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Abstract

We give applications of integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism
to the arithmetic of  3 surfaces over finite fields. We prove that every  3 surface of finite height over a finite field
admits a characteristic 0 lifting whose generic fibre is a  3 surface with complex multiplication. Combined with
the results of Mukai and Buskin, we prove the Tate conjecture for the square of a  3 surface over a finite field.
To obtain these results, we construct an analogue of Kisin’s algebraic group for a  3 surface of finite height and
construct characteristic 0 liftings of the  3 surface preserving the action of tori in the algebraic group. We obtain
these results for  3 surfaces over finite fields of any characteristics, including those of characteristic 2 or 3.

1. Introduction

The integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism have
applications to the arithmetic of  3 surfaces over finite fields. For example, Madapusi Pera used it to
prove the Tate conjecture for divisors on  3 surfaces over finitely generated fields [49]. (See [38] for
the case of characteristic 2.)

The aim of this article is to give further applications. More specifically, we shall prove the following
results:

(1) (see Theorem 1.1) Every  3 surface - of finite height over a finite field F@ with @ elements admits
a complex multiplication (CM) lifting after replacing F@ by its finite extension (i.e., it admits a
characteristic 0 lifting whose generic fibre has complex multiplication).

(2) (see Theorem 1.5) The Tate conjecture holds for algebraic cycles of codimension 2 on the square
- × - of any  3 surface - (of any height) over F@ .

These results are consequences of our results on characteristic 0 liftings of  3 surfaces; see
Theorem 1.7.

Our strategy of the proof is as follows. Let (-,ℒ) be a quasi-polarised  3 surface of finite height
over F@ . Hereℒ is a (primitive) line bundle on - that is big and nef. We shall attach an algebraic group �

overQ to each polarised 3 surface (-,ℒ) of finite height over F@ , which is an analogue of the algebraic
group attached by Kisin to each mod ? point on the integral canonical model of a Shimura variety of
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Hodge type [41]. Then, for each maximal torus ) ⊂ � overQ, we shall construct a characteristic 0 lifting
of the quasi-polarised  3 surface (-,ℒ) such that the action of each element of ) (Q) on the singular
cohomology of the generic fibre preserves the Q-Hodge structure. We use integral canonical models of
Shimura varieties to control the rationality of the action of) (Q). From these results, the result (1) follows
by comparing the rank of the algebraic group � and the general spin group attached to the orthogonal
Shimura variety. Combined with the results of Mukai and Buskin on the Hodge conjecture for products
of  3 surfaces, we shall prove that the action of every element of ) (Q) is induced by an algebraic cycle
of codimension 2 on - × - . Applying this result for several maximal tori ) ⊂ �, the result (2) follows.

Note that we do not impose any conditions on the characteristic of the base field. Thus, the main
results of this article are valid over finite fields of any characteristics, including those of characteristic 2
or 3. To overcome certain technical difficulties, we essentially use the integral comparison theorems of
Bhatt-Morrow-Scholze [6], at least in small characteristics. (Note that, when the characteristic is greater
than or equal to 5, we can avoid most of the technical difficulties. Instead, we can use the results of
Nygaard-Ogus to obtain the main results of this article. See Subsection 1.4.)

In the course of writing this article, we found an error in the proof of the étaleness of the Kuga-Satake
morphism in characteristic 2, which was also used in the proof of the Tate conjecture for  3 surfaces
in characteristic 2 [38]. We correct it using our results on �-crystals on orthogonal Shimura varieties,
which depend on the integral comparison theorem of Bhatt-Morrow-Scholze [6]; see Remark 6.9 for
details. (See also Remark 6.10.)

In the rest of the Introduction, we shall first give precise statements on our results on CM liftings and
the Tate conjecture; see Theorem 1.1 and Theorem 1.5. Then we explain our results on characteristic 0
liftings (see Theorem 1.7) and how to obtain (1) and (2) from them.

1.1. CM liftings of  3 surfaces of finite height over finite fields

First we state our results on CM liftings.
Recall that a projective smooth surface - over a field is called a  3 surface if its canonical bundle

is trivial and it satisfies �1(-,O- ) = 0. More generally, an algebraic space � over a scheme ( is a  3
surface over ( if � → ( is proper, smooth and every geometric fibre is a  3 surface.

We say that a projective  3 surface . over C has complex multiplication if the Mumford-Tate group
associated with the singular cohomology �2

� (.,Q) is commutative; see Subsection 9.1. We say that a
 3 surface . over a number field � has CM if .C has CM for every embedding � ↩→ C.

We fix a prime number ? and a power @ of ?. Let - be a  3 surface over F@ . We say that - admits
a CM lifting if there exist a number field �, a finite place E of � with residue field F@ and a  3 surface
� over the localisation ��, (E) of the ring of integers �� of � at E such that the special fibre �F@ is
isomorphic to - and the generic fibre �� is a  3 surface with CM. The height ℎ of the formal Brauer
group of - is called the height of -; it satisfies 1 ≤ ℎ ≤ 10 or ℎ = ∞. When 1 ≤ ℎ ≤ 10 (respectively
ℎ = ∞), we say - is of finite height (respectively supersingular).

Here is the first main theorem of this article.

Theorem 1.1 (see Corollary 9.10). Let - be a  3 surface over F@ . If - is of finite height, then there is
a positive integer < ≥ 1 such that -F@< := - ×SpecF@ Spec F@< admits a CM lifting.

Remark 1.2. After we completed the first draft of this article, the authors learned that Yang also
proved the above theorem under the additional conditions that ? ≥ 5 and - admits a quasi-polarisation
whose degree is not divisible by ?; see [74, Theorem 1.6]. Under these assumptions, our method (or a
simplified version presented in Subsection 1.5) and Yang’s method share several ingredients, but there
is one difference; Yang used Kisin’s result [41, Theorem 0.4] on the CM liftings, up to isogeny, of closed
points of the special fibre of the integral canonical model of a Shimura variety of Hodge type, whereas
we give a refinement of Kisin’s result (or argument) itself; see Theorem 1.7 for details.

Remark 1.3. Deuring proved that every elliptic curve over a finite field admits a characteristic 0 lifting
whose generic fibre is an elliptic curve with CM; see [17, Theorem 1.7.4.6]. Theorem 1.1 is an analogue
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of this result for  3 surfaces of finite height. It is an interesting question to ask whether Theorem 1.1
holds also for supersingular  3 surfaces over finite fields. Our methods in this article cannot be applied
to supersingular  3 surfaces.

Remark 1.4. We also have similar results on the existence of quasi-canonical liftings (in the sense of
Nygaard-Ogus) of  3 surfaces of finite height over a finite field; see Corollary 9.11.

1.2. The Tate conjecture for the squares of  3 surfaces over finite fields

Next we state our results on the Tate conjecture. (For the statement of the Tate conjecture, see [55,
Conjecture 0.1], [69, Section 1], [70, Conjecture 1.1] for example.)

As the second main theorem of this article, we shall prove the Tate conjecture for the square of a  3
surface over a finite field.

Theorem 1.5 (see Theorem 10.1). Let - be a  3 surface (of any height) over F@ . We put - × - :=
- ×Spec F@ - and -

F@
× -

F@
:= -

F@
×Spec F@

-
F@

. Then, for every 8, the ℓ-adic cycle class map

cl8ℓ : / 8 (- × -) ⊗Z Qℓ → �28
ét (-F@ × -F@ ,Qℓ (8))

Gal(F@/F@)

is surjective for every prime number ℓ ≠ ?. Moreover, for every 8, the crystalline cycle class map

cl8cris : / 8 (- × -) ⊗Z Q? → �28
cris ((- × -)/, (F@))

i=?8 ⊗Z Q

is surjective.

Here / 8 (- × -) denotes the group of algebraic cycles of codimension 8 on - × - , and, (F@) is the
ring of Witt vectors of F@ . The map i denotes the action of the absolute Frobenius endomorphism on
the crystalline cohomology.

Remark 1.6. Theorem 1.5 was previously known to hold for some  3 surfaces.

(1) Theorem 1.5 obviously holds for any 8 ∉ { 1, 2, 3 }.
(2) The surjectivity of cl1ℓ and cl3ℓ follows from the Tate conjecture for - [18, 38, 49, 52]; see also

Lemma 10.9.
(3) Theorem 1.5 holds when - is supersingular. In fact, the Tate conjecture for - implies the Picard

number of -
F@

is 22; see Lemma 10.6. Then the Tate conjecture for the square - × - follows by
the Künneth formula; see Lemma 10.7 and Remark 10.8.

(4) Zarhin proved the Tate conjecture for - × - when - is an ordinary  3 surface; see [77, Corollary
6.1.2]. Here a  3 surface - is called ordinary if it is of height 1. (More generally, Zarhin proved
the Tate conjecture for any power - × · · · × - of an ordinary  3 surface - .)

(5) Yu-Yui proved the Tate conjecture for - × - when - satisfies some conditions on the characteristic
polynomial of the Frobenius morphism; see [75, Lemma 3.5, Corollary 3.6].

In the cases studied by Zarhin and Yu-Yui, it turns out that all of the Tate cycles of codimension 2
on - × - are spanned by the classes of the cycles of the form - × {G0}, {G0} × - and �1 × �2 and the
classes of the graphs of powers of the Frobenius morphism on - . Here G0 is a closed point on - , and
�1 and �2 are divisors on - . In general, there are Tate classes on - × - that are not spanned by these
classes. Therefore, in order to prove Theorem 1.5 in full generality, we shall prove the algebraicity of
Tate cycles on - × - that are not spanned by Tate cycles considered by Zarhin and Yu-Yui. We shall
prove it by constructing characteristic 0 liftings and applying the results of Mukai and Buskin on the
Hodge conjecture.
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1.3. Construction of characteristic 0 liftings preserving the action of tori

Here we explain our results on the construction of characteristic 0 liftings of  3 surfaces.
Let - be a  3 surface over F@ and ℒ a line bundle on - defined over F@ that gives a prim-

itive quasi-polarisation. Assume that - is of finite height. After replacing F@ by a finite extension
of it, the Kuga-Satake abelian variety � associated with (-,ℒ) is defined over F@ . (Precisely,
we shall use the Kuga-Satake abelian variety introduced by Madapusi Pera in [49, 50], which has
dimension 221; it is larger than the dimension of the classical Kuga-Satake abelian variety. See
Subsection 4.3.)

We have an action of a general spin group, denoted by GSpin(!Q) in this article, on the cohomology
of - and �. We put � := GSpin(!Q) in this section. We do not recall the precise definition of � here.
Instead, we give some of its properties:

◦ For every prime number ℓ ≠ ?, the group of Qℓ-valued points � (Qℓ ) acts on the primitive
part

%2
ét (-F@ ,Qℓ (1)) := chℓ (ℒ)

⊥ ⊂ �2
ét (-F@ ,Qℓ (1))

of the ℓ-adic cohomology of - and the ℓ-adic cohomology

�1
ét (�F@ ,Qℓ)

of �.
◦ There is a � (Qℓ)-equivariant Qℓ-linear map

%2
ét (-F@ ,Qℓ (1)) → EndQℓ (�

1
ét (�F@ ,Qℓ)

∨),

where ()∨ denotes the Qℓ-linear dual.
◦ There is an element Frob@ ∈ � (Qℓ) whose action on %2

ét (-F@ ,Qℓ (1)) (respectively �1
ét (�F@ ,Qℓ))

coincides with the action of the geometric Frobenius morphism on the ℓ-adic cohomology of -
(respectively �).

