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PROOF, DISPROOF AND ADVANCES 
CONCERNING CERTAIN CONJECTURES 

ON REAL QUADRATIC FIELDS CRs/W + A) 

R. A. MOLLIN AND H. C. WILLIAMS 

ABSTRACT. The purpose of this paper is to address conjectures raised in [2]. We 
show that one of the conjectures is false and we advance the proof of another by 
proving it for an infinité set of cases. Furthermore, we give hard evidence as to why the 
conjecture is true and show what remains to be done to complete the proof. Finally, we 
prove a conjecture given by S. Louboutin, for Mathematical Reviews, in his discussion 
of the aforementioned paper. 

1. Introduction. In [2] Leu raised 2 conjectures concerning real quadratic fields 
Q(Vn2 + 4) where D = n2 + 4 is square-free. To state them we first need some notation. 

DEFINITION 1.1. Let D be the discriminant of a real quadratic field Q(\fD\ and let 
Mo = y/D/2, the Minkowski bound. If (*/*) denotes the Kronecker symbol then 

SD = {r:r is prime, r < VB/2 and (D/r) f -1}. 

Thus, if///) denotes the class number of Q(\fD) we have: 

CONJECTURE 1.1. Let D - n2 +4 be square free, then hD = 2 if and only ifD = pq 
for primes p < q with p = q = 1 (mod 4) and 1 < \SD\ < 2 such that ifr^Sp with 
(D/r) = 1 then r2 > y/û/2. 

This conjecture was actually stated by Leu [2, Conjecture, p. 309] in an unnecessarily 
complicated fashion with conditions which were not needed (see Remark 3.2). In Sec­
tion 3, we give a proof of the sufficiency for ho = 2 which is much simpler and more 
informative than that given in [2] (see Theorem 3.1). Moreover, we prove the necessity 
when the prime/7 = 4k2 + 1 and show how we "just miss" a proof when/? is of the form 
k2 + 4 (see Theorem 3.2ff). Primes p of these two forms are carefully chosen because 
we know, with one possible exception (which is ruled out by the generalized Riemann 
hypothesis, GRH) the complete list of those values for which Conjecture 1.1 holds (see 
Example 3.1), and in that list/? is always one of the above two forms. In any discussion 
which follows, we will call the aforementioned exceptional value a "GRH-ruled out 
exception". In point of fact, we used such techniques in [7] to list all possible values 
D = k2 + r where r \ 4k (called extended Richard-Degert types, or simply ERD-types) 
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with ho = 2, and one GRH-ruled out exception. Previously in [6] we had solved the 
ho = 1 problem for ERD-types with one GRH-ruled out exception. This included the 
Chowla conjecture (see [8]) and several conjectures given by the authors in [4]-[5]. This 
technique, (which is now standard and easily applied to a vast array of class number 
problems for real quadratic fields) consists of using a result of Taruzawa [15] to give a 
complete list of discriminants which, due to Tatuzawa's result, may be lacking in at most 
one value. We then use the GRH and the analytic class number formula to show that the 
list is indeed complete (see [9] for a detailed description of these techniques). Hence, the 
exceptional value resulting from Tatuzawa's result would necessarily be a counterexam­
ple to the GRH. This explains then why we call it a "GRH-ruled out exception". In point 
of fact, we were able to refine our techniques and make our procedures more efficient 
in [10] where we found a complete list (with one GRH-ruled out exception) of all real 
quadratic fields Q(\/15) with ho = 2 when the continued fraction expansion of w (see 
definition in Section 2) has period length less than 25. We note that D's of ERD-type 
have period length of the continued fraction expansion of w being at most 6. Leu's proof 
of Conjecture 1.1 under the assumption of GRH in [2] does not take into account any of 
the above results. Previously we proved a similar result for a list of all Z)'s with ho = 1 
and period length of the continued fraction expansion of w less than 25 in [11]. What we 
now seek therefore, is an unconditional proof that these lists are complete. The difficulty 
is verifying this for even the restricted forms considered in this paper shows how far we 
have yet to go. In fact, we believe that to complete the proof of Conjecture 1.1 may be 
as difficult as giving an unconditional proof of the Chowla conjecture. 

