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Abstract

Historical ambiguity on how cover crop use influences future crop insurance eligibility has been proposed
as one explanation for low cover crop adoption rates. However, explicit guidance on cover crop use for crop
insurance participants was added in the 2018 Farm Bill. This study uses farm level data from the
Agricultural Resource Management Survey to ascertain whether crop insurance participation influenced
adoption of cover crops and to what degree that influence persisted after the 2018 Farm Bill. Estimation of
a double hurdle model, combined with a control function approach to address endogeneity, suggests
statistically and economically significant effects between crop insurance expenditures and cover crop use at
the “extensive margin,” but no statistically significant effect at the “intensive margin.” Estimation on
subsets of the data defined by before and after the 2018 Farm Bill suggest that the effect is primarily
attributable to participation trends prior to the 2018 Farm Bill. Following the 2018 Farm Bill, no
statistically significant effects are observed between cover crop use and crop insurance expenditures.
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1. Introduction

The planting of cover crops has been shown to contribute to a diverse set of beneficial outcomes
for farms that engage in the practice while simultaneously providing wider ranging benefits by
attenuating some of the negative externalities associated with production agriculture (Rejesus
et al., 2021). From the producer’s perspective, use of cover crops have the potential to provide
direct benefits including improvements in soil quality that are achieved by increasing soil
microbial populations (Boswell et al., 1998; Vukicevich et al., 2016; Sharma et al., 2018), capturing
and retaining soil moisture (Qi and Helmers, 2010; Villamil et al., 2006; Sharma et al. 2018) and
increasing soil organic matter (McDaniel, Tiemann, and Grandy, 2014). Cover crops have the
potential to impair weeds (Masilionyte et al., 2017), control pest populations (Sharma et al., 2018),
reduce soil erosion (Chen et al., 2022; Kaspar and Singer, 2011), and mitigate nutrient leaching
(Abdalla et al., 2019). All of these benefits in turn create the potential for enhanced yields of the
subsequent cash crop (Fageria, Baligar, and Bailey, 2005; Marcillo and Miguez, 2017).

In addition to potential productivity enhancements and increased resiliency that cover crops
potentially provide at the farm level, the use of cover crops double as a conservation practice with
positive environmental externalities including sequestration of greenhouse gasses (McDaniel,
Tiemann, and Grandy, 2014; Poeplau and Don, 2015), reducing need for supplemental nitrogen
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fertilizer which lowers total energy inputs' and providing ecosystem services including enhancing
pollinator and wildlife habitat (Blanco-Canqui et al., 2015; Ellis and Barbercheck, 2015).

Given the potential benefits that cover crops provide, it is unsurprising that acres planted with
cover crops in the United States (US) increased by 50% between 2012 and 2017 (Wallander et al.,
2021). However, this only represents about 5% of harvested crop land (Wallander et al., 2021). As
cover crops have garnered more attention as both a conservation and potential productivity-
enhancing-practice, a number of explanations for low rates of adoption have emerged. Among
these are perceived concerns associated with maintaining crop insurance eligibility while regularly
using cover crops (Coppess and Schnitkey, 2017; O’Connor, 2013).

The purpose of this study is to empirically assess the relationship between crop insurance
participation and cover crop use. This is achieved by using data from the US Department of
Agriculture (USDA) Agricultural Resource Management Survey (ARMS) where a repeated cross
section of farm level observations from 2012 and 2015-2021 (N = 119,166) were constructed.
Specifically, our empirical model examines how cover crop acres (normalized by farm size)
respond to changes in crop insurance expenditures (measured by farm paid premium per acre).
To address sources of endogeneity, estimation is carried out using a control function approach,
which is coupled with a double hurdle model to handle the large number of producers who are not
engaged in any cover cropping practice.

We find statistically and economically significant effects between crop insurance expenditures
and cover crop use at the “extensive margin,” but find no statistically significant effect at the
“intensive margin.” Notably, we find a negative relationship between crop insurance expenditures
and the decision to adopt cover crops (i.e., the extensive margin of cover crop adoption), while a
positive (yet statistically insignificant at the 95% confidence level) correlation is associated with
crop insurance expenditures and the extent of cover crop use among producers that have a
positive share of acres planted with cover crops (i.e., the intensive margin of cover crop adoption).
We also find that results vary significantly between the “instrumented” control function regression
and the traditional “non-instrumented” regression. This, coupled with the divergent effects of
crop insurance participation across the intensive and extensive margin, highlights the importance
of controlling for endogeneity and allowing for corner solutions in the empirical model. To test for
a response to the updated cover crop guidance provided in the 2018 Farm Bill we subset our
sample into observations recorded prior to and after the 2018 Farm Bill and then re-estimate the
model on each subset. We find that the disincentive effect identified at the extensive margin
declines in magnitude by approximately 50% following the 2018 Farm Bill (in addition to
becoming statistically insignificant).

This study contributes to the literature by explicitly addressing two modeling concerns present
in existing studies. First, a potential source of endogeneity exists between cover crop adoption and
crop insurance participation that has not been usually addressed in most of the empirical
literature.

Namely, given that cover crops potentially limit losses from adverse weather conditions
(Aglasan et al., 2024; O’Connor, 2013; Won et al,, 2024), the underlying level of risk of the
producer has the potential influence the use of cover crops. The crux of the problem is that the
inherent production risk associated with a producer is not easily observable which potentially
creates a source of omitted variable bias in the empirical analysis. Further conflating the issue is
the fact that recent literature suggests that cover crops are correlated with lower occurrence and
magnitude of crop insurance losses in the FCIP (Aglasan et al., 2024; Won et al., 2024) introducing
a potential source of simultaneity. These sources of endogeneity may explain the generally null
effects found in previous analysis (Fleckenstein et al., 2020; Lee and McCann, 2019; Thompson
et al., 2021).