Following Kisin [41], we attach an algebraic group � overQ to the quasi-polarised 3 surface (-,ℒ);
see Definition 8.1. Instead of giving the precise definition here, we give its properties:

◦ The group of Q-valued points � (Q) is considered as a subgroup of the multiplicative group of the
endomorphism algebra of �

F@
tensored with Q:

� (Q) ⊂ (End
F@
(�
F@
) ⊗Z Q)

×.

◦ For every prime number ℓ ≠ ?, there is an embedding �Qℓ ↩→ �Qℓ and an element of � (Qℓ) is in
� (Qℓ) if and only if it commutes with Frob<@ for a sufficiently divisible < ≥ 1.

◦ The algebraic groups � and � have the same rank.

The existence of an algebraic group � over Q that satisfies these properties is not obvious; it is
considered as Kisin’s group-theoretic interpretation and generalisation of Tate’s original proof of the
Tate conjecture for endomorphisms of abelian varieties over finite fields.

As the third main theorem of this article, we shall construct a characteristic 0 lifting of a quasi-
polarised  3 surface of finite height preserving the action of a maximal torus of the algebraic
group �.

Theorem 1.7 (see Theorem 9.7). Let ) ⊂ � be a maximal torus over Q. Then there exist a finite
extension  of , (F@) [1/?] and a quasi-polarised  3 surface (X,L) over � such that the special
fibre (X

F@
,L
F@
) is isomorphic to (-

F@
,ℒ
F@
) and, for every embedding  ↩→ C, the quasi-polarised

 3 surface (XC,LC) satisfies the following properties:
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(1) The  3 surface XC has CM.
(2) There is a homomorphism of algebraic groups over Q,

) → SO(%2
� (XC,Q(1))).

Here %2
� (XC,Q(1)) is the primitive part of the Betti cohomology of XC.

(3) For every ℓ ≠ ?, the action of ) (Qℓ ) on %2
� (XC, Q(1)) ⊗QQℓ is identified with the action of ) (Qℓ )

on %2
ét(-F@ ,Qℓ (1)) via the canonical isomorphisms

%2
� (XC,Q(1)) ⊗Q Qℓ � %

2
ét (XC,Qℓ (1)) � %

2
ét (-F@ ,Qℓ (1))

(using the embedding  ↩→ C, we consider  as a subfield of C).
(4) The action of every element of ) (Q) on %2

� (XC,Q(1)) preserves the Q-Hodge structure on it.

Remark 1.8. It is known that every  3 surface with CM is defined over a number field; see Proposition
9.1 and Remark 9.2. Therefore, Theorem 1.7 implies Theorem 1.1.

Remark 1.9. Our construction of characteristic 0 liftings relies on the theory of integral canonical
models of Shimura varieties of Hodge type developed by Milne, Vasiu, Kisin, and Kim-Madapusi Pera.
In particular, we need an explicit description of the completion at a closed point of the special fibre of
the integral canonical model of a Shimura variety of Hodge type given by Kisin when ? ≥ 3 [40] and
by Kim-Madapusi Pera when ? = 2 [38]. (When ? ≥ 5, we can also use the results of Nygaard-Ogus
[55] to obtain necessary results on characteristic 0 liftings; see Subsection 1.4 and Remark 7.2.)

Remark 1.10. When - is ordinary, Theorem 1.7 was essentially proved by Nygaard in [54], although
the algebraic group � did not appear there. When - is ordinary, the canonical lifting of - is a CM
lifting. On the other hand, when the height of - is finite and ? ≥ 5, Nygaard-Ogus proved that - admits
quasi-canonical liftings [55]. But a quasi-canonical lifting is not necessarily a CM lifting.

Remark 1.11. As suggested by the referee, our methods should be able to be applied to more general
mod ? points on orthogonal Shimura varieties (not only to  3 surfaces over F@ of finite height) in order
to show that they admit CM liftings. See also Remark 9.8.

1.4. Remarks on the characteristic and the Kuga-Satake morphism

In this article, we do not put any restrictions on the characteristic ?. There are several technical difficulties
in small characteristics. But, when ? ≥ 5 and ? does not divide the degree of the quasi-polarisation,
most of the technical difficulties disappear and the proofs of the main theorems can be considerably
simplified. See Subsection 1.5 for some details.

We construct characteristic 0 liftings of quasi-polarised  3 surfaces corresponding to characteristic 0
liftings of formal Brauer groups in Section 7. Our construction depends on the calculations of �-crystals
in Section 6, which in turn depend on the integral comparison theorems of Bhatt-Morrow-Scholze [6].
When ? ≥ 5, we can avoid them. Instead, we can use the results of Nygaard-Ogus [55] to obtain
necessary results on liftings of  3 surfaces; see Remark 7.2.

Our notation on the Shimura varieties is slightly complicated because we use the Kuga-Satake
morphism introduced by Madapusi Pera in [49, 38], which is denoted by

KS: "sm
23,K

?
0 ,Z(?)

→ /K
?
0
(Λ).

(See Subsection 5.2.) To define /K
?
0
(Λ), we embed the Shimura variety, which is the target of the

classical Kuga-Satake morphism, into a larger Shimura variety and put additional structures (called
Λ-structures); see Definition 4.3.
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We use the morphism KS to avoid certain technical difficulties that arise when ? divides the degree
of the quasi-polarisation. (The same technique was used by Madapusi Pera in [49, 50, 38]. See also
Remark 4.1.)

When ? does not divide the degree of the quasi-polarisation, we can avoid it and directly work with
the classical Kuga-Satake morphism into the integral canonical model of the (smaller) Shimura variety.

Remark 1.12. In the course of writing this article, we found some issues on the proof of the étaleness
of the Kuga-Satake morphism. The étaleness was used in our construction of characteristic 0 liftings in
Section 7. It was also used by Madapusi Pera in his proof of the Tate conjecture for  3 surfaces [49, 38].
We can avoid these issues using our results in Section 6; see Remark 6.9 and Remark 6.10 for details.
After we communicated the first draft of this article to Madapusi Pera, he found a somewhat different
argument; see [51].

1.5. Outline of the proofs of the main theorems

We shall prove Theorem 1.1 and Theorem 1.7 at the same time. Then, combined with the results of
Mukai and Buskin, we shall prove Theorem 1.5.

Proofs of Theorem 1.1 and Theorem 1.7 (when ? ≥ 5)

In order to simplify the exposition, we first explain the proof of Theorem 1.7 when ? ≥ 5 using the
results of Nygaard-Ogus. In the following argument, we replace F@ by a sufficiently large finite extension
of it. We put, := , (F@).

Let B̂r := B̂r(-) be the formal Brauer group associated with - . First we shall show that �Q? acts on

B̂r, up to isogeny. Then we take a finite totally ramified extension � of, [1/?] and a one-dimensional
smooth formal group G over �� lifting B̂r such that the action of �Q? on B̂r lifts to an action of �Q? on
G, up to isogeny.

Let %2
cris (-/,) denote the primitive part of �2

cris (-/,). The lifting G defines filtrations on
%2

cris (-/,) ⊗, � and �1
cris(�/,) ⊗, � as follows. The Kuga-Satake construction gives embeddings

that are homomorphisms of �-isocrystals after inverting ?:

D(B̂r) (1) ⊂ %2
cris (-/,) (1) ⊂ !̃cris ⊂ End, (�

1
cris (�/,)

∨).

(Here D(B̂r) is the Dieudonné module of B̂r considered as a connected ?-divisible group. For the
,-module !̃cris, see Subsection 4.6.) The lifting G defines a filtration on D(B̂r) (1) ⊗, � :

Fil1(G) ⊂ D(B̂r) (1) ⊗, �.

Thus, it gives the filtration on %2
cris (-/,) (1) ⊗, � :

Fil1(G) ⊂ Fil1(G)⊥ ⊂ %2
cris (-/,) (1) ⊗, �.

Take a generator 4 ∈ Fil1(G) and write

Fil1 := Im(4) ⊂ �1
cris(�/,) ⊗, �.

It gives a filtration on �1
cris (�/,) ⊗, � that does not depend on the choice of 4.

When ? ≥ 5, the results of Nygaard-Ogus [55] imply the existence of a lifting (X,L) over ��
corresponding to the filtration defined as above.

We shall show that, for every embedding � ↩→ C, the action of an element of) (Q) on %2
� (XC,Q(1))

preserves the Q-Hodge structure. To show this, we note that each element of ) (Q) can be considered as
an element of (EndF@ (�) ⊗ZQ)

×. Because its action preserves the filtration on �1
cris (�/,) ⊗, � , it lifts

to an element of (EndC(AC) ⊗Z Q)×, where AC is the Kuga-Satake abelian variety over C associated
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with (XC,LC). In particular, it preserves the Hodge structure on the singular cohomology �1
� (AC,Q).

Because we have a ) (Q)-equivariant embedding respecting the Q-Hodge structures

%2
� (XC,Q(1)) ↩→ EndC(�

1
� (AC,Q)

∨),

the action of each element of ) (Q) on %2
� (XC,Q(1)) preserves the Q-Hodge structure on it.

Because the algebraic groups � and � have the same rank, we conclude that the Mumford-Tate group
of %2

� (XC,Q(1)) is commutative. Thus, XC is a  3 surface with CM. Consequently, the quasi-polarised
 3 surface (X� ,L� ) is defined over a number field, and Theorem 1.1 and Theorem 1.7 are proved
when ? ≥ 5.

Proofs of Theorem 1.1 and Theorem 1.7 (for ? = 2 or 3)

When ? = 2 or 3, we cannot use the results of Nygaard-Ogus to construct liftings of 3 surfaces. Instead,
we use ?-adic Hodge theory and the étaleness of the Kuga-Satake morphism to construct liftings. (The
following argument works for any ?, including ? ≥ 5.)

Using the ?-adic Tate module of G, we first construct aZ? [Gal(�/�)]-module !̃? such that !̃? [1/?]
is a crystalline Gal(�/�)-representation whose Hodge-Tate weights are in {−1, 0, 1}; see Lemma 7.3.
On the other hand, we can show that the filtration Fil1 ⊂ �1

cris(�/,) ⊗, � gives the structure of a
weakly admissible filtered i-module on �1

cris (�/,) [1/?]. It corresponds to a crystalline representation

of Gal(�/�), which is denoted by �ét,Q? .

Next we find a Gal(�/�)-stable Z?-lattice in �ét,Q? as follows. We can show that there is an

embedding of Gal(�/�)-representations

!̃? [1/?] ↩→ EndQ? (�ét,Q? ).