Another conjecture given by Leu in [2] is 

CONJECTURE 1.2. IfD = n2+4is square-free then \SD\ < 2hD - 1. 

We show that this conjecture is false (see Table 3 A ft) and give evidence that there are 
in fact infinitely many counterexamples. 

In his review of Leu's paper [2], S. Louboutin (see MR #93f: 11075) says that 
Conjecture 1.1 is a "deceptively reasonable one". He goes on to say that " . . . it is 
reasonable to conjecture that . . ." 

CONJECTURE 1.3. For all integers m > 0 there exists a prime p such that whenever 
D= pq = n2+4 where q > pis also prime we have 1(a) > 2m+3 where a = (\/D+p)/2p, 
and 1(a) is the period length of the continued fraction expansion of a (see Section 2). 

We have stated this conjecture in our terminology for convenience sake, (see Section 2 
for details on notation). In Section 3 we give a complete proof of this conjecture, (see 
Theorem 3.3). Our earlier contention that the proof of Conjecture 1.1 is seriously difficult 
is borne out by Louboutin's last comment in his review pertaining to Conjecture 1.3. 
He says, "Hence, the author's conjecture could not be proved algebraically even if he 
changed \So\ = 1 or 2 into 1 < \SD\ < / for any / > 2." Therefore, any advance toward 
the proof of Conjecture 1.1 should be viewed as significant progress. 
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2. Notation and preliminaries. Throughout, D will be a positive square-free integer 
and w = (a — 1 + \[D)ja where o = 2 if D = 1 (mod 4) and a = 1 otherwise. The 
discriminant A of Q(\[D) = K is given by A = (2/a)2D. If [a,/3] denotes the module 
{ax + fly : x,y G Z} then the maximal order 0A of iT is [1, w]. We use â to denote the 
algebraic conjugate of a and 7V(a) to denote the value of aâ , the norm of a. 

An ideal of 0A can be written as / = [a^b + w] where a, b,c G Zwitha,c > 0,c\b,c\a 
and ac\N(b+cw). Conversely, if a, b, c G Z with c\b, c\a and 0c|N(Z?+cw>) then [a, Z?+cw] 
is an ideal of 0&. In an ideal / = [a, 6 + cw] with <z, c > 0 the norm of I, N(I) is given 
by N(I) = ac > 0. If c = 1 then / is a primitive ideal. The conjugate of I = [a, b + w] is 
T7 = [a, è + iv]. A primitive ideal / is reduced if it does not contain any non-zero element 
a such that both |a| < N(I) and |â| < N(I). 

At this juncture we introduce the connection between reduced ideals and continued 
fractions. Let a G K then we can write a = (P0 + \/D)/Qo where P0l Qo G Z. If we put 
#o = |_aJ (where L J is the greatest integer function) and define 

Pi+i=aiQi-Pi 

QiQi+\=D-P>+l and 

*/+i = LtfVi + >/D)/effiJ (/ = 0,1,2, . . . ) 

then 

a = ( a 0 , f l i , . . . , f l i , . . . ) 

is the continued fraction expansion of a. Moreover, we have 

THEOREM 2.1. Let I\ =I=[a1b + w]bea reduced ideal ofOA. If a = {b + w)/a then 
all of the reduced ideals in the same equivalence class as I and only these are given by 

IJ = \Q,-il<T,{PJ-i+y/D)l<x\ 

forj = 1,2,3,. . . where the values of the Pj s and Qj s are found by expanding a into a 
con tin ued fraction. 

THEOREM 2.2. If I is a reduced ideal ofO^ then N(I) < y/A. If I is a primitive ideal 
ofO^ such that N(I) < \J~Kj2, then I is a reduced ideal ofO&. 

By Theorem 2.2, there can only be a finite number of reduced ideals of OA and since 
all the I/s from Theorem 2.1 are reduced then we see that the sequence of reduced ideals 
I\, h,..., Ij,... produced by the continued fraction must be purely periodic, i.e., there 
must exist a minimal positive integer / such that 7/+i = I\. We call 1(a) = I = 1(1) the 
period length of the continued fraction expansion of a. For convenience sake, we denote 
the period length of continued fraction expansion of w by 1(1). 