'With the exemption of legumes which are nitrogen fixing, Camargo, Ryan, and Richard (2013) found the energy associated
with production of nitrogen fertilizer to be the single largest contributor to total energy required for crop production.

https://doi.org/10.1017/aae.2025.12 Published online by Cambridge University Press


https://doi.org/10.1017/aae.2025.12

Journal of Agricultural and Applied Economics 3

Second, as noted by Thompson et al. (2021), cover crop adoption is often treated as a
dichotomous decision to adopt or not to adopt, which ignores decisions at the intensive margin.
Conversely, cover crop adoption measured by acres (or share of acres) fails to capture
determinants of adoption at the extensive margin, which do not necessarily translate to use at the
intensive margin. Given that Thompson et al. (2021) find that characteristics associated with
initial adoption and extent (or intensity) of cover crop use are quite different, the treatment of
cover crop use in the empirical specification has the potential to significantly influence the results.
Notably, traditional ordinary least square (OLS) regression applied to outcomes with a non-trivial
number of “corner” solutions (i.e., like non-adoption or zero acres of cover crops) will lead to
inconsistent estimates (Wooldridge, 2010).

Opverall, two modeling concerns are observed in the existing literature that have not been
simultaneously addressed before. Existing studies either account for endogeneity (Connor,
Rejesus, and Yasar, 2021) or model cover crop adoption and use via corner solution models
(Thompson et al., 2021), but not both. To our knowledge, this study is the first to simultaneously
account for both the “corner solution” nature of the dependent cover crop variable, while also
addressing potential endogeneity in the empirical specification. We find that both issues are
consequential to the conclusions drawn from the empirical analysis. Additionally, by using a large
sample consisting of 119,166 farm level observations we alleviate concerns of statistical power
associated with null effects derived from small sample sizes.?

2. Background and literature review

As discussed in the previous section, cover crops provide a number of advantageous properties,
however, these benefits are predicated on proper management including selecting appropriate
species, seeding rates, planting period, and termination methods (Wayman et al., 2015). Failure to
do so may lead to the cover crop preemptively competing with the cash crop by immobilizing
nutrients and temporarily lowering soil moisture prior to planting the cash crop (Alonso-Ayuso,
Gabriel, and Quemada, 2014). Consequently, an improperly managed cover crop practice (and in
some cases even a well-managed cover crop) may increase the risk of lower yields® (Deines et al.,
2023; Garba, Bell, and Williams, 2022; Miner et al., 2020). This has historically led to guidelines for
cover crop use that must be followed if producers wish to also maintain crop insurance coverage.

Past literature has posited that the complexity of these guidelines may have prevented farmers
from adopting cover crops for fear of inadvertently violating the guidelines and losing crop
insurance eligibility (Connor, Rejesus, and Yasar, 2021). As part of the 2018 Farm Bill, further
guidance was established for insured producers to explicitly address concerns related to
insurability of cash crops that follow a cover crop (Natural Resource Conservation Service, 2019).*
Consequently, the primary mechanism by which crop insurance participation potentially serves as
a disincentive to cover crop adoption (i.e., losing eligibility by inadvertently violating guidelines)
was largely eliminated following the implementation of the 2018 Farm Bill. However, cover crops
may also diminish the negative effects of adverse weather on crop yields (Kaye and Quemada,
2017) which means that cover crops and crop insurance potentially both serve as risk management

Previous literature raises the question of whether the null effects that have previously been found are due to a truly non-
existent relationship or if the sample sizes used, which have typically been (at most) several thousand observations, lack the
statistical power to detect what may be a small effect size.

31t is worth noting that lower yields may be an acceptable outcome for some producers in exchange for other benefits that
may accrue from cover crops such as improvements in environmental quality or reductions in long term yield variability.

4Additionally, other cover crop policy developments were also taking place during this time including state subsidy
programs for cover crop adoption. The Pandemic Cover Crop Program (PCCP) was also introduced for the 2021 crop year
which provided a federal subsidy for cover crop use.
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tools to some degree (Aglasan et al., 2024; O’Connor, 2013; Won et al., 2024).> Moreover, past
literature also notes the role that crop insurance coverage may play on cover crop use via a
traditional moral hazard hypothesis in which an insured farmer reduces “effort” in farm
production by not planting cover crops (Connor, Rejesus, and Yasar, 2021). Thus, it is possible to
motivate a negative relationship between cover crop use and crop insurance participation through
both a “redundant” risk management strategy perspective and a moral hazard point of view
(Connor, Rejesus, and Yasar, 2021).5

Although the potential negative relationship between cover crop use and crop insurance
participation is often mentioned in existing literature, studies that empirically address the
association between the two are scarce. Lee and McCann (2019) make use of the 2012 USDA
ARMS to estimate a probit model to identify factors that influence the adoption of cover crops
among 1,712 soybean producers. Using a binary indicator for enrollment within the Federal Crop
Insurance Program (FCIP), they find no significant effect between crop insurance participation
and cover crop adoption. Fleckenstein et al. (2020) conducted a primarily qualitative analysis
through a series of interviews and elicited concerns related to cover crop adoption among
Midwestern row crop producers. They generally conclude that crop insurance requirements do
not serve as a major deterrent to cover crop adoption. Connor, Rejesus, and Yasar (2021) use
county level data spanning 2006-2015 on Indiana corn and soybean producers to examine the
relationship between crop insurance participation and cover crop adoption rates. Using panel
fixed effects and instrumental variables techniques, they find a statistically significant and negative
relationship between county-level crop insurance participation rate and the county’s share of
acreage devoted to cover crops. However, they note the magnitude of the effect is small, and
negligible from an economic perspective. Thompson et al. (2021) utilize a novel survey data set
consisting of 719 US Midwestern corn producers and make a notable contribution by recognizing
that cover crop intensity (measured by share of farm acres with cover crops planted) and the
binary decision to adopt cover crops on the farm may be subject to separate decision-making
processes. They model cover crop use as a function of observable variables using a double hurdle
model and find that the factors associated with cover crop adoption (i.e., extensive margin) are
potentially different from the determinants of the extent of cover crop implementation (i.e., the
intensive margin).” With respect to crop insurance’s influence on cover crop use, they find no
statistically significant effect between cover crop use (at either the intensive or extensive margin)
and a binary variable indicating when survey respondents reported that crop insurance
requirements limited their ability to implement cover crops.