Moreover, it can be shown that there is an isomorphism of Q?-vector spaces

Cl( !̃? [1/?]) � �ét,Q?

such that the actions of Gal(�/�) on !̃? and �ét,Q? factor through a homomorphism

Gal(�/�) → GSpin( !̃?) (Z?) ⊂ Cl( !̃?)
×.

Here Cl( !̃?)× acts on Cl( !̃? [1/?]) � �ét,Q? by the left multiplication. We take a Gal(�/�)-stable

Z?-lattice in �ét,Q? corresponding to Cl( !̃?) ⊂ Cl( !̃? [1/?]). Then we take a ?-divisible group H over
�� corresponding to it.

Let  be the composite of � and, (F@) [1/?]. We can show that the ?-divisible group H� satisfies
a certain technical condition, called ‘adaptedness’. Then we can find an appropriate� -valued point B̃ of
the integral canonical model of the Shimura variety lifting the F@-valued point associated with (-,ℒ).
(Precisely, B̃ is an � -valued point of the target /K

?
0
(Λ) of the Kuga-Satake morphism.) It gives rise to

an abelian scheme A over � lifting � whose associated ?-divisible group A[?∞] is H� .
By the étaleness of the Kuga-Satake morphism, we obtain a quasi-polarised  3 surface (X,L) over

� corresponding to B̃.
The rest of the argument is the same as before.

Proof of Theorem 1.5

Fix a prime number ℓ ≠ ?. By the Künneth formula, we have

�4
ét (-F@ × -F@ ,Qℓ (2))

�

⊕

(8, 9)=(0,4) , (2,2) (4,0)

�8ét (-F@ ,Qℓ) ⊗Qℓ �
9

ét (-F@ ,Qℓ) ⊗Qℓ Qℓ (2).
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It is enough to show every element fixed by Frob@ in the component of type (2, 2) is spanned by the
classes of algebraic cycles of codimension 2 on - × - . By the Poincaré duality, such an element can be
considered as an endomorphism of �2

ét (-F@ ,Qℓ (1)) commuting with Frob@ .

Thus, we consider the action of � (Qℓ) on %2
ét (-F@ ,Qℓ (1)). It can be shown that, after replacing F@

by a finite extension of it, there exist finitely many maximal tori )1, . . . , )= ⊂ � over Q such that the Qℓ-
vector space of endomorphisms on %2

ét (-F@ ,Qℓ (1)) commuting with Frob@ is spanned by the images

of )1 (Q), . . . , )= (Q).
Therefore, it is enough to show that, for each 8, the action of every element of)8 (Q) on %2

ét (-F@ ,Qℓ (1))
comes from an algebraic cycle of codimension 2 on - × - . It can be proved by combining Theorem 1.7
with the results of Mukai and Buskin on the Hodge conjecture for certain Hodge cycles on the product
of two  3 surfaces over C.

1.6. Outline of this article

As explained in Subsection 1.4, most of the technical difficulties can be avoided when ? ≥ 5 and ? does
not divide the degree of the quasi-polarisation. Readers who are mainly interested in the applications of
the integral canonical models of orthogonal Shimura varieties to CM liftings and the Tate conjecture
may skip earlier sections in the first reading and may go directly to Section 7.

The organisation of this article is as follows.
In Section 2, we recall basic results on Clifford algebras and general spin groups. In Section 3, we

recall basic results on Breuil-Kisin modules and integral ?-adic Hodge theory. Then, in Section 4 and
Section 5, we fix notation and recall necessary results on the integral canonical models of orthogonal
Shimura varieties and the Kuga-Satake morphism used in this article.

In Section 6, we compare �-crystals on Shimura varieties and the crystalline cohomology of  3
surfaces. We essentially use the integral comparison theorems of Bhatt-Morrow-Scholze [6]. We also
explain how to avoid some issues on the proof of the étaleness of the Kuga-Satake morphism; see
Remark 6.9 and Remark 6.10.

In Section 7, we construct a characteristic 0 lifting of the F@-valued point of the Shimura variety
corresponding to characteristic 0 liftings of formal Brauer group of the  3 surface. We construct such
liftings using our results on �-crystals in Section 6 and ?-adic Hodge theory.

In Section 8, we define and study an analogue of Kisin’s algebraic group associated with a quasi-
polarised  3 surface of finite height over a finite field. We also study its action on the formal Brauer
group.

In Section 9, we combine our results in Section 7 and Section 8 to construct a characteristic 0 lifting
of a  3 surface of finite height over F@ preserving the action of a maximal torus of �. Then we prove
Theorem 1.1 and Theorem 1.7. In Section 10, combined with the results of Mukai and Buskin, we prove
Theorem 1.5.

Finally, in Section 11, we give necessary results on the compatibility of several comparison isomor-
phisms in ?-adic Hodge theory used in this article.

1.7. Notation

Throughout this article, we fix a prime number ? and we let @ be a power of ?. Let F@ denote a finite

field with @ elements and F@ an algebraic closure of F@ .
For a perfect field : of characteristic ? > 0, the ring of Witt vectors of : is denoted by , (:). The

Frobenius automorphism of , (:) is denoted by f : , (:) → , (:). If the field : is clear from the
context, we omit : and simply write, .

A quadratic space over a commutative ring ' means a free '-module " of finite rank equipped
with a quadratic form &. We equip " with a symmetric bilinear pairing ( , ) defined by (G, H) =
&(G + H) − &(G) − &(H) for G, H ∈ " . For a module " over a commutative ring ' equipped with a
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symmetric bilinear form ( , ), we say " (or the bilinear form ( , )) is even if, for every G ∈ " , we have
(G, G) = 20 for some 0 ∈ '.

The base change of a module or a scheme is denoted by a subscript. For example, for a module "
over a commutative ring ' and an '-algebra '′, the tensor product " ⊗' '′ is denoted by "'′ . For
a scheme (or an algebraic space) - over ', the base change - ×Spec' Spec '′ is denoted by -'′ . We
use similar notation for the base change of group schemes, ?-divisible groups, line bundles, morphisms
between them, etc. For a homomorphism 5 : " → # of '-modules, the base change 5'′ : "'′ → #'′

is also denoted by the same notation 5 if there is no possibility of confusion. For an element G ∈ " ,
the '-submodule of " generated by G is denoted by 〈G〉. The dual of " as an '-module is denoted by
"∨ := Hom' (", ').

2. Clifford algebras and general spin groups

In this section, we introduce notation on quadratic spaces and Clifford algebras that will be used in this
article. Our basic references are [3], [50, Section 1].

2.1. Embeddings of lattices

A quadratic space * := ZG ⊕ ZH whose associated bilinear form is given by (G, G) = (H, H) = 0 and
(G, H) = 1 is called the hyperbolic plane. The  3 lattice Λ 3 is defined by

Λ 3 := �8
⊕2 ⊕ *⊕3,

which is a quadratic space over Z. It is unimodular and its signature is (19, 3).
We fix a positive integer 3 > 0. Let ! denote the orthogonal complement of G − 3H in Λ 3, where

G − 3H is considered as an element in the third*. Hence, ! is equal to

�8
⊕2 ⊕ *⊕2 ⊕ 〈G + 3H〉,

and its signature is (19, 2).
The following result is well known.

Lemma 2.1. Let ? be a prime number. There is a quadratic space !̃ of rank 22 over Z satisfying the
following properties:

(1) Its signature is (20, 2).
(2) !̃ is self-dual at ? (i.e., the discriminant of !̃ is not divisible by ?).
(3) There is an embedding ! ↩→ !̃ as quadratic spaces that sends ! onto a direct summand of !̃ as a
Z-module.

Proof. This result was proved in [50, Lemma 6.8] when ? > 2. Here we briefly give a proof that is
valid for every prime number ?. We consider a quadratic space ! ′ := ZE1 ⊕ZE2 such that the associated
bilinear form is given by (E1, E1) = 23, (E2, E2) = 2? and (E1, E2) = 1. We put

!̃ := �8
⊕2 ⊕ *⊕2 ⊕ ! ′.

This is of signature (20, 2) and self-dual at ?. We have an embedding of quadratic spaces

! = �8
⊕2 ⊕ *⊕2 ⊕ 〈G + 3H〉 ↩→ !̃

that is the identity on �8
⊕2 ⊕ *⊕2 and sends G + 3H to E1. �
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10 Kazuhiro Ito et al.

2.2. Clifford algebras and general spin groups

In the rest of this article, we fix an embedding of quadratic spaces ! ⊂ !̃ as in Lemma 2.1.
Let Cl := Cl( !̃) denote the Clifford algebra over Z associated with the quadratic space ( !̃, @ !̃). There

is an embedding of Z-modules !̃ ↩→ Cl that is universal for morphisms 5 : !̃ → ' of Z-modules into
an associative Z-algebra ' such that 5 (E)2 = @ !̃ (E) for every E ∈ !̃. The algebra Cl has a Z/2Z-grading

structure Cl := Cl+ ⊕Cl−, where Cl+ is a subalgebra of Cl. The quadratic space !̃ is naturally embedded
into Cl−.

Let Z(?) be the localisation of Z at ?. We define the general spin group �̃ := GSpin( !̃Z(?) ) over
Z(?) by

�̃ (') := { 6 ∈ (Cl+')
× | 6!̃'6

−1
= !̃' in Cl−' }

for every Z(?) -algebra '. Because !̃ is self-dual at ?, the group scheme �̃ is a reductive group scheme
over Z(?) .

The special orthogonal group �̃0 := SO( !̃Z(?) ) is a reductive group scheme over Z(?) whose generic

fibre �̃0,Q := �̃0 ⊗Z(?) Q is SO( !̃Q).

We have the canonical morphism �̃ → �̃0 defined by 6 ↦→ (E ↦→ 6E6−1) whose kernel is the
multiplicative group G<,Z(?) over Z(?) . We have the following exact sequence of group schemes over
Z(?) :

1→ G<,Z(?) → �̃ = GSpin( !̃Z(?) ) → �̃0 = SO( !̃Z(?) ) → 1.

2.3. Representations of general spin groups and Hodge tensors

We define a Z-module � by � := Cl. We consider �Z(?) as a �̃-representation over Z(?) by the left
multiplication. We have a closed embedding of group schemes over Z(?) :

�̃ ↩→ GL(�Z(?) ).

The representation �Z(?) has a natural Z/2Z-grading structure, which is preserved by the action of �̃.
Let ?+ : �Z(?) → �+

Z(?)
↩→ �Z(?) (respectively ?− : �Z(?) → �−

Z(?)
↩→ �Z(?) ) denote the idempotent

corresponding to �+
Z(?)

(respectively �−
Z(?)

).

The representation �Z(?) is equipped with a right action of ClZ(?) given by the right multiplication,

which commutes with the action of �̃. We fix a Z(?) -basis {48}1≤8≤222 for ClZ(?) and let A48 : �Z(?) →
�Z(?) denote the endomorphism defined by G ↦→ G48 .

We regard !̃Z(?) as a �̃-representation via the canonical homomorphism �̃ → �̃0 as above. Then
the injective homomorphism

8 : !̃Z(?) ↩→ EndZ(?) (�Z(?) )

defined by E ↦→ (ℎ ↦→ Eℎ) is �̃-equivariant. The cokernel of this homomorphism 8 is torsion-free as a
Z(?) -module.