Let CA denote the class group ofK and let hA be its order; i.e., the class number ofK. 
Equivalence of ideals is denoted by I ~ J, and the class of I is denoted by {/}. We also 
have 
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THEOREM 2.3. (1) If I is a reduced ideal ofO& then there exists an ideal of J ~ I 
such thatNÇI) < y/K/2. 

(2) CA is generated by the primitive ideals I with N(I) < y/Â/2. 

Immediate from the above is 

THEOREM 2.4. Let A > 0 be a discriminant and Uf=i {Ji} classes of primitive ideals 
in OA, then CA = U/U{«A} if and only if for each prime p < v A / 2 with (A//?) 5^—1, 
there exists an integer i with 1 < / < k and a reduced ideal It = [a,-, b[ + w] ~ Jt such 
that in the continued fraction expansion ofcti = (Z?z + w)jai we have Qj/c =p for some 
j with 1 <j < lj = /(or/). 

REMARK 2.1. If / = [a, b + w] is a reduced ideal in an ambiguous class of CA (/.e., 
72 ~ 1) then in the continued fraction expansion of a = (b + w)ja we must have either 
ô/±i = 2^1 (when /(a) = / is odd) or PL = PL+l when / is even (see [9]). 

We also have 

THEOREM 2.5. If I is a reduced ideal in 0& and e& is the fundamental unit ofQ(yA) 
thenN(eA) = (-l)W. 

For complete details and proofs concerning the above results, the reader is referred to 
[9] and [16]. 

Finally we include the following result for the sake of completeness since we will 
have occasion to use it in the next section. 

THEOREM 2.6. Let D = n2 + 4 be square-free and set —N(b + w) = mt where \b\ < 
(\/7) — l ) /2 and m < n, then h(d) > max{r(w), r(m) + d(t) — 1} where r is the divisor 
function and d{t) denotes the number of prime (not necessarily distinct) divisors oft. 

PROOF. This is a trivial consequence of Mollin et. al. [14, Theorem 2.1 p. 94]. • 

3. Conjecture 1.1. We first prove the "easy" direction of Conjecture 1.1, i.e., the 
sufficiency for ho = 2. 

THEOREM 3.1. If D = n2 + 4 = pq, for primes p < q and 1 < \SD\ < 2 with 
r2 > VD/2 whenever (D/r) = 1 andr G SD, then hD = 2. 

PROOF. By Theorems 2.3-2.4, hD = 1 if and only if SD = 0. Therefore, we may 
assume that hD > 1. Consider the reduced ideal / = \p, (p + \[D)j2\ In the continued 
fraction expansion of a = {p+\fiy) j ÇLp) we must have that 1(a) = I is odd by Theorem 2.5 
(and / > 1 since / = 1 implies that D = P\ + Ap2 forcing p2\D, a contradiction). By 
Remark 2.1, we must have that Qt± = Qu_ < y/D. Hence, D = P2

l+l + Q2
l+X. Clearly 

2 2 2 2 

p cannot divide Qi±i since D is square-free; thence, Qh± = 2^^ with rt G So and 

(D/n) = 1 for St > 0. If si > 0 for / = 1,2 then 

D = Pii+4rflff2 >P2
!±i+4r2r2>D 
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(since rf > \[Dj2 by hypothesis), a contradiction. Therefore, s2 = 0 say, and Qh± = 2r\l. 

lfs\ > 1 then Qi+x >2r\> yfD, a contradiction; whence s\ = 1. Since QM = 2r\ then 
% ~ 9 and so itf ~ P2 ~ 1 where ^ lies over r\ and & lies over p. Furthermore, 
% ft 1 since 1(1) = 1. We have thus far shown that if \SD\ = 1 or if p £ SD then 
hD = 2, so we now assume that SD = {ri,r2} with (D/rt) = 1 for / = 1,2. Consider 
D = I*i+QoQ\ =P2i+2pQi. Since& = {ri,r2}, then/? > y/3/ 2; whence, gi < \/Ô. 
Moreover, Q\ f 2 since i?i ~ 1 as above. Thus, the only odd prime which can divide 
Q\ is r2, so Q\ - 2r%. If s2 > 1 then Q\ > \fT) (since r\ > y/3/2 by hypothesis), a 
contradiction. Hence, Q\ = 2r2, whence ^ ~ & and %£ ~ <P2 ~ 1. Hence, hD = 2 and 
the result is secured. • 

Now we look at the converse of Theorem 3.1. 