3. Data

The data set used for this study comes from USDA’s Agricultural Resource Management Survey
(ARMS). As a nationally representative survey, ARMS serves as USDA’s primary source of
information on the financial condition, production practices, and resource use of US farm
businesses and the economic well-being of farm households. The survey is administered using

50’Connor (2013) notes that corn farmers that utilized cover crops had average yields that are 79% of typical yields during
the drought of 2012 whereas farms not engaged in cover crop use had average yields equal to 68% of historic yields. Won et al.
(2023) find that as cover crop use within a county increase, crop insurance prevented planting losses decrease. Aglasan et al.
(2024) find that higher rates of county-level cover crop adoption are associated with lower crop insurance losses associated
with drought, heat, and excess moisture.

®However, it’s not entirely obvious that producers view cover crops as something that reduces risk given the mixed evidence
related to cover crops and yields (Deines et al., 2023; Miner et al., 2020). Alternatively, producers might view cover crops as
risky which may potentially induce a positive correlation between cover crop use and crop insurance demand.

’Among the covariates examined by Thompson et al. (2021), many of them have coefficient estimates that are of the same
sign (or are statistically insignificant) across both the first and second hurdles. One notable exception is their finding that
larger farms are more likely to have adopted cover crops and tend to devote lower shares of acreage to cover crops.
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several phases — a sample screener phase [Phase I, a field-level phase [Phase II], and a farm-level
phase [Phase III], and targets about 5,000 fields and 30,000 farms each year®. In this study, we pool
data from Phase III of the ARMS, which has cover crop information for the following years: 2012
and 2015-2021. Crop insurance expenditures’, which we use as a proxy for crop insurance
participation (or demand), was first cleaned to remove any observations with unrealistically high
per acre crop insurance expenditures over $500 per acre.!” Cover crop use was measured as the
share of operating acres planted with cover crops. Values above one, which indicates that there are
more cover crop acres than total farm operation acres, were dropped from the sample. The final
cleaned sample consisted of 119,166 farm level observations.'!

Descriptive statistics are reported in Table 1. The average crop insurance expenditure in the
sample was $7.34, however, this value includes many zero values of farms that did not purchase
crop insurance. For the 42 percent of farm operators that had some level of FCIP participation
(N = 49,687), the average expenditure was approximately $17.59 per acre. The average share of
acres planted with cover crops by a farm was 3 percent, but as with crop insurance expenditures,
this metric is influenced by many zero values. Among the 12 percent of respondents that planted
cover crops, on average 27 percent of their operating acres were planted with cover crops.
Conservation payments averaged $3.43 per acre in our sample. Farm operator characteristics
gathered indicate that 6 percent of farms are run by female operators while 8 percent of farms
are beginner farms (anyone that has operated a farm or ranch for less than 10 years). The mean
age of an operator from the sample was approximately 60 years old. Farm ownership responses
indicate that 50 percent of the farms in the sample were partly owned by the operator, 10 percent
were rented, with the rest being fully owned by the operator. Twenty-nine percent of operators
reported being a college graduate. The average farm was just over 1300 acres and allocated an
average of 55 percent of that acreage to crop production. Fifty percent of farms indicated raising
cattle on their farm. To account for the relative differences in moisture, temperature, and
evapotranspiration across regions, we use monthly values of the Palmer Drought Severity Index
(National Center for Environmental Information 2024) or “PDSI” averaged over 1990-2021 at
the county level.!? The average farm in the dataset was located in a county that had a PDSI of
0.36 on a scale ranging from —10 (most dry) to 10 (most wet).

Preconstructed farm typology indicators in the ARMS dataset are used to control for farm
type and are based on farm typology definitions developed by USDA Economic Research Service
(Hoppe and MacDonald, 2013). Retired farms, which are defined as having a gross farm cash
income of less than $250,000 and an operator that reported being retired but continuing to
engage in farming on a small scale, made up 4 percent of our sample. Residential (or “lifestyle”
farms) made up 17 percent of our sample and are defined as those with GCFI less than $250,000
and have operators that reported a primary occupation other than farming. Nonfamily farms,

8Although the usable sample is much smaller and average 14,896 farms per survey among the survey years used in our
analysis.

Crop insurance expenditures and all other monetary values are CPI deflated as part of the data cleaning process.
Additionally, after 2017, ARMS responses were collected for “producers and partners” whereas for 2017 and years prior,
responses were disaggregated to separately record expenditures for “landlords” and “contractors” which we exclude to create a
single expenditure which representing the expenditures for the “operator.” In our sample, only 447 observations (less than
0.5% of our analytical sample) reported positive FCIP expenditures for either “landlords” or “contractors.”

10$500 per acre is high for many field crops, but many high-value specialty crops often have crop insurance premiums that
are in the hundreds of dollars per acre due to these crops having insured liabilities that are in the $1000s of dollars per acre. An
upper bound of $500 per acre was chosen to try to balance removing outliers that are attributable to data errors or extreme
circumstances without removing legitimate values that are disproportionately attributable to specialty crops.

USpatially, the final sample captures the majority of the counties in the contiguous US in each sample year. The fewest
number of unique counties represented in a sample year is in 2021 (2,331 unique counties) with 2012 capturing the most
unique counties (2,632).

2The PDSI is one of the few drought metrics that captures the net effects of precipitation and evapotranspiration available
soil moisture (Dai, 2023).
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Table 1. Descriptive statistics

Variable Mean S.d.