As in [50, Section 1], we define a nondegenerate symmetric bilinear form [ , ] on EndQ(�Q) by

[61, 62] := 2−21 · Tr(61 ◦ 62)

for 61, 62 ∈ EndQ(�Q). Then the embedding 8 ⊗Z(?) Q is an isometry. By [50, Lemma 1.4], there is a
unique idempotent c : EndQ(�Q) → EndQ(�Q) with the following properties:

(1) The image of c is 8( !̃Q).
(2) The kernel of c is the orthogonal complement 8( !̃Q)⊥ of 8( !̃Q) in EndQ(�Q) with respect to the

bilinear pairing [ , ].
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(3) �̃Q is the stabiliser of the Z/2Z-grading structure, the right action of ClZ(?) and the idempotent c;
that is, the stabiliser of ?±, {A48 }1≤8≤222 and c.

As in [40, (1.3.1)], let �⊗
Z(?)

denote the direct sum of all Z(?) -modules obtained from �Z(?) by taking

tensor products, duals, symmetric powers and exterior powers. (In fact, symmetric powers and exterior
powers are unnecessary; see [26].) By [40, Proposition 1.3.2], the group scheme �̃ over Z(?) is the
stabiliser of a finite collection of tensors

{BU} ⊂ �
⊗
Z(?)

.

(See also [38, Lemma 4.7].)
In the rest of this article, we fix such tensors {BU}. We may assume that {BU} includes the tensors {BV}

corresponding to ?±, {A48 }1≤8≤222 and the endomorphism c′, where we put c′ := ?=c for a sufficiently
large = such that c′ maps EndZ(?) (�Z(?) ) into itself.

2.4. Filtrations on Clifford algebras defined by isotropic elements

In this subsection, let � be a field of characteristic 0.
Take a nonzero element 4 ∈ !̃� satisfying (4, 4) = 0. We consider an endomorphism

8(4) := (8 ⊗Z(?) �) (4) ∈ End� (�� )

that is the image of 4 under the embedding

8 ⊗Z(?) � : !̃� ↩→ End� (�� ).

Let 8(4) (�� ) denote the image of the endomorphism 8(4) : �� → �� .
We define a decreasing filtration {Fil8 ( !̃� )}8 (respectively {Fil8 (�� )}8) on !̃� (respectively �� ) by

Fil8 ( !̃� ) :=




0 8 ≥ 2,

〈4〉 8 = 1,

〈4〉⊥ 8 = 0,

!̃� 8 ≤ −1,

Fil8 (�� ) :=




0 8 ≥ 1,

8(4) (�� ) 8 = 0,

�� 8 ≤ −1.

The following proposition immediately follows from the results of [50, Section 1]; see especially
[50, 1.9].

Proposition 2.2.

(1) The dimension of Fil0(�� ) as an �-vector space is 221.
(2) We define a decreasing filtration {Fil8 (End� (�� ))}8 on End� (�� ) by

Fil8 (End� (�� )) = { 6 ∈ End� (�� ) | 6(Fil 9 (�� )) ⊂ Fil8+ 9 (�� ) for every 9 }.

Then the homomorphism 8 ⊗Z(?) � preserves the filtrations.

(3) The Z/2Z-grading structure and the right action of ClZ(?) preserve the filtration {Fil8 (�� )}8 on

�� . The endomorphism c of End� (�� ) preserves the filtration {Fil8 (End� (�� ))}8 on End� (�� ).

Proof. We sketch the proof for the convenience of the reader. We first note that there is a decomposition

!̃� = 〈4〉 ⊕ 〈 5 〉 ⊕ (〈4〉 ⊕ 〈 5 〉)⊥

such that (4, 5 ) = 1 and ( 5 , 5 ) = 0. Let E3, . . . , E22 be an orthogonal basis for (〈4〉 ⊕ 〈 5 〉)⊥. Then we
have

�� =

⊕

0 9 ∈{0,1}

〈401 5 02E
03
3 . . . E

022
22 〉
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by [11, §9.3, Théorème 1].
(1) Because 42 = 2−1 (4, 4) = 0 in the Clifford algebra �� = Cl� , we have

Fil0 (�� ) =
⊕

0 9 ∈{0,1}

〈4 5 02E
03
3 . . . E

022
22 〉.

Hence, its dimension as an �-vector space is 221.
(2) The assertion immediately follows from the description of the filtrations.
(3) It is clear that the Z/2Z-grading structure and the right action of ClZ(?) preserve the filtration on

�� . We shall show that the idempotent c preserves the filtration on End� (�� ).
We recall an explicit description of c from [50, Section 1]. We put V 9 := (E 9 , E 9 )−1 for 3 ≤ 9 ≤ 22.

Then c sends 6 ∈ End� (�� ) to the element c(6) ∈ End� (�� ) given by

c(6) = [6, 8( 5 )]8(4) + [6, 8(4)]8( 5 ) +
∑

3≤ 9≤22

V 9 [6, 8(E 9 )]8(E 9 ).

Recall that we have [61, 62] = 2−21 · Tr(61 ◦ 62) for 61, 62 ∈ EndQ(�Q), and the embedding 8 ⊗Z(?) �
preserves filtrations by (2). Hence, it is enough to show the following assertions to prove that c preserves
the filtration on End� (�� ):

◦ Tr(6 ◦ 8(4)) = 0 for every 6 ∈ Fil0 (End� (�� )).
◦ Tr(6 ◦ 8(4)) = 0 and Tr(6 ◦ 8(E 9 )) = 0 for every 6 ∈ Fil1(End� (�� )) and every 3 ≤ 9 ≤ 22.

These assertions can be checked by using the explicit basis for �� as above. �

3. Breuil-Kisin modules

In this section, we introduce some notation and recall some well-known results on Breuil-Kisin modules
and integral ?-adic Hodge theory, which play important roles in this work. The reader who is familiar
with them may skip this section.

3.1. Preliminaries

In this section, we fix a perfect field : of characteristic ? > 0 and an algebraic closure : of : . To simplify
the notation, we put, := , (:).

Let  be a finite totally ramified extension of, [1/?]. Let  be an algebraic closure of  . We fix a
uniformisers of and a system {s1/?= }=≥0 ⊂  of ?=th roots ofs such that (s1/?=+1 ) ? = s1/?= . Let
� (D) ∈ , [D] denote the (monic) Eisenstein polynomial of s (i.e., it is the monic minimal polynomial
of s over, [1/?]).

Let � denote the completion of  . Let �� denote the ring of integers of �. We put

�♭� := lim
←−−
G ↦→G?

��/?,

which is a perfect F?-algebra. It is an integral domain and the field of fractions is denoted by �♭. Write

�inf := , (�♭� )

for the ring of Witt vectors of�♭
�

. Let i : �inf → �inf denote the automorphism induced by the Frobenius

and the functoriality of Witt vectors. There is a unique Gal( / )-equivariant surjection

\ : �inf ։ ��
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such that its reduction modulo ? is the first projection �♭
�
→ ��/?. We also have a surjection

�inf ։ , (:) induced by the natural surjection �♭
�
→ : .

We put

S := , [[D]] .

The ringS admits a Frobenius endomorphism i that acts on, as the canonical Frobenius f and sends
D to D? .

We put s♭ := (s1/?= mod ?)=≥0 ∈ �
♭
�

. We have a,-linear homomorphism

S→ �inf

that sends D to the Teichmüller lift [s♭] of s♭. This homomorphism is compatible with the Frobenius
endomorphisms. Note that the composite

S→ �inf → ��

is a,-linear homomorphism given by D ↦→ s.
We also need ?-adic period rings �dR, �+dR, �cris and �+cris associated with � defined by Fontaine.

For example, see [6, Subsection 3.3] for the definition and basic properties of these rings.

3.2. Breuil-Kisin modules and crystalline Galois representations

In this subsection, we recall some basic results on Breuil-Kisin modules and crystalline Galois repre-
sentations from [40, (1.2)].

For an S-module M, we put i∗M := S ⊗i,S M . A Breuil-Kisin module (over � with respect to
{s1/?= }=≥0) is a freeS-moduleM of finite rank equipped with an isomorphism ofS[1/� (D)]-modules

1 ⊗ i : (i∗M) [1/� (D)] � M[1/� (D)] .

We say that a Breuil-Kisin module M is effective if the equipped isomorphism 1 ⊗ i of M is induced
by a homomorphism

1 ⊗ i : i∗M →M.

We say that an effective Breuil-Kisin module M is of height ≤ ℎ if the cokernel of 1 ⊗ i is killed by
� (D)ℎ .

For a Breuil-Kisin module M, we define a decreasing filtration {Fil8 (i∗M)}8 on i∗M by

Fil8 (i∗M) := { G ∈ i∗M | (1 ⊗ i) (G) ∈ � (D)8M }

for every 8 ∈ Z.
We say that a Z? [Gal( / )]-module # is a Gal( / )-stable Z?-lattice in a crystalline representa-

tion if # is a free Z?-module of finite rank and # [1/?] is a crystalline Gal( / )-representation. Kisin
constructed a covariant fully faithful tensor functor

# ↦→M(#)

from the category of Gal( / )-stable Z?-lattices in crystalline representations to the category of
Breuil-Kisin modules (over � with respect to {s1/?= }=≥0); see [40, Theorem 1.2.1].

In the rest of this subsection, we fix a Gal( / )-stable Z?-lattice # in a crystalline representation.
We put

MdR (#) := i∗M(#) ⊗S � ,
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whereS→ � is a,-linear homomorphism given by D ↦→ s. The -vector subspace ofMdR (#) [1/?]
generated by the image of Fil8 (i∗M(#)) is denoted by Fil8 (MdR (#) [1/?]). We have a canonical
isomorphism

�dR (# [1/?]) := (# ⊗Z? �dR)
Gal( / )

� MdR (#) [1/?],

which maps Fil8 (MdR (#) [1/?]) onto Fil8 (�dR (# [1/?])); see [40, Theorem 1.2.1]. We define a de-
creasing filtration {Fil8 (MdR (#))}8 on MdR (#) by taking intersection

Fil8 (MdR (#)) := Fil8 (MdR (#) [1/?]) ∩MdR (#).

Note that, by the construction, the quotient

Gr8 (MdR (#)) := Fil8 (MdR (#))/Fil8+1(MdR(#))

is a free � -module of finite rank for every 8 ∈ Z.

Lemma 3.1. Assume that M(#) is effective. Then the image of Fil1 (i∗M(#)) under the surjection
i∗M(#) ։MdR(#) coincides with Fil1(MdR (#)).