Since D = n2 +4 then it follows from the genus theory of Gauss that ho = 2 necessarily 
implies D- pq for primes p = q = 1 (mod 4). Suppose that q > p and 

p = a2 + 4b2 with a,b>0 

and 

q = s2 + 4Z2 with s, f > 0. 

Since Z) must be a sum of 2 squares in essentially two distinct ways, we must have 
that 

D = (as + 4btf + 4(bs - at)2 

and 

D = (as - 4bt)2 + 4(bs + at)2 

from which it follows that 

(3.1) bs-at = e = ±l 

and 

(3.2) bs + at = c 

where c is divisible only by primes in So-

REMARK 3.1. It is evident that SD ^ 0. In fact, as noted in the proof of Theorem 3.1, 
ho = 1 if and only if So = 0. If D were not of the form D = n2 + 4 then we would not be 
able to assert that ho = 1 implies So = 0 since it is possible, in general, to have So = 0 
while /*£> = 1 when the primes in £# have principal prime ideals above them. However, 
in our special case 1(1) - 1 which means that there are no nontrivial principal reduced 
ideals. However we may always assert that So = 0 implies ho = 1 by Theorem 2.3. 
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REMARK 3.2. In [2] Leu states Conjecture 1.1 with more conditions given than 
are required. Thus his proof of the sufficiency (which we proved in a simpler fashion 
with only minimal assumptions in Theorem 3.1) uses facts which actually follow from 
\SD\ < 2. First of all he addresses the case where SD = {p} which we have shown cannot 
occur. (To see this, we look at the proof of Theorem 3.1. If So = {p} then Qi+i would be 
forced to equal 2, i.e., <2 ~ 1. Therefore, ho = 1 which forced So = 0, by Remark 3.1, 
a contradiction). Therefore, [2, Lemma 1, p. 310] is vacuous. Secondly, in proving the 
sufficiency he uses the additional assumptions that both pr > y/D/2 when (D/r) = 1, 
and ip/q) = — 1. Both of these facts follow from \SD\ < 2 as Theorem 3.1 clearly 
shows. Thus the use of the Redei-Reichardt result [2, Proposition D, p. 310] (i.e., that 
(p/q) = —1 if and only if ho is not divisible by 4) is unnecessary, as is [2, Proposition C, 
p. 310] which asserts that all primesp\D satisfy/? = 1 (mod 4), since our elucidation 
at the outset of this section shows that this actually follows from Gauss. Finally, our 
comments at the beginning of this section concerning So = 0 shows that [2, Theorem 1, 
p. 310] is unnecessarily stated. 

It is however, worth noting that in [3] Leu showed unconditionally, that if there are 
no inert primes less than MA and SA consists only of primes p with (A/p) = 1, then 
A > 0 implies that A E {2,3,5,13,17,33,73,97} none of which satisfies our criterion. 
Therefore, we must have inert primes less that MA. However, in [12] we were able to 
classify those Z)'s for which \SD\ = 1, and were able to list all of them with one GRH-
ruled out exception. One sub-class of that classification is naturally our D = n2 + 4 but 
the only ones with ho = 2 for such D on that list are D = 85 and 269. 