FCIP exp/acre 7.34 20.70
CC Share 0.03 0.11
Cons. payment/acre 343 50.28
Acres 1310.85 5180.66
Crop share 0.55 0.46
Cattle 0.50 0.50
PDSI Avg. 0.36 0.84
Female 0.06 0.24
Beginner farm 0.08 0.27
Operator age 59.28 12.40
Partly owned 0.50 0.50
Rented 0.10 0.30
College grad. 0.29 0.45
Retirement 0.04 0.21
Residential/lifestyle 0.17 0.37
Lower Sales 0.21 0.40
Higher Sales 0.10 0.30
Large 0.12 0.32
Very Large 0.31 0.46
Nonfamily 0.05 0.21
Initial rate 0.11 0.07
2012 0.16 0.37
2015 0.13 0.34
2016 0.12 0.32
2017 0.16 0.37
2018 0.12 ‘ 0.33
2019 0.11 0.31
2020 0.09 0.29
2021 0.10 0.31

which made up 5 percent of our sample, are defined as any farm (regardless of GCFI) where the
operator and persons related to the operators do not own a majority of the business.
The remaining farm classifications are used to characterize family farms (i.e. any farm where the
majority of the business is owned by the operator or persons related to the operator) and are
based on GCFI. Small family farms are defined in two sub groups; “lower-sales” farms
(21 percent of our sample) are those with GCFI less than $100,000 while “higher-sales” farms
(10 percent of our sample) are those with GCFI between $100,000 and $250,000. Large family

https://doi.org/10.1017/aae.2025.12 Published online by Cambridge University Press


https://doi.org/10.1017/aae.2025.12

Journal of Agricultural and Applied Economics 7

farms (12 percent of our sample) are defined based on a GCFI between $250,000 and $500,000
and very large family farms (31 percent of our sample) are defined as any farm with a GCFI of
more than $500,000.

4. Empirical model
The empirical model underlying each of our regressions is defined as:

CCy=a+ yasinh(Ey) + BX;y + 0+ A+ ¢ (1)

where the variable CC;; measures the percentage (%) of acres with cover crops planted as a share of
total operating acres on farm i in crop year f. The key independent variable capturing FCIP
participation, E;, is crop insurance expenditures measured as the premium per acre paid by the
farm ($/acre). The vector X;; contains other observable control variables that potentially influence
the decision to adopt cover crops on the farm (extensive margin), as well as the farm acreage where
cover crops are used. Because crop insurance expenditures (E;;) contain zero values (indicating no
crop insurance was purchased) and also tends to follow a right-skewed distribution, we use the
inverse hyperbolic sine transformation which is denoted as asinh(.) (Bellemare and Wichman,
2020).!% The terms 6 and A represent year and state fixed effects!* respectively.

The model structure that is used to estimate equation (1) is motivated by the large share of
observations for which no cover crops were planted, meaning a value of zero is recorded for the
dependent variable in this case. To explicitly model the fact that many farms choose a corner
solution (i.e., not to plant cover crops on the farm), we make use of a double hurdle modeling
structure (Cragg, 1971). In our empirical context, the first hurdle indicates the decision to initially
adopt a cover crop practice. If a farmer does decide to plant a cover crop, the second hurdle
characterizes the acreage allocated to cover crops. The first hurdle is estimated using a probit
model. More formally, the first hurdle to be estimated is defined as:

diy = By + Brasinh(Ey) + B3 X + 0 + A+ v (2)

where dj; is a binary variable equal to one if farmer i planted cover crops in crop year t, zero
otherwise. The second hurdle is functionally equivalent to the specification defined by equation (1)
and is estimated via a truncated normal regression.

5. ldentification strategy

As previously mentioned, a primary concern for identification is the fact that both cover crop use
and crop insurance participation both potentially affect production risk, to varying degrees.
Consequently, the underlying risk profile of a particular producer (i.e. the various moments that
characterize their yield distribution) is likely to influence their decisions pertaining to
participation in both planting of cover crops and purchase of crop insurance. Given that “risk”
is not directly observable, a canonical case of endogeneity persists (i.e., due to omitted variables).
Further, recent empirical evidence suggests that cover crops potentially reduce the occurrence and
magnitude of crop insurance losses in the FCIP for perils related to extreme moisture levels
(i.e. both drought and excess moisture) (Chen et al., 2022; Won et al., 2024). Consequently, the
existing literature suggests that cover crops may directly attenuate the losses that crop insurance
are designed to provide financial protection against leading to a case of simultaneity where

BThe inverse hyperbolic sine transformation is particularly applicable in this case since it “normalizes” skewed data in a
similar way to a natural log transformation but has the advantage of being defined for values of zero (Bellemare and Wichman,
2020).

lState level fixed effects, besides corresponding to the level that cover crop incentive programs are administered
(Wallander et al., 2021), are necessary since county-year fixed effects perfectly correspond to the variation in our instrumental
variable (as introduced in the next section).
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increased cover crop use may lead to crop insurance being perceived as a redundant risk
management strategy.

To address endogeneity in our empirical framework, we follow past literature and define an
instrumental variable that utilizes the premium rating framework inherent to the FCIP as a way to
generate exogenous variation in premium rates which in turn directly influence crop insurance
demand (Tsiboe and Turner, 2023; Woodard and Yi, 2020). A number of policy parameters are
internally defined each year by RMA using historical data from the FCIP. Notably, even though
these parameters are defined using historic data (data which any individual producer may have
contributed to), a single producer has negligible influence on their own premium rate due to the
large number of producers that that contribute to the historic data series (Tsiboe and
Turner, 2023).

Temporal and spatial variation in policy parameters is further made exogenous by smoothing
operations that RMA applies to limit sharp discontinuities in premium rates across adjoining
county boundaries and catastrophic loading which is done to account for extreme tail events being
sparsely represented in historic data (Coble et al., 2010). In effect, this means that variation in
these policy parameters that govern premium rates shift the premium rate curve in a way that is
exogenous to current individual farmer demand for insurance (i.e., which is also exogenous to the
omitted “inherent farm risk” variables in the error term of equation 1). For a more detailed
discussion on crop insurance rating methods and how they produce an instrumental variable the
is exogenous to producer crop insurance purchases, see the appendix.

Specifically, we make use of two policy parameters to define our instrument. The first being the
county base rate os.; which represents the starting premium for an individual choosing a 65%'°
coverage level in county ¢ and crop year t. Notably, o5, represents the premium rate before any
characteristics of an individual producer are used to customize the premium.!® The second is the
catastrophic loading factor &, which as noted above is used to attenuate sampling error for
sparsely observed catastrophic events. Our final instrument is defined as 745, = otg5., + 8 Which
represents the initial premium faced by a producer, prior to any information about a producer’s
past production experience being used in the rating process. We refer to this instrument as the
“initial rate.”

