
decades. On other hand, the hazard is nonmonotonic in states with the lowest average
pay (0-50 per pensioner), starting at .17 probability of chapter formation, and needing
a couple of decades before the probability reaches approximately .46, after which it
too steadily declines. This relationship indicates that organizations took off very fast where
the Union armies had a large postbellum footprint and were generally followed several
decades later by states where the organizational influence of the Union army was either
initially negligible or took time to spread into those areas.

Figure 5b also provides insight into the role of pension pay that we would otherwise not
have found in the proportional hazards model. First consider the interpretation of average
pension pay from either Table 3 or Figure 5a (which simply reflects the former). In the
proportional hazards model, average pension pay has a positive effect regardless of time.
However, consider the more nuanced interpretation in the nonproportional hazards
Figure 5b. In the first decade (Time = 0) after a federation is established (which is relatively
soon after the Civil War ends in most cases), average pension pay has a very large and
positive effect. The difference in probability between highest pension areas versus lowest
pension areas is .36. In contrast, at the end of seven decades after national federation for-
mation, the effect of pension pay is negative: the difference between the highest and lowest
pension areas is —.11. Why might that be? We suspect it reflects the higher initial rate of
chapter formation in high pension areas. After 70 years, most have already formed chap-
ters. The lowest pension states lag behind, so there are still chapters to be formed.

In sum, although Crowley and Skocpol is correct about the positive impact of Union
armies, it does not fully explore the temporal dimension of the relationship. A more nu-
anced analysis, including one that models nonproportional hazards, provides even stronger
support for the historical-institutionalist perspective.

7 Conclusion

Our goal in this article has been to build upon the important contributions made in Beck,
Katz, and Tucker (1998). First and foremost, BKT makes an important methodological
contribution in demonstrating that BTSCS data is a form of grouped duration data. This
observation, coupled with recommendations for how to deal with temporal dependence,
has generally improved the quality of empirical research analyzing temporally dependent
binary data.

That being said, we have identified a number of issues concerning the techniques them-
selves or their implementation by substantive researchers. We have demonstrated that time
dummies often suffer from complete and quasi-complete separation, as well as inefficiency
issues. Our Monte Carlo analysis strongly suggests that time dummies should almost never
be used when there are a large number of time periods. Moreover, the analysis also dem-
onstrates that time dummies perform worse than other techniques even when the data gen-
erating process employs time dummies.

Splines are a different issue. Splines can be a useful technique for modeling temporal
dependence. However, most substantive researchers do not appear to understand splines.


https://doi.org/10.1093/pan/mpq013

https://doi.org/10.1093/pan/mpg013 Published online by Cambridge University Press

Modeling Time Dependence in Binary Data 291

Evidence for this supposition is the fact that most researchers use BKT’s application-
specific knots of 1, 4, and 7, whether or not this parameter selection is appropriate for
the researcher’s own application. More often than not, researchers omit any analysis of
the temporal dependence in their data. Researchers who want to ““taking time seriously”
should do more than just add time regressors as controls. Researchers should also plot and
interpret the hazard. In this article, we have tried to clarify how one might do that following
BKT’s recommendation to use splines.

Although we strongly support the recommendation to use splines, we have also sug-
gested a related, but simpler alternative: using a cubic polynomial approximation (¢, %,
and ). This technique is easy to implement and to interpret. It can also model a wide
variety of hazard shapes. Our Monte Carlo analysis (and numerous empirical replications)
suggests that it performs very well in practice relative to time dummies and splines. Ad-
ditionally, when theory suggests that the hazard may be nonproportional, modeling non-
proportional hazards is straightforward using the cubic polynomial, as is testing for
nonproportionality. We demonstrate the ease of implementing nonproportional hazards
in our replication and extension of the work by Crowley and Skocpol (2001) on federated
voluntary associational formation in the postbellum United States. In fact, our more nu-
anced analysis provides even more support for their theory.

Finally, although this article tries to assist researchers in modeling time dependence in
binary data, it does so in only a very basic way. Interpreting the hazard can offer clues as to
what processes or regressors might be omitted from the existing model. The replication of
Crowley and Skocpol (2001) is instructive in this sense. The larger point here is that re-
searchers need to put more work, theoretical and empirical, into properly modeling and
interpreting temporal dynamics. Indeed, for many areas of substantive research, it may be
that none of the models here is even approximately “‘correct.” If, for instance, structural
breaks occur over time or the process has an autoregressive structure, then different mod-
eling techniques will be needed. Thus, even though we argue that logit with a smooth
function of time will work in many scenarios, we encourage researchers to explore more
sophisticated models of temporal dynamics (e.g., dynamic choice models) when theory
suggests it is appropriate.
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