Proof. Let Fil′ be the image of Fil1(i∗M(#)) under the surjection i∗M(#) ։ MdR (#). It suffices
to show that the cokernel of the inclusion Fil′ ↩→MdR (#) is ?-torsion-free. Because

� (D)i∗M(#) ⊂ Fil1 (i∗M(#)),

the inverse image of Fil′ under i∗M(#) ։ MdR (#) is Fil1 (i∗M(#)). Hence, the assertion follows
from the fact that the cokernel of Fil1(i∗M(#)) ↩→ i∗M(#) is ?-torsion-free. �

We put
Mcris (#) := i∗M(#) ⊗S ,,

where S → , is a ,-linear homomorphism given by D ↦→ 0. The Frobenius 1 ⊗ i of M(#) defines
a f-semilinear endomorphism of Mcris (#) [1/?], which makes Mcris(#) [1/?] a i-module. We have a
canonical isomorphism of i-modules

�cris (# [1/?]) := (# ⊗Z? �cris)
Gal( / )

� Mcris(#) [1/?];

see [40, Theorem 1.2.1].
Let # be a Gal( / )-stable free Z?-module of finite rank in a crystalline representation and 5

a Gal( / )-equivariant endomorphism of # . The endomorphism of the Breuil-Kisin module M(#)

induced by 5 is denoted by M( 5 ). The endomorphism of MdR(#) (respectively Mcris(#)) induced by
5 is denoted by MdR ( 5 ) (respectively Mcris ( 5 )).

3.3. Breuil-Kisin modules and ?-divisible groups

Let � be a ?-divisible group over � . Let

)?� := lim
←−−
=

�[?=] ( )

denote the ?-adic Tate module of �, which is a free Z?-module of finite rank and admits a continuous
action of Gal( / ).

For the base change �: of �, we have a (contravariant) crystal D(�: ) over CRIS(:/Z?); see [4,
Définition 3.3.6]. Here CRIS(:/Z?) is the (absolute) crystalline site of : . Its value

D(�: ) (,) := D(�: ),։:

in (Spec : ↩→ Spec,) is an �-crystal.
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We have a crystal D(�� /?) over CRIS((� /?)/Z?) for the base change �� /? of �. Its value

D(�� /?) (� ) := D(�� /?)� ։� /?

in (Spec� /? ↩→ Spec� ) is a free � -module of finite rank and admits a Hodge filtration

Fil1D(�� /?) (� ) ↩→ D(�� /?) (� ).

By [5, Proposition 3.14], there is an isomorphism over  :

D(�: ) (,) ⊗,  � D(�� /?) (� ) ⊗�  .

Using this isomorphism, we consider D(�: ) (,) [1/?] as a filtered i-module. (For example, see [39,
1.1.3] for the notion of filtered i-modules.)

In [29, Theorem 7], Faltings constructed a Gal( / )-equivariant isomorphism

)?�[1/?] � HomFil,i (D(�: ) (,) [1/?], �
+
cris).

(See also [31, Subsection 5.2, Remarque 2] and Subsection 11.4.) It induces an isomorphism of filtered
i-modules

2� : �cris (()?�)
∨ [1/?]) � D(�: ) (,) [1/?] .

There are integral refinements of them:

(1) The composite

Mcris(()?�)
∨) [1/?] � �cris (()?�)

∨ [1/?])
2�
� D(�: ) (,) [1/?]

maps Mcris (()?�)
∨) onto D(�: ) (,).

(2) The composite

MdR (()?�)
∨) [1/?] � �dR (()?�)

∨ [1/?])
2�
� D(�� /?) (� ) ⊗�  

maps MdR (()?�)
∨) ontoD(�� /?) (� ) and maps Fil1(MdR (()?�)

∨)) onto Fil1 D(�� /?) (� ).

These results were proved by Kisin when ? > 2; see [40, Theorem 1.4.2]. The general case follows
from the results of Lau [44, 45] as explained in [38, Theorem 2.12]. (See also Remark 11.11.)

3.4. Integral ?-adic Hodge theory

In this subsection, we recall integral comparison theorems proved by Bhatt-Morrow-Scholze [6]. (See
also Subsections 11.1 and 11.2.) Although the results of [6] can be applied in more general cases
(including the semistable case [16]), we only recall their results for  3 surfaces with good reduction for
simplicity.

Let � be a  3 surface over � . It is possibly an algebraic space, not necessarily a scheme. We
remark that the generic fibre � and the special fibre �: are both schemes because a smooth proper
algebraic space of dimension 2 over a field is a scheme. We refer to Subsection 11.2 for details on how
to apply the results of [6] to the proper smooth algebraic space � over � . We will freely use GAGA
results implicitly below.

By [6, Theorem 14.6 (i)], we have the following �cris-linear isomorphism

2cris,� : �2
cris(�:/,) ⊗, �cris

�

−→ �2
ét (� ,Z?) ⊗Z? �cris,
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which is compatible with the action of Gal( / ) and the Frobenius endomorphisms. By its construction
and [6, Theorem 13.1], this is compatible with the following filtered �dR-linear isomorphism constructed
in [62, Theorem 8.4],

2dR,� : �2
dR (� / ) ⊗ �dR

�

−→ �2
ét (� ,Z?) ⊗Z? �dR,

which is Gal( / )-equivariant. More precisely, 2cris,� and 2dR,� are compatible via the Berthelot-
Ogus isomorphism

�2
cris(�:/,) ⊗,  � �2

dR(� / );

see Proposition 11.5.
The isomorphism 2dR,� induces an isomorphism

�dR (�
2
ét (� ,Z?) [1/?]) � �

2
dR(� / ),

which is also denoted by 2dR,� . Similarly, the isomorphism 2cris,� induces an isomorphism

�cris (�
2
ét (� ,Z?) [1/?]) � �

2
cris(�:/,) [1/?],

which is also denoted by 2cris,�.
Let M(�2

ét (� ,Z?)) denote the Breuil-Kisin module (over � with respect to {s1/?= }=≥0) associ-
ated with �2

ét (� ,Z?). We have the composite of the following filtered isomorphisms:

MdR(�
2
ét(� ,Z?)) [1/?] � �dR (�

2
ét (� ,Z?) [1/?])

� �2
dR(� / ).

We also have the composite of the following isomorphisms of i-modules:

Mcris(�
2
ét(� ,Z?)) [1/?] � �cris (�

2
ét (� ,Z?) [1/?])

� �2
cris(�:/,) [1/?] .

As in the case of ?-divisible groups, there are integral refinements of them.

Theorem 3.2 (Bhatt-Morrow-Scholze [6]).

(1) The isomorphism

MdR (�
2
ét(� ,Z?)) [1/?] � �

2
dR(� / )

maps MdR (�
2
ét (� ,Z?)) isomorphically onto �2

dR(�/� ).
(2) The isomorphism

Mcris (�
2
ét (� ,Z?)) [1/?] � �

2
cris(�:/,) [1/?]

maps Mcris (�
2
ét (� ,Z?)) isomorphically onto �2

cris(�:/,).

Proof. (1) Because this part was not stated explicitly in [6], we shall explain how to deduce it from the
results of [6].

First recall that

i∗M(�
2
ét (� ,Z?)) ⊗S �inf
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naturally becomes a Breuil-Kisin-Fargues module in the sense of [6, Definition 4.22]. Under Fargues’s
equivalence [6, Theorem 4.28], this corresponds to a �+dR-lattice

�dR (�
2
ét (� ,Z?) [1/?]) ⊗ �

+
dR = (�2

ét (� ,Z?) ⊗Z? �dR)
Gal( / ) ⊗ �

+
dR

⊂ �2
ét (� ,Z?) ⊗Z? �dR.

Note that the following isomorphism

�dR (�
2
ét(� ,Z?) [1/?]) � (i

∗
M(�

2
ét (� ,Z?)) ⊗S �)

Gal( / )

� MdR(�
2
ét (� ,Z?)) [1/?]

obtained by the reduction modulo b is the same as the one given before.
The above Breuil-Kisin-Fargues module is realised as the �inf-valued cohomology constructed in

[6]. In [6], Bhatt-Morrow-Scholze constructed the �inf-valued cohomology �2
�inf
(�) and showed that

other cohomology theories can be obtained from it. (Here, �2
�inf
(�) denotes the �inf-cohomology of

the completion of ��� .) In our case, �2
�inf
(�) is a free �inf-module of rank 22. By [6, Theorem 14.3],

�2
�inf
(�) is equipped with an �inf-linear Frobenius isomorphism

1 ⊗ i : (�inf ⊗i,�inf �
2
�inf
(�)) [1/i(b)] � �2

�inf
(�) [1/i(b)],

where b is a generator of the kernel of the surjection \ : �inf ։ �� . Hence, it is a Breuil-Kisin-Fargues
module. By [6, Theorem 14.6], it is isomorphic to the Breuil-Kisin-Fargues module associated with
�2

ét (� ,Z?) using 2dR,� . Indeed, by [6, Theorem 14.3(iv)], there is an isomorphism (actually, there
are two constructions giving the same map; see [16, Proposition 6.8]):

�2
�inf
(�) ⊗�inf �dR � �

2
ét (� ,Z?) ⊗Z? �dR,

and �2
�inf
(�) is determined, via Fargues’s equivalence, by a �+dR-lattice

2dR,� (�
2
dR (� / ) ⊗ �

+
dR) ⊂ �

2
ét(� ,Z?) ⊗Z? �

+
dR,

which is exactly

�dR (�
2
ét(� ,Z?) [1/?]) ⊗ �

+
dR.

Therefore, there is an isomorphism

i∗M(�
2
ét (� ,Z?)) ⊗S �inf � �

2
�inf
(�)

making the following diagram commutative:

�2
dR (� / ) ⊗ �

�

��

� // �2
�inf
(�) ⊗�inf �

�dR (�
2
ét (� ,Z?) [1/?]) ⊗ �

� // MdR(�
2
ét (� ,Z?)) ⊗� �

�

OO

and MdR (�
2
ét (� ,Z?)) ⊗� �� is identified with �2

�inf
(�) ⊗�inf �� . The inverse of the composite of

the left vertical arrow and the bottom arrow is the map appearing in the statement of (1).
By [6, Theorem 14.3(ii)], we have an isomorphism

�2
�inf
(�) ⊗�inf �� � �

2
dR (�/� ) ⊗� �� .
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It is compatible with the top arrow in the above diagram; this is essentially checked in the proof of [6,
Theorem 14.1]. See also [16, Proposition 5.41, Theorem 6.6].

To complete the proof of (1), it now suffices to remark that two � -lattices in a  -vector space are
the same if and only if the corresponding two �� -lattices are the same in the �-vector space obtained
by extension of scalars.
(2) See [6, Theorem 14.6(iii)]. We briefly recall the arguments for the convenience of the reader. By

[6, Theorem 14.5(i), Theorem 12.1], there is an isomorphism

�2
�inf
(�) ⊗�inf �cris � �

2
ét (� ,Z?) ⊗Z? �cris

that underlies the following isomorphism used in the proof of (1):

�2
�inf
(�) ⊗�inf �dR � �

2
ét(� ,Z?) ⊗Z? �dR.