A major advantage of using the initial rate as an instrument over other common
instrumentation strategies that make use of changes in subsidy rates (DeLay, 2019; Miao,
2020; Yu, Smith, and Sumner, 2018) is that the initial rate provides extensive spatial variation
which is lacking when using the instruments based on subsidy rates which only vary annually. The
initial rate calculated for our sample had a mean value of $0.11 (reported in Table 1). In other
words, on average, a producer in our sample faced an initial premium of $0.11 per dollar of
insured liability before any further actuarial adjustments were made to their final premium
quote.'”

Following previous literature, we incorporate our instrumental variables into the double hurdle
framework by using a control function approach (Ricker-Gilbert, Jayne, and Chirwa, 2011;

15The base rate for the 65% coverage level is used as it historically has been one of the most common coverage levels chosen
in the FCIP. From 2001 to 2021, the 65, 70, and 75 percent coverage levels had made up 20, 23.5, and 21.5 percent of total
policies purchased respectively. The 65% coverage level is also the base level used in RMA’s APH rating methodology (i.e. rates
are set for the 65% coverage level then adjusted up or down to other coverage levels using a determined rate multiplier) (Risk
Management Agency, 2008).

16The “county base rate” is sometimes confused with the “target rate” (Coble et al., 2010; Risk Management Agency, 2008).
Although similar, these two rates are very different from an instrumental variables perspective. The county base rate is
estimated solely based on aggregate loss cost ratios while the “target rate” incorporates many of the characteristics one typically
thinks of as influencing crop insurance premium rates (past yields, irrigation status, unit structure, etc).

7For example, assuming no further actuarial adjustments to the final rate needed to be made based on individual
characteristics of the producer, an initial premium rate of 0.11 on $160 dollars of insured liability per acre implies a total crop
insurance expenditure of $17.59 per acre (i.e. $160 x 0.11).
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Verkaart et al., 2017). Implementation of the control function approach entails estimating the
following reduced form model of crop insurance expenditures as a first stage, where X, contains
other observable covariates that act as controls and 4s,, represents our excluded instrument which
captures the producers’ relevant initial premium rate:

asinh (Ej;) = a + BXj; + ¢Tese + 0+ A+ €; (4)

The residuals from estimation of equation (4) are then included as a covariate for estimation of
both equations that define the double hurdle model (in equation (2) and (3)). Table S2 in the
appendix reports the results for estimation of the first stage equation (4) for the entire sample as
well as samples characterized by before and after the 2018 Farm Bill. In each of these estimations,
the initial premium rates is highly correlated with crop insurance expenditures.'® Further, the
relationship between the initial rate and crop insurance expenditures is negative indicating that
the change in expenditures due to increases in the initial rate is due to a reduction in demand for
insurance, rather than a higher initial rate increasing expenditures through purchase of the same
level of insurance at a higher cost.

6. Results

Table 2 reports regression results for the instrumented double hurdle model based on
samples characterized by before and after the 2018 Farm Bill, as well as estimates based on
the entire sample. Estimates from the full sample suggests a negative and statistically
significant effect between FCIP expenditures and the decision to adopt cover crops (first
hurdle) but a positive effect of weak statistical significance (10% confidence level) between
FCIP expenditures and the share of acreage planted with cover crops (second hurdle).
Separate estimates from prior-to and after the 2018 Farm Bill suggest effects of similar
direction (negative first hurdle, positive second hurdle) but only the first hurdle results
from before the 2018 Farm Bill are statistically significant. In other words, the results
decomposed by Farm Bill period suggest higher FCIP expenditures are correlated with
decreased likelihood of cover crop adoption prior to the 2018 Farm Bill only. Following the
2018 Farm Bill, no statistically significant relationships between FCIP expenditures and
cover crop use (at either margin) are detectable.

The marginal effects of increasing crop insurance expenditures by $1 per acre are reported
in the footer of Table 2 (based on the mean expenditure of $7.34 this increase is approximately
a 13.6% increase in expenditures on average).!” Focusing on the first hurdle results, prior to
the 2018 Farm Bill, the marginal effect of a $1 increase in FCIP expenditures per acre was a 21
percentage point decrease in the probability of adopting cover crops. After the 2018 Farm Bill,
the same $1 increase in FCIP expenditures per acre was associated with a 10 percentage point
decrease. Second hurdle results suggest 6.7 (pre-2018 Farm Bill) and 10 (post-2018 Farm Bill)
percentage point increases in the share of acres planted with cover crops with the caveat that
neither estimate shows FCIP expenditures to be a statistically significant determinant of cover
crop use.

8The lowest first stage F-statistic is approximately 44 indicating weak identification is not a concern.

YGiven that FCIP expenditures are transformed by the inverse hyperbolic since transformation analytically calculating the
marginal effect on the scale of the non-transformed variable is not straightforward. Thus, we calculate average marginal effects
using numerical methods. Specifically, we predict outcomes for each observation following estimation of the regression
coefficient, increase FCIP expenditures by $1 per acre before applying the IHS transformation, then predict outcomes again.
Predictions prior to and after increasing FCIP expenditures are differenced for each observation before taking a mean to
obtain an average marginal effect. This whole process is repeated 1000 times, each time iterating over the uncertainty in the
sampling distribution of the regression coefficient. The median of the resulting distribution is reported with confidence
intervals formed by the 2.5th and 97.5th percentiles of the distribution.
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Table 2. Instrumented double hurdle regression results