Now we examine the converse of Theorem 3.1 
As delineated earlier, we know all of the square-free D = n2 + 4 having ho = 2, with 

one (GRH-ruled outed) exception. We now list them here with their associated continued 
fraction expansions for the classes of order I'mOo-

EXAMPLE 3.1. (i) D = 85 = 5 • 17 =p -q = 92 + 4 

The continued fraction expansion of (5 + \^D)/6 is: 

/ 0 1 2 3 
Pi 5 7 5 5 
Qi 6 6 10 6 
a, 2 2 1 2 

(ii) D = 365 = 513=p -q= 192 + 4 
The continued fraction expansion of (15 + \/D)/14 is: 

/ 0 1 2 3 
Pi 15 13 15 15 
Qt H H io 14 
at 2 2 3 2 

(iii) D = 533 = 13 • 41 =/? • 4 = 23 2+4 
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The continued fraction expansion of (15 + \[D)j22 is: 

1 0 1 2 3 4 5 
Pi 15 7 15 13 13 15 
Qt 22 22 14 26 14 22 
A / 1 1 2 1 2 1 

(iv) D = 629 = 17 • 37 = p q = 252 + 4 
The continued fraction expansion of (17 + y/D)/10 is: 

i 0 1 2 3 
Pi 17 23 17 17 
Qt 10 10 34 10 
0 / 4 4 1 4 

(v) D = 965 = 5- 193=/?-0 = 312+4 
The continued fraction expansion of (9 + y/D)/26 is: 

/ 0 1 2 3 4 5 
Pi 9 17 9 25 25 9 
Qi 26 26 34 10 34 26 
0 / 1 1 1 5 1 1 

(vi) D = 1685 = 5 • 337 =p • q = 412 +4 
The continued fraction expansion of (11 + \/Z))/34 is: 

i 0 1 2 3 4 5 
/>/ 11 23 11 35 35 11 
Qi 34 34 46 10 46 34 
0 / 1 1 1 7 1 1 

(vii) D = 1853 = 17- 109 =p • q = 432 + 4 
The continued fraction expansion of (29 + \fD)j22 is: 

/ 0 1 2 3 4 5 
P/ 29 37 29 17 17 29 
Qi 22 22 46 34 46 22 
0 / 3 3 1 1 1 3 

(viii) D = 2813 = 29 • 97 =p • q = 532 +4 
The continued fraction expansion of (39 + \/Z))/38 is: 

/ 0 1 2 3 4 5 
P/ 39 37 39 29 29 39 
Qi 38 38 34 58 34 38 
0 / 2 2 2 1 2 2 

REMARK 3.3. We observe in Example 3.1 that ally's are of the form/? = k2 + 4 or 
4A:2 + 1. We now prove Conjecture 1.1 when/? is of the form 4k2 + 1. 

THEOREM 3.2. Conjecture 1.1 holds whenp = 4k2 + I for some integer k > 1. 
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PROOF. Let q = r1 + 4s1; whence, r = 2m + 1 and 

D = (4k1 + lXr2 + 4s1) = (r + 4fo)2 + 4(s - Ar)2 = (r - 4fo)2 + 4(s + AT)2 

Since Z> is representable as a sum of 2 squares in only 2 (essentially) distinct ways 
then we must have s — kr= e where |e| = 1. 

Since n = r + 4ks then n = r + 4k(kr + e)=pr + 4ke. Therefore, D = (pr + 4kef + 4 = 
p V + 8e/?rA: + 4/?. Now consider the continued fraction expansion of (p + \/Z))/(2/?). 

CASE 1. e = 1 

i 0 1 2 3 
Pi p pr ( 4 £ 2 - l ) r + 4& pr 
Qi 2p 4rk + 2 4rk + 2 2p 
at m +1 2k 2k r 

CASE 2. e = — 1 (in which case r > 3 since, if r = 1 then g = 1 + 4(k — l)2 < /?, a 
contradiction). 

i 0 1 2 3 
P,- /? pr-2p (p-4k)r+2 (p-2)r-4k 
Qi 2/7 (2p-4k)r~2(p-\) 4kr-2 4kr-2 
en m 1 2k~\ 2k- 1 

i 4 5 
P,- (/7 - 4k) + r + 2 pr- 2/7 
6/ ( 2 / 7 - 4 £ ) r - 2 ( / 7 - l ) 2/7 
at 1 r — 2 

Now, if we assume that ho = 2 then, by Theorem 2.6, all Qi/2's in either case mws/ 
be primes. Hence in Case 1, \So\ < 2 clearly. In Case 2, we would have \SD\ < 2 if we 
could show that Q\ /2 > y/D/2. Suppose, to the contrary, that Q\ /2 < V~D/2 then 

Qi/2 = (p-2k)r-p+l < VA/2 

which implies that 

pr-2kr-p+\<(pr- 4k)/2 

from which a calculation shows that 

4&2(r-2) + 4A;(l - r ) + r < 0 , 

or 

{2(r - 2)k - r)(2k - 1) < 0. 