This induces an isomorphism

�2
�inf
(�) ⊗�inf �

+
cris � �cris(�

2
ét(� ,Z?) [1/?]) ⊗, [1/?] �

+
cris

such that the composite

i∗M(�
2
ét (� ,Z?)) ⊗S �+cris � �

2
�inf
(�) ⊗�inf �

+
cris

� �cris (�
2
ét (� ,Z?) [1/?]) ⊗, [1/?] �

+
cris

is the canonical map. Namely, the map obtained by the specialisation

�cris (�
2
ét (� ,Z?) [1/?]) � (Mcris (�

2
ét (� ,Z?)) ⊗, , (:) [1/?])Gal( / )

� Mcris (�
2
ét (� ,Z?)) [1/?]

is equal to the canonical map given before.
Moreover, by the construction of 2cris,�, the following isomorphism [6, Theorem 14.3(i)]

�2
�inf
(�) ⊗�inf , (:) � �

2
cris(�:/,) ⊗, , (:)

induces 2cris,� by the specialisation

�cris (�
2
ét (� ,Z?) [1/?]) � (�

2
cris (�:/,) ⊗, , (:) [1/?])Gal( / )

� �2
cris (�:/,) [1/?] .

Now a reasoning similar to that used at the end of the proof of (1) implies (2). �

4. Shimura varieties

In this section, we recall basic results on Shimura varieties and their integral models associated with
general spin groups and special orthogonal groups. We follow Madapusi Pera’s paper [50] for orthogonal
Shimura varieties. (For integral models of more general Shimura varieties of abelian type, see Kisin’s
paper [40]. For the construction of 2-adic integral canonical models, see also [38].)

In this section, we use the same notation as in previous sections. Recall that we fixed the embedding
of quadratic spaces ! ⊂ !̃ as in Lemma 2.1.
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4.1. Orthogonal Shimura varieties over Q

Let -!̃ denote the symmetric domain of oriented negative definite planes in !̃R. We have Shimura

data (�̃0,Q, -!̃) and (�̃Q, -!̃). Each of them has the reflex field Q; see [1, Appendix 1, Lemma] for

example. The canonical homomorphism �̃ → �̃0 induces a morphism of Shimura data (�̃Q, -!̃) →

(�̃0,Q, -!̃).

We put K̃0, ? := �̃0(Z?) (respectively K̃? := �̃ (Z?)), which is a hyperspecial subgroup. Let K̃?

0 ⊂

�̃0 (A
?

5
) (respectively K̃? ⊂ �̃ (A

?

5
)) be an open compact subgroup and K̃0 := K̃0, ?K̃?

0 ⊂ �̃0 (A 5 )

(respectively K̃ := K̃?K̃? ⊂ �̃ (A 5 )). We have the Shimura varieties

ShK̃0
:= ShK̃0

(�̃0,Q, -!̃) and ShK̃ := ShK̃ (�̃Q, -!̃)

associated with the Shimura data (�̃0,Q, -!̃) and (�̃Q, -!̃), respectively. We assume that K̃?

0 and K̃? are
small enough so that ShK̃0

and ShK̃ are smooth quasi-projective schemes over Q. Moreover, we assume

that the image of K̃? under the homomorphism �̃ → �̃0 is K̃?

0 . Then we have a finite étale morphism
over Q:

ShK̃ → ShK̃0
.

We also consider the reductive group SO(!Q) over Q. Let -! denote the symmetric domain of
oriented negative definite planes in !R. We have a Shimura datum (SO(!Q), -!) and a morphism of

Shimura data: (SO(!Q), -!) → (�̃0,Q, -!̃). Let K0, ? ⊂ SO(!Q) (Q?) be the maximal subgroup that
stabilises !Z? and acts on !∨

Z?
/!Z? trivially. Let K

?

0 ⊂ SO(!Q) (A
?

5
) be an open compact subgroup that

stabilises !
Ẑ?

and acts on !∨
Ẑ?
/!
Ẑ?

trivially. We assume that K
?

0 is small enough so that it is contained

in K̃
?

0 and the associated Shimura variety ShK0 (SO(!Q), -!) is a smooth quasi-projective variety over
Q, where K0 := K0, ? K

?

0 . Note that we have K0, ? ⊂ K̃0, ?; see the proof of [50, Lemma 2.6]. Hence, we
have a morphism of Shimura varieties over Q:

ShK0 (SO(!Q), -!) → ShK̃0
.

4.2. Symplectic embeddings of general spin groups

By [50, Lemma 3.6], there is a nondegenerate alternating bilinear form

k : � × � → Z

satisfying the following properties:

(1) The left multiplication induces a closed embedding of algebraic groups over Q,

�̃Q ↩→ GSp := GSp(�Q, kQ).

(2) The left multiplication induces a morphism of Shimura data

(�̃Q, -!̃) → (GSp, (±),

where (± denotes the Siegel double spaces associated with the symplectic space (�Q, k).

Let K′? ⊂ GSp(A?
5
) be an open compact subgroup containing the image of K̃? . Let K′? ⊂ GSp(Q?)

be the stabiliser of �Z? . We put K′ := K′?K′? . After replacing K′? and K̃? by their open compact
subgroups, we may assume that the associated Shimura variety ShK′ (GSp, (±) is a smooth quasi-
projective scheme over Q and the morphism of Shimura data (�̃Q, -!̃) → (GSp, (±) induces the
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following morphism of Shimura varieties over Q:

ShK̃ → ShK′ (GSp, (±).

Let us summarise our situation by the following commutative diagram of algebraic groups over Q:

GSpin(!Q)
�

� //

��

�̃Q

��

�

� // GSp

SO(!Q)
�

� //// �̃0,Q.

We also have the corresponding diagram of Shimura varieties over Q:

ShK̃ = ShK̃ (�̃Q, -!̃)

��

// ShK′ (GSp, (±)

ShK0 (SO(!Q), -!) //// ShK̃0
= ShK̃0

(�̃0,Q, -!̃).

4.3. Integral canonical models and the Kuga-Satake abelian scheme

Because K̃? ⊂ �̃ (Q?) and K̃0, ? ⊂ �̃0 (Q?) are hyperspecial subgroups, the Shimura varieties ShK̃ and
ShK̃0

admit the integral canonical models �K̃ and �K̃0
over Z(?) , respectively. (This result is proved by

Kisin when ? ≠ 2 [40] and by Kim-Madapusi Pera when ? = 2 [38]. The integral canonical models are
characterised by the extension properties. See [40] for details.)

By the construction of�K̃0
, the morphism ShK̃ → ShK̃0

extends to a finite étale morphism�K̃ → �K̃0

over Z(?) .
Let < := |�∨

Z
/�Z | denote the discriminant of �Z. We put

6 := (dimQ �Q)/2 = 221.

Let � := �6,<,K′ be the moduli space over Z(?) of triples (�, _, n ′?) consisting of an abelian scheme �
of dimension 6, a polarisation _ : �→ �∗ of degree < and a K′?-level structure n ′? . For a sufficiently
small K′? , this is represented by a quasi-projective scheme over Z(?) . We have a canonical open and
closed immersion

ShK′ (GSp, (±) ↩→ �Q

over Q. Hence, we have a morphism ShK̃ → �Q over Q. By the construction of �K̃, this morphism
extends to a morphism �K̃ → � over Z(?) ; see [40, (2.3.3)], [38, Section 4.4].

In summary, we have the following diagram of schemes over Z(?) :

�K̃

��

// �

�K̃0
.

Let A�K̃
→ �K̃ be the abelian scheme corresponding to the morphism�K̃ → �. The abelian scheme

A�K̃
is called the Kuga-Satake abelian scheme. We often drop the subscript �K̃ in the notation. For

every �K̃-scheme (, the pullback of A�K̃
to ( is denoted by A( .
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Remark 4.1. If the discriminant of the quadratic space ! is divisible by ?, we do not yet have a
satisfactory theory of integral canonical models of the Shimura varieties ShK (GSpin(!Q), -!) and
ShK0 (SO(!Q), -!) associated with !. (The open compact subgroup K0, ? ⊂ SO(!Q) (Q?) may not be
hyperspecial.) Following Madapusi Pera [49, 50, 38], we embed ! into !̃ whose discriminant is not
divisible by ? as in Lemma 2.1 and use the integral canonical models �K̃ and �K̃0

associated with !̃.

4.4. Local systems on Shimura varieties

In this subsection, we introduce some (complex analytic, ℓ-adic and ?-adic) local systems on orthogonal
Shimura varieties. For details, see [50, 38].

The �̃-representation !̃Z(?) and the �̃-equivariant embedding

8 : !̃Z(?) ↩→ EndZ(?) (�Z(?) )

induce the following objects:

◦ A Q-local system Ṽ� over the complex analytic space Shan
K̃,C

and an embedding of Q-local systems:

8� : Ṽ� ↩→ End(�∨�).

Here �� is the relative first singular cohomology with coefficients in Q of Aan
ShK̃,C

over Shan
K̃,C

, and

�∨� is its dual.

◦ AnA?
5
-local system Ṽ? over the integral canonical model�K̃ and an embedding ofA?

5
-local systems:

8? : Ṽ? ↩→ End(+ ?A).

Here we put

+ ?A := (lim
←−−
?∤=

A[=]) ⊗Z Q

and consider it as an A?
5
-local system over �K̃.

◦ A Z?-local system L̃? over the Shimura variety �K̃,Q = ShK̃ and an embedding of Z?-local systems:

8? : L̃? ↩→ End()?AShK̃
).

Here )?AShK̃
is the ?-adic Tate module of AShK̃

over ShK̃.

4.5. Hodge tensors

Recall that we fixed tensors {BU} ⊂ �
⊗
Z(?)

defining the closed embedding �̃ ↩→ GL(�Z(?) ) over Z(?) ;

see Subsection 2.3. The tensors {BU} ⊂ �
⊗
Z(?)

give rise to global sections {BU,�} of �⊗
�

, global sections

{B
?
U} of (+ ?A)⊗ and global sections {BU,?} of ()?A)⊗.
We recall properties of these tensors. (See [41, (1.3.6)], [38, Proposition 4.10] for details.)

(1) Let : be a field of characteristic 0. For every G ∈ �K̃,Q(:) and a geometric point G ∈ �K̃,Q(:) above

G, the stalk L̃?,G at G is equipped with an even perfect bilinear form ( , ) over Z? . The bilinear form

is Gal(:/:)-invariant; that is, we have

(6H1, 6H2) = (H1, H2)

for every H1, H2 ∈ L̃?,G and every 6 ∈ Gal(:/:).
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We identify )? (AG) with �1
ét (AG ,Z?)

∨. The Gal(:/:)-module L̃?,G and the homomorphism
8?,G are characterised by the property that there is an isomorphism of Z?-modules

�Z? � �
1
ét(AG ,Z?)

∨

that carries {BU} to {BU,?,G} and induces the commutative diagram

!̃Z?

�

��

8 // EndZ? (�Z? )

�

��
L̃?,G

8?,G // EndZ? (�
1
ét (AG ,Z?)

∨),

where !̃Z? � L̃?,G is an isometry over Z? . (We will often drop the subscript G of 8?,G .)

(2) Let : a field of characteristic 0 or ?. For every G ∈ �K̃ (:) and a geometric point G ∈ �K̃ (:) above

G, the stalk Ṽ?
G

at G has a bilinear form ( , ) over A?
5

satisfying the same property as above with Z?
replaced by A?

5
.