Pre-2018 Farm Bill Post-2018 Farm Bill Full Sample
Variable 1st Hurdle 2nd Hurdle  1st Hurdle  2nd Hurdle  1st Hurdle  2nd Hurdle
asinh(FCIP exp/acre) —0.373** 0.552 —0.165 0.460 —0.346** 0.580*
(0.169) (0.362) (0.227) (0.412) (0.136) (0.306)
asinh(cons. payment/acre) 0.116*** 0.050*** 0.112*** 0.021 0.117*** 0.037***
(0.006) (0.013) (0.013) (0.022) (0.006) (0.012)
Female —0.135*** —0.228*** 0.002 —0.061 —0.073*** —0.145***
(0.034) (0.078) (0.039) (0.065) (0.025) (0.052)
Beginner farm —0.084*** —0.015 0.012 —0.003 —0.047** —0.007
(0.030) (0.059) (0.037) (0.059) (0.023) (0.044)
asinh(acres) 0.109*** —0.348*** 0.065** —0.288*** 0.099*** —0.333***
(0.020) (0.047) (0.030) (0.057) (0.017) (0.041)
Crop share 0.804*** —0.500 0.503** —0.446 0.751*** —0.567
(0.202) (0.432) (0.254) (0.460) (0.160) (0.358)
Cattle 0.289*** —0.308*** 0.319*** —0.231*** 0.296*** —0.279***
(0.022) (0.044) (0.033) (0.060) (0.018) (0.041)
PDSI Avg. 0.126*** —0.171*** 0.119*** —0.113** 0.126*** —0.156***
(0.021) (0.051) (0.030) (0.055) (0.017) (0.039)
asinh(operator age) —0.393*** —0.126 —0.186™** —0.025 —0.316*** —0.090
(0.042) (0.083) (0.044) (0.075) (0.029) (0.059)
Partly owned 0.243*** —0.118 0.162** —0.088 0.228*** —0.127
(0.047) (0.099) (0.064) (0.114) (0.038) (0.085)
Rented 0.144*** 0.063 0.027 0.058 0.117*** 0.046
(0.046) (0.095) (0.068) (0.120) (0.038) (0.082)
College grad. 0.144*** —0.083** 0.180*** —0.053 0.158*** —0.072***
(0.014) (0.033) (0.020) (0.035) (0.011) (0.023)
Retirement —0.531*** —0.155 —0.359*** 0.276 —0.504*** 0.068
(0.079) (0.164) (0.138) (0.246) (0.071) (0.153)
Residential/lifestyle —0.571*** —0.172 —0.312*** 0.115 —0.498*** —0.015
(0.067) (0.151) (0.111) (0.201) (0.059) (0.128)
Lower Sales —0.449*** —0.217 —0.304*** 0.048 —0.417*** —0.081
(0.069) (0.155) (0.116) (0.210) (0.061) (0.132)
Higher Sales —0.178*** —0.318*** —0.252*** —0.178 —0.212*** —0.252***
(0.035) (0.076) (0.069) (0.127) (0.030) (0.061)
Large —0.048 —0.302*** —0.121*** 0.038 —0.069** —0.170**
(0.049) (0.103) (0.044) (0.075) (0.033) (0.067)
Very Large 0.131** —0.089 .—0.045 0.032 0.084* —0.046
(0.065) (0.143) (0.055) (0.096) (0.045) (0.096)
(Continued)
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Pre-2018 Farm Bill Post-2018 Farm Bill Full Sample
Variable 1st Hurdle 2nd Hurdle  1st Hurdle  2nd Hurdle  1st Hurdle  2nd Hurdle
Trend —0.603*** —0.009 —0.041* —0.023 —0.038* —0.008
(0.023) (0.062) (0.021) (0.036) (0.021) (0.037)
Residuals 0.401** —0.493 0.182 —0.408 0.372*** —0.524*
(0.169) (0.362) (0.227) (0.412) (0.136) (0.306)
Constant 1216.505*** 20.772 81.086* 48.787 75.311* 19.443
(46.012) (125.048) (43.386) (72.532) (43.198) (75.056)
Observations 82,798 9748 36,368 4576 14,324 119166
Marginal Effect (FCIP Exp.) —0.211 0.067 —0.102 0.1 —0.201 0.078

Notes: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. The farm level data is from 2012 to 2021 Agricultural Resource
Management Survey (ARMS) Phase 3 data. All models included additional controls for state and year fixed effects. Marginal Effects for FCIP
Expenditures reported in the footer of the table are for a $1 increase per acre in crop insurance expenditures.
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Figure 1. Marginal effects. Note: Dots in the upper portion of the figure represent point estimates for the marginal effects
while the associated error bars represent 95% confidence intervals. The lower portion of the figure represents the model
specification which is indicated by which combination of squares are filled in in the column directly below the point
estimate. For the entire figure, green shading indicates that the marginal effect for a particular specification is statistically
distinct from zero while gray shading indicates statistical insignificance. For example, the specification defined by the far-
left column of the figure indicates a marginal effect that is close to zero, but positive and statistically significant and was
estimated with an OLS model, did not use any form of instrumental variables, and was estimated on the full data sample.
Alternatively, the specification defined by the far right column indicates a marginal effect above zero which is statistically
insignificant and comes from the 2nd equation in a double hurdle model that was estimated using an instrumental
variables strategy and was estimated on a sample consisting of observations from after the 2018 Farm Bill.
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Figure 1%° provides some additional context on the effects that instrumenting via a control

function approach and modeling the limited nature of the dependent variable have on estimated
marginal effects. Figure 1 depicts marginal effects for FCIP expenditures for the following model
specification: OLS, two-staged least squares (TSLS), a standard double hurdle model, and an
instrumented double hurdle model (from Table 2). These specifications capture (1) a model that
makes no attempt to correct for endogeneity or explicitly model the limited dependent variable
(OLS) (2) a model that corrects for endogeneity, but doesn’t model the limited dependent variable
(TSLS), (3) a model that does not correct for endogeneity, but does model the limited dependent
variable (standard double hurdle), and (4) a model that corrects for endogeneity and models the
limited dependent variable (instrumented double hurdle).?! Figure 1 also reports marginal effects
for each model separately estimated on pre-2018 Farm Bill data, post-2018 Farm Bill data, and the
full sample. Notably, all specifications that don’t simultaneously correct for endogeneity or
explicitly model the limited dependent variable all have estimated marginal effects that are biased
toward zero relative to the instrumented double hurdle specification. Interestingly, choosing to
either not model the limited dependent variable (OLS, TSLS) or not correct for endogeneity (OLS,
standard double hurdle) produces results that are very similar to what has been found in the
existing literature (i.e. statistically and/or economically insignificant).