Since k > 1 then we must have 

k<r/(2r-4) 
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Hence, 

k < \ \ i f r ^ 3 

Since k > 1, then r - 3, k - 1 which implies that s = 2 and q = 25, a contradiction. The 
converse is Theorem 3.1. • 

We now examine the only other case fork's appearing in Example 3.1; viz.,/? = k2 +4. 
From (3.1)—(3.2) we get that b - 1 and a - k. Therefore, s = kt±l. 

CASE 1. s = kt — 1. Thus the continued fraction expansion of (p + \fD)/(2p) is 

/ 0 1 2 3 4 5 
Pi p tp—p tp — c kc—tp tp — c tp—p 
Qt 2/7 (2tp-c-p)/2 2c 2c (2tp-c-p)/2 2p 
at t/2 2 (k-l)/2 (k-l)/2 2 t - \ 

CASE 2. s = kt + 1 which implies that the continued fraction expansion of 
(p + VD)/(2p)is 

i 0 1 2 3 4 
P/ /? tp—p (c+p)/2 tp — c kc — tp 
Qt 2p (2tp + c-p)/2 (2tp-c+p)/2 2c 2c 
at t/2 1 1 (k-\)/2 (k-\)/2 

i 5 6 7 
Pi tp-c (c+p)/2 tp-p 
Qi (2tp-c+p)/2 (2tp + c-p)/2 2/7 
a{ 1 1 t - 1 

REMARK 3.4. Again by Theorem 2.6, all Qt/2's in either case must be primes. 
However, there is a good reason why they cannot all be primes in general. For example, 
if D = 87029 = 29 • 3001 then the continued fraction expansion of (29 + VD)/5S has 
period length 7 and all Qi/2's are primes. Moreover, [29, (29 + \[U)/2\ is ambiguous. 
However, ho = 10 and so there is (of course) another ideal; viz., [5, (3 + \[D)/2~\ which 
has order 5. Nevertheless, in our cases 1-2 above there is no clear algebraic way to 
show that D is a quadratic residue modulo any integer m < y/Â/2 where m ^ Qi/2 for 
any / with 1 < / < 1(1) where the jg/'s appear in the continued fraction expansion of 
(p + y/D)/(2p) with I=\p,(p + y/D)/2] (as is the case with D = 87029 where (D/5) = 1 
and / = 10). It is in fact quite frustrating that in cases 1 -2 above we have \So\ < 3 and we 
cannot eliminate the additional prime. If this could be done then we would have shown 
that the conjecture is true for/7 of the form either k2 + 4 or 4k2 + 1. Then, in order to 
complete the proof of the conjecture we clearly would need only to show that if ho = 2 
then 6 = 1. 

4. Proof of Conjecture 1.3 and disproof of Conjecture 1.2. In order to prove 
Conjecture 1.3, we begin with results for more general D 's than those considered in the 
last section. (P and Q are also not necessarily primes). 

https://doi.org/10.4153/CJM-1995-054-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-054-7


1032 R. A. MOLLIN AND H. C. WILLIAMS 

THEOREM 4.1. Let D = PQ where P = A2 + B2, g.c.d. (A,B) = 1, A > B > 0, and 

A/B= {q0, q\, • • •, qi). IfQ- {rAi + Z4/_i)2 + (r#/ + 25/_i)2 vwYA r > 1 OÛW, /AÉ?W tfze 
continued fraction expansion of(P + y/~D)/(2P) is given by 

((r+ l ) /2 , 97, qi-x ,...,q0,q0,qu...,ql,r). 

PROOF. It is well-known that 

(qhqi-i,... ,quqo) = Ai/Ai-i 

and 
(qhqi-x,... ,q2,q\) = Bi/Bi-i. 