(3) For every G ∈ �K̃ (C), the stalk Ṽ�,G at G has a bilinear form ( , ) overQ satisfying the same property
as above with Z? replaced by Q.

4.6. �-crystals and Breuil-Kisin modules

In this subsection, let : be a perfect field of characteristic ? > 0 and G ∈ �K̃,F?
(:). We recall basic

results on �-crystals attached to G ∈ �K̃,F?
(:). (For details, see [40, 41, 50, 38].)

The �̃-representation !̃Z(?) and the �̃-equivariant embedding

8 : !̃Z(?) ↩→ EndZ(?) (�Z(?) )

induce a free,-module !̃cris,G of finite rank and an embedding

8cris : !̃cris,G ↩→ End, (�
1
cris (AG/,)

∨).

The , [1/?]-vector space !̃cris,G [1/?] has the structure of an �-isocrystal. Namely, it is equipped
with a Frobenius automorphism i. The embedding 8cris becomes an embedding of �-isocrystals after
inverting ?.

There is an even perfect bilinear form on !̃cris,G . When ? is inverted, we have

(i(H1), i(H2)) = f(H1, H2)

for every H1, H2 ∈ !̃cris,G [1/?].
We recall the definition of !̃cris,G and 8cris when : is a finite field F@ or F@ . Take a lift G̃ ∈ �K̃ (� ) of

G, where  is a finite totally ramified extension of, [1/?] and � is its valuation ring. Note that such
a lift exists by [40, Proposition 2.3.5], [38, Proposition 4.6]. Let [ = Spec denote the generic point of
Spec� and [ a geometric point above [.

We fix a uniformiser s of  and a system {s1/?= }=≥0 of ?=th roots of s such that (s1/?=+1 ) ? =

s1/?= . Let

M(�1
ét (A[ ,Z?))

be the Breuil-Kisin module (over� with respect to {s1/?= }=≥0) associated with the Gal( / )-stable
Z?-lattice �1

ét (A[ ,Z?) in a crystalline representation. (For the definition of Breuil-Kisin modules, see
Subsection 3.2. See also [40, (1.2)].)
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Because M(−) is a tensor functor, the tensors {BU,?,[} in ()?A[)
⊗ give rise to Frobenius in-

variant tensors {M(BU,?,[)} in M(�1
ét(A[ ,Z?))

⊗ and Frobenius invariant tensors {Mcris(BU,?,[)} in
Mcris (�

1
ét (A[ ,Z?))

⊗. By [40, Corollary 1.4.3], [38, Theorem 2.12], we have a canonical isomorphism

Mcris(�
1
ét(A[ ,Z?)) � �

1
cris (AG/,).

(See also Proposition 11.12.) Using this canonical isomorphism, the tensors {Mcris(BU,?,[)} give rise
to Frobenius invariant tensors {BU,cris,G} in �1

cris(AG/,)
⊗. The tensors {BU,cris,G} do not depend on the

choice of the lift G̃ ∈ �K̃ (� ) of G; see [41, Proposition 1.3.9]. (See also the last paragraph in the proof
of [38, Proposition 4.6].)

Kisin proved the following results.

Proposition 4.2 (Kisin [40, Proposition 1.3.4, Corollary 1.3.5]). There is an isomorphism ofS-modules

�1
ét (A[ ,Z?)

∨ ⊗Z? S � M(�1
ét (A[ ,Z?)

∨)

that carries {BU,?,[} to {M(BU,?,[)} and induces the following commutative diagram:

L̃?,[ ⊗Z? S

�

��

8? // EndS (�1
ét(A[ ,Z?)

∨ ⊗Z? S)

�

��
M(L̃?,[)

M (8?) // EndS (M(�1
ét (A[ ,Z?)

∨)),

where L̃?,[ ⊗Z? S � M(L̃?,[) is an isometry over S.

Proof. The assertion follows from [40, Proposition 1.3.4, Corollary 1.3.5]. Precisely, the statements in
[40, Proposition 1.3.4, Corollary 1.3.5] do not claim the existence of the commutative diagram above,
but the same argument works. �

We define

!̃cris,G := Mcris (L̃?,[) and 8cris := Mcris(8?).

The even perfect bilinear form on L̃?,[ induces an even perfect bilinear form on !̃cris,G . By (1) in
Subsection 4.5 and Proposition 4.2, there is an isomorphism of,-modules

�, � �
1
cris (AG/,)

∨

that carries {BU} to {BU,cris,G} and induces the following commutative diagram:

!̃,

�

��

8 // End, (�, )

�

��
!̃cris,G

8cris // End, (�1
cris (AG/,)

∨),

where !̃, � !̃cris,G is an isometry over , . It follows that !̃cris,G and 8cris do not depend on the choice
of the lift G̃ ∈ �K̃ (� ) of G.
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4.7. Λ-structures for integral canonical models

Recall that we have fixed an embedding of quadratic spaces ! ↩→ !̃. Let Λ := !⊥ ⊂ !̃ denote the
orthogonal complement of ! in !̃ and ] : Λ ↩→ !̃ the natural inclusion.

We recall the definition of Λ-structures from [50].

Definition 4.3 (see [50, Definition 6.11]). A Λ-structure for an �K̃-scheme ( is a homomorphism of
Z(?) -modules

]( : ΛZ(?) → End( (A()Z(?)

satisfying the following properties:

◦ For any algebraically closed field  of characteristic 0 and G ∈ (( ), there is an isometry
]? : ΛZ? → L̃?,G over Z? such that the composite

ΛZ?

]?
−→ L̃?,G

8?
−→ EndZ? ()?AG)

coincides with the map induced by ]( .
◦ For any perfect field : of characteristic ? and G ∈ ((:), there is an isometry ]cris : Λ, → !̃cris,G

over, such that the composite

Λ,
]cris // !̃cris,G

8cris // End, (�1
cris (AG/,)

∨)

coincides with the map induced by ]( .

It turns out that these conditions imply the following:

◦ By [50, Corollary 5.22], for every geometric point G → (, there is an isometry ]? : ΛA?
5
→ Ṽ

?
G over

A
?

5
such that the composite

ΛA?
5

]?

−→ Ṽ
?
G

8?

−→ EndA?
5
(+ ? (AG))

coincides with the map induced by ]( .
◦ For every C-valued point G ∈ ((C), there is an isometry ]� : ΛQ → Ṽ�,G over Q such that the

composite

ΛQ
]�
−→ Ṽ�,G

8�
−→ EndQ(�

1
� (AG ,Q)

∨)

coincides with the map induced by ]( .

We recall the definition of a K?-level structure. Here K? ⊂ GSpin(!Q) (A
?

5
) is an open compact

subgroup whose image under the homomorphism

GSpin(!Q) (A
?

5
) → SO(!Q) (A

?

5
)

is K
?

0 .
Let ( be an �K̃-scheme. For simplicity, we assume that ( is locally Noetherian and connected. Let

n ′ be the corresponding K′?-level structure on A(; as in [40, (3.2.4)], for a geometric point B → (,
the K′?-level structure n ′ is induced by a c1 ((, B)-invariant K̃?-orbit ñ of an isometry �A?

5
� + ? (AB)

over A?
5

that carries {BU} to {B?U,B} and carries !̃A?
5

to Ṽ?B . Here c1 ((, B) denotes the étale fundamental

group of (, and the Tate module + ? (AB) over A?
5

has a natural action of c1 ((, B).

Definition 4.4. Let ( be a locally Noetherian connected scheme over �K̃. Let B → ( be a geo-
metric point. A K?-level structure on ((, ]() is a c1 ((, B)-invariant K?-orbit n ] of an isometry of
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A
?

5
-modules

�A?
5
� + ? (AB)

satisfying the following properties:

(1) It carries {BU} to {B?U,B}.
(2) The following diagram is commutative:

ΛA?
5

] //

]?   ❅
❅❅

❅❅
❅❅

❅

!̃A?
5

�

��

8 // EndA?
5
(�A?

5
)

�

��
Ṽ
?
B

8? // EndA?
5
(+ ? (AB)).

(3) The K?-orbit n ] induces the K̃?-orbit ñ on (.

Definition 4.5. Let /K? (Λ) be the functor on �K̃-schemes defined by

/K? (Λ) (() := { (]( , n ]) | ]( is a Λ-structure and n ] is a K?-level structure on ((, ]() }

for an �K̃-scheme (.

Similarly, we can define a Λ-structure ]0,( for an �K̃0
-scheme (, a K?

0 -level structure on ((, ]0,() and
a functor /K?0

(Λ). (See [50, Definition 6.11] for details.)
The following result was proved by Madapusi Pera.

Proposition 4.6 (Madapusi Pera [50]). The functor /K? (Λ) (respectively /K
?
0
(Λ)) is represented by a

scheme that is finite and unramified over �K̃ (respectively �K̃0
). Moreover, there is a natural morphism

/K? (Λ) → /K
?
0
(Λ),

which is finite and étale.

Proof. See [50, Proposition 6.13]. �

5. Moduli spaces of  3 surfaces and the Kuga-Satake morphism

In this section, we recall definitions and basic properties of the moduli space of  3 surfaces. Then we
recall definitions and basic results on the Kuga-Satake morphism over Z(?) introduced by Madapusi
Pera [49, 38].

5.1. Moduli spaces of  3 surfaces

Recall that we say 5 : � → ( is a  3 surface over ( if ( is a scheme, � is an algebraic space and 5 is
a proper smooth morphism whose geometric fibres are  3 surfaces.

A quasi-polarisation of 5 : � → ( is a section b ∈ Pic(�/() (() of the relative Picard functor
whose fibre b (B) at every geometric point B → ( is a line bundle on the  3 surface �B that is nef
and big. We say b ∈ Pic(�/() (() is primitive if, for every geometric point B → (, the cokernel of
the inclusion 〈b (B)〉 ↩→ Pic(�B) is torsion-free. We say b has degree 23 if, for every geometric point
B → (, we have (b (B), b (B)) = 23, where ( , ) denotes the intersection pairing on �B . We say a pair
( 5 : � → (, b) is a quasi-polarised  3 surface over ( of degree 23 if 5 : � → ( is a  3 surface over
( and b ∈ Pic(�/() (() is a primitive quasi-polarisation of degree 23.
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Let "23 be the moduli functor that sends a scheme ( to the groupoid consists of quasi-polarised  3
surfaces over ( of degree 23. The moduli functor "23 is a Deligne-Mumford stack of finite type over
Z; see [60, Theorem 4.3.4] and [52, Proposition 2.1].

We put "23,Z(?) := "23 ⊗Z Z(?) . Let ( be an "23,Z(?) -scheme. For the quasi-polarised  3 surface
( 5 : � → (, b) associated with the structure morphism ( → "23,Z(?) and a prime number ℓ ≠ ?, we

equip '2 5∗Zℓ (1) with the negative of the cup product pairing. Let

%2 5∗Zℓ (1) := chℓ (b)
⊥ ⊂ '2 5∗Zℓ (1)

denote the orthogonal complement of the ℓ-adic Chern class chℓ (b) ∈ '2 5∗Zℓ (1) (() with respect to
the pairing. We set

%2 5∗Ẑ
? (1) :=

∏

ℓ≠?