Focusing on the remaining coefficient estimates from our preferred model (Table 2) estimated
on the full sample, we find that conservation payments per acre correlates positively with both
measures of cover crop use while having a female operator is negatively correlated with both
measures. Operating acreage, share of acreage devoted to crops, whether the farm raised cattle,
average value of the PDSI index, and education status (i.e. indicator for college graduate, relative to
less than college education) are all positively correlated with cover crop adoption but are
negatively correlated (note that crop share is negative but statistically insignificant) with the share
of acres planted with cover crops. Classification as a beginner farm and operator age are both
negatively correlated with the probability of initial cover crop adoption, but have no statistically
significant relationship with the share of acres planted with cover crops. Partly owned farms and
rented farms are both more likely to initially adopt cover crops relative to fully owned farms, but
do not have statistically different shares of acres planted to cover crops.?? Farm typology indicators
are all negatively correlated with the probability of initial cover crop adoption indicating that any
family farm (i.e. retirement, lifestyle, lower and higher sales, large, and very large) is more likely to
adopt cover crops relative to non-family farms (excluded category). The same farm typology
indicators are also negatively correlated with cover crop use at the intensive margin relative to
non-family farms, however “higher sales” and “large” farms are the only indicators to maintain
statistical significance across both the first and second hurdle estimates.

A number of coefficient estimates, when viewed as a collection, suggest that resource
constraints? potentially inhibit cover crop adoption. For example, beginner farms are less likely to

2Figure 1 and similar figures are created using the “spec_chart” function developed by Ariel Ortiz-Bobea (https://github.co
m/ArielOrtizBobea/spec_chart).

2IFull regression results for each of these specifications are available in Tables S1-S3 in the appendix.

220wnership status is likely a proxy for a number of other operator and field characteristics. Operator age distributions are
notably different across ownership status. Fully owned fields have operators with a mean age of 59.9 compared to 53.5 among
rented fields. Additionally, particularly young operators tend to be disproportionately represented by rented land (4.4% of
operators that fully own their land are under 40 whereas 16.5% of operators of rented land are under 40). Hence, it may be that
younger farmers are renters that have longer time horizons, and are more likely to adopt new soil health practices. Older
farmers have shorter time horizons and may be less interested in trying new practices. Finally, Lee, Durbahn, and Orazem
(2023) find that the variance in yield is much higher for operator owned fields compared to fields operated under a cash-rent
agreement. The authors demonstrate through a theoretical model that varying risk preferences between owners and tenants is
necessary to explain this discrepancy. The variation in risk preference may also be driving why renters are more willing to
adopt soil health practices that can reduce risk.

ZResource constraints could take the form of lacking cash needed to purchase and distribute cover crop seed or could be in
the form of lacking the appropriate equipment for managing cover crops.
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adopt cover crops. Additionally, the largest negative effects on adoption among the farm typology
indicators are for farm classifications that all have the lowest gross cash farm incomes (retired,
residential, lower sales). All of these coefficients are also insignificant within the second hurdle
regression suggesting that once cover crops are adopted, which implies any resources constraints
have necessarily been overcome, these farm characteristics no longer correlate with cover crop use.
The result that farms with more total acres tend to be more likely to plant cover crops is also
consistent with this idea, however, more acreage is also significantly correlated with smaller shares
of total acreage being planted with cover crops.**

7. Robustness checks

Our key independent variable, FCIP expenditures per acre, is both right skewed and includes
many zero values making application of an inverse hyperbolic sine (IHS) transformation an
appropriate choice. However, the IHS transformation is not scale invariant (Aihounton and
Henningsen, 2020; Bellemare and Wichman, 2020). For a variable x, the IHS function has little to
no effect on values of x near zero and converges to log(2x) as x approaches infinity (Aihounton
and Henningsen, 2020). Thus the effect of the IHS transformation on the original data values is
different based on the scale of the data (a choice that is potentially arbitrary). As a robustness
check we re-compute our results after re-scaling FCIP expenditures per acre up and down by a
factor of 10. Additionally, we estimate a set of results after instead applying a log transformation
after adding 1 to avoid taking the log of zero.

Marginal effects for these estimations are reported in the appendix in figures S1-S3. Overall,
our findings related to the relationship between various empirical specifications is preserved
across all data transformations. Using OLS, 2SLS, or a standard double hurdle model (without
instruments) all produce marginal effects that are biased toward zero and remain economically
negligible. Applying the control function approach to the double hurdle model suggests
qualitatively equivalent results relative to our main specification. Despite the differences in models
being preserved, scaling our primary dependent variable does alter the magnitude of the estimated
marginal effects. Scaling up by a factor of 10 results in most estimated marginal effects decreasing
in magnitude slightly while scaling down by a factor of ten slightly increases the magnitude of the
effect. However, the changes in magnitude of the marginal effects when taking the log of the
dependent variable are minute.

Recognizing that a substantial number of farms in our sample report zero FCIP expenditures,
as an additional robustness check, we estimate an alternative specification that keeps only
observations that report positive crop insurance expenditures which restricts the sample to those
farms that are already participating in the FCIP. Marginal effects estimated on this sub-sample of
the data are reported in figure S4. Results from our preferred model (DH with instrumental
variables) again suggest qualitatively equivalent results across pre and post 2018 Farm Bill subsets,
however, estimation on the full data set (of FCIP participants) produces null effects at both
margins of cover crop use. Notably, the magnitude of the marginal effect at the extensive margin
prior to the 2018 Farm Bill is substantially larger among existing FCIP participants which is
consistent with the idea that concerns about FCIP eligibility were a potential deterrent to cover
crop adoption prior to the 2018 Farm Bill.