Put 

L = Al-XAl + BlBl-U 

M = A2
l_x+B2

l_x. 

We then get 

(qh qt_u ...,quqo,qo,q\i..., qi-\,qi) = (04//£/M/ + B{) / {(Ai/B^/A^x + fl/_i) 

= P/L 

and 

(qh qi-\,.-.,q\,qo, qo,q\,... , <?/-i ) 

= ((^/_1/5/_1M/ + 5/) / ( (^- i /^/- i )M-i +fl/-i) 
= L/M. 

Let 
0 = (?/ ,qi-\ , . . . ,q\,qo,qo,q\,... ,qi-\,qhr). 

Then 

0=(0(rP + L)+P)/(0(rL+Af) + ^ ) . 

Suppose that r > 1 and r is odd. Set 

A = ( ( r+l ) /2 ,0) 

= ( r + l ) / 2 + l / 0 

= (0* + l ) /2 , qh q^x,..., q0l q0l... , <?/_!, #/, r). 

Now 
02(rl + M) + fll = 0rP + 6L + P, 

which implies that 
02(rL+M) = 9rP + P. 
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If 7 = \ then 
py2+<yrP-(rL+M) = 0. 

Thus,A = ( r + l ) / 2 + 7, 

7 = ( - r P + v ^ P ^ + 4P(rL + M))/{2P) 

and, 
A = (P + yJr1PQ^AP^±VM)) /(2F). 

Put JV = ^ P 2 + 4P(rI + M), then 

AT = P\P-P + 4(rL+M)] =PQ = D. 

Therefore, the continued fraction expansion of (P + \/D)/(2P) is given by 

((r + l) /2, qhqi-U...,q0lq0l...,qhr). m 

DÉFINITION 4.1. Let r > 1 be a rational number and denote by m(r) the value of t 
wherer= {qo,q\,qi, • •. ,qt) with qt > 1. 

THEOREM 4.2. For any positive integer m there exists an infinitude of primes p of the 
form A2 + B2 with A> B such that m(A/B) > m. 

PROOF. We make use of the results of Hecke [1] from which we can easily deduce 
that there exists an infinitude of primes of the form x2 + y2 with 

x 
C\ < - <C2 

y 

for any given pair of positive reals c\ and c2 with c\ <c2. Consider 

An/B„ = (ao,a\,a2,... ,a„) 

where n>m, and the only constraint we put on the tf/'s is that they be positive integers. 
Now if 

A = (flo, 0 1 , Û 2 , . . . , 0 » , 0 ) 

= (0An+An-l)l{0Bn+Bn-i), 

and 0 = b/c with b and c being relatively prime integers then, if A = xjy we get 
x = bAn + cAn^\ and y = bBn + cBn-\. It follows that 

b = (xBn^-yAn^)(-l)n~l 

and 
c = {yAn-xBn)(-\f-

{. 
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If n is odd \htnAn/Bn > A„-\/B„-\ and 

b = xBn^i -yAn-i, c=yAn-xBn. 

Let p be a prime of the form x2 +J2 where 

A„-i/Bn-i <x/y<An/Bn. 

In this case we have è, c > 0. If n is even then An-\ jBn-\ > An/Bn. Let/? be a prime of 
the form x2 H-y2, where An/Bn < x/y < An-\ /Bn-\. In this case we also have b, c > 0. 
Thus, in either case, we see that 0 > 0 and that the length of the continued fraction 
expansion of A = x/y is at least n>m. m 

THEOREM 4.3. For all integers m > 0, there exists a prime p such that whenever 
D = pq = n2 + 4 where q > p is also prime, we have that 1(a) > 2m + 3 where 
a = (VD+p)/(2p). 

PROOF. If D = pq = n2 + 4, we may assume without loss of generality that q > p. By 
(3.1H3.2)wegetthat 

n = as + 4Ztf = (ps — 4be)/a, 

so that Z) = (ps—4be)2/a2+4 = (p2s2 — $epsb+4p)/a2. AlsoZw = e (mod a). Therefore 
if b*b = 1 (mod a) then s = 6*e (mod a). Since a is odd, we may assume without loss 
of generality that b* is even. Since s = b*e (mod a) we can write s = 6*e + ar. Since 5 
is odd, b* is even, and a is odd, we must have that r is odd. Thus, 

D = (p2(b*e + ar)2 - Sepb(b*e + ar) + 4p) /a2 

= (p2a2r2 + 2t(b*p - 4b)par +p(b*2 - 8bb* + 4)) /a2 

= p2? + 2e( i> - 4 % r / a +p(b*2 - Sbb* + 4)/a2 . 

CASE 1. a > lb. Thus, a jib = (q0, q\,...,qi)= Ai/Bi with qt > 1. We have that 
Aflt-x - BtAi_x = (-1) / _ 1 . We may now assume that e = ( - 1 / ; for if e f ( - 1 / , set 
qi+\ = 1, replace the values of a/ by that of q\ — 1 and / by / + 1. We can then use 2A^\t 
for the value of b*. In this instance, 

Al = a,Bi = 2b,B* = 2Ai„le, 

and 
fi/_i = (Jfy4/_i - e)/i4/ = (2beb*/2 - e)/a = e(M>* - l ) /a . 

CASE 2. a < 2b. Put 2Z?/a = (qv,q\,... ,#/) = AijB\. We now assume that e = 
( -1) / - 1 and get 

Ai = 2b,Bl = a,b* = 2Bl-le. 

Also, 
^/_! = G4/£/_i - £)//?/ = e(6Z>* - I)/a. 
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In either case, we find that 

e(b*p - 4b)/(2a) = aeb*/2 + 2be(bb* - l)/a=Al__lAl+BlBl_u 

and 
(b*2p - Sbb* + 4)/(4a2) = (b*/2)2 + ((bb* - I)/of = AJ__X + B]_x . 

Since,/? =Aj+Bj which implies that 

D/p = q=pr2 + 4(Al^Al + BlBl„x)r + 4(A2_x + B2_x) 

= (rAk + 2Ak_xf+(rBl + 2Bl_x)
2. 

Also, b*e + ar > 0, since s > 0. Thus, if a > 26 then v4/r + Z4/_i > 0 which implies 
that r > - 1 . Also, if a < 2b then Btr + 2fl/_i > 0 implies that r > - 1 . If r = - 1 then 
g = (^/ - 2Ai_x)

2 +(Bi - 2Bi_xf <Aj+Bj=p,a contradiction. It follows that r > 0. By 
Theorem 4.1, we see that the value of 1(a) = 2/ + 3. By Theorem 4.2, we know that there 
must exist, for any value of m > 0, some/? = A2 +B2 such that A > B and m(A/B) > m. 
Since / > m, we have 1(a) >2m + 3 for this value of/?. • 

We have seen therefore, that if D is given by the above formula, there will be only 1 
principal reduced ideal (the trivial one) but there can be an arbitrary number of reduced 
ideals equivalent to the reduced ideal /=[/?,(/? + \/D)/2] depending upon the choice of 
the prime /?. Finally, by Theorem 2.6, if ho = 2 then all g//2's are primes and by (3.3), 
1(1) > 21 + 3. 

Now we deal with Conjecture 1.2. As noted by Louboutin in his review of [2], 
(see MR: 93f: 11075), this conjecture is false. He notes only one counter example. We 
independently established this fact and did some computation and arrived at the following 
list of counterexamples for D < 2 • 106, where D = n2 + 4. 

D 2hD-\ \SD\ factors of D 
237173 21 24 prime 
316973 23 27 197,1609 
552053 29 33 prime 
877973 39 42 37,61,5197 
1585085 47 49 5,61,5197 
1760933 59 60 373,4721 
1885133 51 56 1217,1549 

TABLE 4.1. Counterexamples to Conjecture 1.2. 

We also compiled a list of counterexamples for D < 109 and found 518 counterex­
amples, too lengthy therefore to list here. 

NOTE ADDED IN PROOF. All of the results in this paper will appear in the first author's 
book Quadratics to be published by C.R.C. Press 1995. 
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