Finally, we incorporate the subsidy-based instrument proposed by (Yu, Smith, and Sumner,
2018) into our analysis by constructing an alternative instrument incorporating both the
average subsidy rate for 65 and 75% yield protection policies (which we denote as S65 and S75
respectively) and the initial rate (74s.;) as described in a previous section. The variables s65
and s75 are weak instruments (as indicated by 2SLS diagnostic tests) when used alone in our

24A potential explanation for this is that farms with larger acreage are more willing to experiment with new production
practices on small portions of their total acreage.
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empirical setting, thus, we interact the average of the subsidy rates with our existing initial rate
(i.e. Tes[(s65+s75)/2] ). Marginal effects from using this alternatively defined instrument are
reported in figure S5 and show qualitatively equivalent results to our primary specification.

8. Conclusion

This study contributes to a limited literature that assesses the relationship between cover crop use
and crop insurance participation. The analysis presented here utilizes the US Department of
Agriculture (USDA) Agricultural Resource Management Survey (ARMS) to construct a repeated
cross section of farm level observations from 2012 and 2015-2021 (N = 119,166). An empirical
model is then estimated to assess how cover crop use at the intensive and extensive margins
correlates with crop insurance expenditures. Decisions on cover crop use at the intensive and
extensive margin are modeled via separate processes by specifying a double hurdle model which is
combined with a control function approach to address potential sources of endogeneity.

Contrary to previous literature, the results presented here find highly significant (both
statistical and economic) effects between crop insurance participation and cover crop use. We
attribute this to limitations in the empirical approaches used in prior studies. Specifically,
treatment of endogeneity during estimation produces qualitatively different results compared to
specifications that implicitly assume an exogenous relationship between insurance demand and
cover crop use. Similarly, the competing effects observed at the intensive and extensive margin of
cover crop use lead to estimated effects that are biased toward zero when separate processes for
each decision are not explicitly modeled.

Our results are consistent with the narrative that uncertainty in crop insurance eligibility as it relates
to cover crop use acted as a deterrent to cover crop adoption. However, we find evidence of this only
with respect to use at the extensive margin (i.e. the dichotomous decision to adopt cover crops). With
respect to the intensive margin (i.e. the share of acreage planted with cover crops) we find weakly
significant effects between cover crop use and FCIP expenditures. Splitting our sample into distinct
periods before and after the 2018 Farm Bill suggests that the disincentive effect identified in the entire
sample is only statistically significant prior to the 2018 Farm Bill. Again, this is consistent with the
narrative that explicit language in the 2018 Farm Bill that clarified cover crop use as a “good farming
practice” and encouraged use of cover crops among insured producers may have eliminated prior
reservations over cover crop use resulting in loss of crop insurance eligibility. It is worth noting that
during this time period, some states were launching their own cover crop incentive programs. Any
effects these programs had on cover crop adoption are accounted for via state and year fixed effects in
our analysis, however, the existence of these incentive programs is emblematic of a more general effort
to promote cover crop use. Similarly, the Pandemic Cover Crop Program was in effect for the 2021 and
2022 crop year which provided subsidy payments for cover crop use.

Our results represent a single characterization of cover crop use as it relates to a single farm
risk management strategy: crop insurance. However, the broader relationship between
conservation agriculture and farm risk management is far from being fully understood. Even
though a number of empirical studies exist that document the ability of cover crops to mitigate
agricultural risk, the effects of cover crops from a risk management perspective are highly
variable. As noted in section 2, this is potentially due to the large variety of combinations of
planting and termination dates, termination method, cover crop species, and cash crop species
all of which are under the umbrella term of “cover crops.”* For example, there are many studies

% Another relevant practice that may have implications for cover crop use is double cropping (i.e. harvesting two crops in a
single year). Historically, double cropping has been rare with approximately 2% of cropland from 1999 to 2012 being double
cropped (Borchers et al., 2014). Higher temperatures and recent expansion of double cropping crop insurance coverage in
2022 may make double cropping more viable in the future and affect cover crop use. Current data availability in ARMS does
not allow for tracking the use of double cropping on a farm, and this did not allow us to examine this issue further.
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that find increases in yield of cereal cash crops following a grain legume cover crop (see Fageria,
Baligar, and Bailey (2005) for a review). Similarly, Marcillo and Miguez (2017) conduct a meta-
analysis of studies from 1965-2015 and find either neutral or positive yield effects of winter
cover crops on corn. However, a number of studies have also found negative effects between
cover crops and yields, especially in semiarid environments (see Nielsen et al. (2016) for a
review). Yet, cases of cover crops mitigating the yield loss associated with extreme drought have
also been observed (O’Connor, 2013). Recent literature has assessed the role of cover crops in
direct mitigation of crop insurance losses finding a negative associations between cover crop use
and crop insurance losses for perils associated with extreme moisture levels (both excess
moisture and drought) (Chen et al., 2022; Won et al., 2024).

Opverall, the effects of cover crops on yields are, a-priori, ambiguous without knowing the
precise combination of farmer decisions and climatic variables that characterize a cover crop
practice. Adding to the potential variability in how cover crops may be perceived from a risk
management perspective is the fact that some evidence suggests that the benefits to soil quality of
conservation agricultural practices accumulate over time with continuous use (Karlen et al., 2013;
Mbuthia et al., 2015; Richter et al., 2007; Wood and Bowman, 2021). Thus, it may be rational from
an agronomic perspective to view cover crops as a practice that enhances risk in the short term in
exchange for increased resilience and yields in the long term.

Although our own results are robust to a number of alternative specifications, limitations in our
empirical approach still exists. Specifically, availability of expenditures as the only measure of
insurance demand provides an incomplete picture of farm preferences for crop insurance by
obscuring details such as insurance plan type (for example, revenue vs yield protection), coverage
levels, unit structure (i.e. basic, optional, or enterprise units). These characteristics all influence the
level of crop insurance subsidies received by the farm and in turn alter the out-of-pocket cost of
insurance. Use of farm level data that contains more detailed descriptions of crop insurance
decisions has the potential to allow for more in-depth analysis and help understand whether the
policy effects identified in this study permeate across the entire FCIP or if particular groups of
producers and crop insurance policies were responsible for the aggregate level effects seen here.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/aae.2025.12.
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