%2 5∗Zℓ (1).

The stalk of %2 5∗Zℓ (1) (respectively %2 5∗Ẑ
? (1)) at a geometric point B → ( will be denoted by

%2
ét (�B ,Zℓ (1)) (respectively %2

ét (�B , Ẑ
? (1))).

Let "sm
23,Z(?)

denote the smooth locus of "23,Z(?) over Z(?) . Madapusi Pera constructed a twofold

finite étale cover "̃sm
23,Z(?)

→ "sm
23,Z(?)

parametrising orientations of %2 5∗Ẑ
? (1) that satisfies the

following property. For every morphism ( → "̃sm
23,Z(?)

, there is a natural isometry of Ẑ?-local systems

on (

a : det ! ⊗Z Ẑ
?
� det %2 5∗Ẑ

? (1)

such that, for every B ∈ ((C), the isometry a restricts to an isometry over Z,

aB : det ! � det %2
� (�B ,Z(1)),

under the canonical isomorphism

%2
� (�B ,Z(1)) ⊗Z Ẑ

?
� %2

ét (�B , Ẑ
? (1)),

where we put %2
� (�B ,Z(1)) := ch� (b (B))⊥ ⊂ �2

� (�B ,Z(1)). See [49, Section 5] for details.
For an open compact subgroup K

?

0 ⊂ SO(!Q) (A
?

5
) as in Subsection 4.1, we recall the notion of

(oriented) K
?

0 -level structures from [49, Section 3]. For simplicity, we only consider the case ( is a

locally Noetherian connected "̃sm
23,Z(?)

-scheme. Let B → ( be a geometric point and c1 ((, B) the étale

fundamental group of (. A K
?

0 -level structure on ( 5 : � → (, b) is a c1 ((, B)-invariant K
?

0 -orbit [ of

an isometry over Ẑ? ,

Λ 3 ⊗Z Ẑ
?
� �2

ét (�B , Ẑ
? (1)),

that carries 4 − 35 to ch
Ẑ?
(b (B)) such that the induced isometry

det ! ⊗Z Ẑ
?
� det %2

ét (�B , Ẑ
? (1))

coincides with aB . Here the étale cohomology �2
ét (�B , Ẑ

? (1)) has a natural action of c1 ((, B), and

Λ 3 ⊗Z Ẑ
? has a natural action of K

?

0 ; see [50, Lemma 2.6].

Let "sm
23,K

?
0 ,Z(?)

be the moduli functor over "̃sm
23,Z(?)

that sends an "̃sm
23,Z(?)

-scheme ( to the set of

(oriented) K
?

0 -level structures on the quasi-polarised  3 surface ( 5 : � → (, b).
The following result is well known.

Proposition 5.1. If K
?

0 ⊂ SO(!Q) (A
?

5
) is small enough, "sm

23,K
?
0 ,Z(?)

is an algebraic space over Z(?)

that is finite, étale and faithfully flat over "sm
23,Z(?)

.
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Proof. This result was essentially proved by Rizov [60, Theorem 6.2.2], Maulik [52, Proposition 2.8]
and Madapusi Pera [49, Proposition 3.11]. Note that their proofs work in every characteristic ?, including
? = 2. Their proofs rely on the injectivity of the map

Aut(-) → GL(�2
ét (-,Qℓ))

for every ℓ ≠ ?, where - is a  3 surface over an algebraically closed field of characteristic ? > 0.
The injectivity was proved by Ogus when ? > 2; see [56, Corollary 2.5]. (Precisely, Ogus proved it
for the crystalline cohomology. The injectivity for the ℓ-adic cohomology follows from Ogus’s results;
see [60, Proposition 3.4.2].) Recently, Keum proved that the injectivity holds also when ? = 2; see
[37, Theorem 1.4]. �

We will assume that an open compact subgroup K
?

0 ⊂ SO(!Q) (A
?

5
) as in Subsection 4.1 is small

enough so that Proposition 5.1 can be applied.

5.2. The Kuga-Satake morphism

Rizov and Madapusi Pera defined the following étale morphism over Q:

"sm
23,K

?
0 ,Q
→ ShK0 (SO(!Q), -!).

It is called the Kuga-Satake morphism overQ. (See [61, Theorem 3.9.1], [49, Corollary 5.4] for details.)
Because "sm

23,K
?
0 ,Z(?)

is smooth over Z(?) , the composite

"sm
23,K

?
0 ,Q
→ ShK0 (SO(!Q), -!) → ShK̃0

extends to a morphism over Z(?) ,

"sm
23,K

?
0 ,Z(?)

→ �K̃0
,

by the extension properties of the integral canonical model �K̃0
; see [40, (2.3.7)], [49, Proposition 5.7].

The following results are proved by Madapusi Pera.

Proposition 5.2 (Madapusi Pera). There is a natural étale �K̃0
-morphism

KS: "sm
23,K

?
0 ,Z(?)

→ /K
?
0
(Λ).

Proof. The morphism ShK0 (SO(!Q), -!) → ShK̃0
factors through the generic fibre /K

?
0
(Λ)Q of

/K
?
0
(Λ); see [50, 6.15] for details. Hence, we have a morphism over Q,

"sm
23,K

?
0 ,Q
→ /K

?
0
(Λ)Q.

This morphism extends to a �K̃0
-morphism

KS: "sm
23,K

?
0 ,Z(?)

→ /K
?
0
(Λ)

by [30, Chapter I, Proposition 2.7].
For the étaleness of the morphism KS, see the proof of [38, Proposition A.12]. See also

Remark 6.9. �

One usually calls the morphism KS in Proposition 5.2 a period map and calls a morphism from the
moduli space of  3 surfaces to the moduli space of abelian varieties a Kuga-Satake morphism. In this
article, following Madapusi Pera, we call the morphism KS a Kuga-Satake morphism for convenience.
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Summarising the above, we have the following commutative diagram of algebraic spaces over Z(?) :

/K? (Λ)
//

��

�K̃

��
"sm

23,K
?
0 ,Z(?)

KS // /K
?
0
(Λ) // // �K̃0

.

Here �K̃ (respectively �K̃0
) is the integral canonical model of the Shimura variety associated with

�̃ = GSpin( !̃Z(?) ) (respectively �̃0 = SO( !̃Z(?) )), and /K? (Λ) (respectively /K
?
0
(Λ)) is the scheme

over �K̃ (respectively �K̃0
) as in Definition 4.5 and Proposition 4.6.

6. �-crystals on Shimura varieties

In this section, let : be a perfect field of characteristic ? > 0. We shall study the ,-module !̃cris,B

associated with a :-valued point B ∈ �K̃ (:) of the integral canonical model �K̃.
We use the same notation as in Subsection 3.1. In particular,, := , (:),S := , [[D]],  is a finite

totally ramified extension of , [1/?] and  is an algebraic closure of  . We fix a uniformiser s of  
and a system {s1/?= }=≥0 of ?=th roots of s such that (s1/?=+1 ) ? = s1/?= . Let � (D) ∈ , [D] denote
the (monic) Eisenstein polynomial of s.

6.1. The primitive cohomology of quasi-polarised  3 surfaces

Let C ∈ "sm
23,K

?
0 ,Z(?)

(� ) be an � -valued point and (�, b) the quasi-polarised  3 surface over � of

degree 23 associated with C. We assume that b is a line bundle.
The orthogonal complement with respect to the cup product of the first Chern class of b in the de

Rham cohomology is denoted by

%2
dR (�/� ) := chdR(b)

⊥ ⊂ �2
dR(�/� ).

We define %2
ét(� ,Z? (1)) and %2

cris (�:/,) similarly.
We shall recall some well-known properties of the de Rham cohomology of  3 surfaces; see [24]

for details. The de Rham cohomology �2
dR(�/� ) admits the Hodge filtration Fil8Hdg:

0 = Fil3Hdg ⊂ Fil2Hdg ⊂ Fil1Hdg ⊂ Fil0Hdg = �2
dR(�/� ).

The graded piece Gr8Hdg := Fil8Hdg/Fil8+1Hdg is a free� -module for every 8. The Hodge filtration Fil8Hdg on

�2
dR (�/� ) is mapped onto the Hodge filtration Fil

8

Hdg on�2
dR(�:/:) under the canonical isomorphism

�2
dR(�/� ) ⊗� : � �

2
dR(�:/:).

Moreover, Fil2Hdg is the orthogonal complement of Fil1Hdg with respect to the cup product on�2
dR (�/� ).

In other words, the cup product induces an isomorphism of � -modules

Gr2
Hdg � (Gr0

Hdg)
∨.

We define a decreasing filtration Fil8pr on %2
dR (�/� ) by

Fil8pr := Fil8Hdg ∩%
2
dR (�/� ).

We put Gr8pr := Fil8pr/Fil8+1pr .
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Lemma 6.1. The natural homomorphisms Gr0
pr → Gr0

Hdg and Gr2
pr → Gr2

Hdg are isomorphisms. In
particular, the cup product induces an isomorphism of � -modules:

Gr2
pr � (Gr0

pr)
∨.

Proof. Because the first Chern class chdR(b) is contained in Fil1Hdg, we have Fil2Hdg ⊂ %
2
dR (�/� ) and

Gr2
pr � Gr2

Hdg.

We shall show Gr0
pr � Gr0

Hdg. By the definition of Fil8pr, the homomorphism Gr0
pr → Gr0

Hdg is
injective. To prove the surjectivity, it suffices to prove that it is surjective after taking the reduction
modulo s. Because both Gr0

pr and Gr0
Hdg are free � -modules of rank 1, it suffices to show that

Gr0
pr ⊗� : → Gr0

Hdg ⊗� : is injective.

Because b is primitive, the cokernel of the map 〈chdR(b)〉 ↩→ �2
dR (�/� ) is ?-torsion-free by [56,

Corollary 1.4], and the following composite

�2
dR(�/� ) � �

2
dR(�/� )

∨ → 〈chdR(b)〉
∨

is surjective, where the first isomorphism is obtained by the Poincaré duality and the second homomor-
phism is the restriction map. Thus, we have the following split exact sequence:

0→ %2
dR (�/� ) → �2

dR(�/� ) → 〈chdR (b)〉
∨ → 0.

It follows that

%2
dR (�/� ) ⊗� : � %

2
dR (�:/:) := chdR(b: )

⊥ ⊂ �2
dR (�:/:).

Hence, it is enough to show that the injection

Fil1pr ⊗� : ↩→ Fil
1
Hdg ∩ %

2
dR (�:/:)

is an isomorphism of :-vector spaces. It suffices to show that the intersection Fil
1
Hdg∩%

2
dR (�:/:) is a 20-

dimensional :-vector space. If the dimension is greater than or equal to 21, we have Fil
1
Hdg∩%

2
dR (�:/:) =

Fil
1
Hdg and

chdR (b: ) ∈ (Fil
1
Hdg)

⊥
= Fil

2
Hdg.

Then, by the proof of [56, Proposition 2.2.1], this implies that the versal deformation space of (�: , b: )
is not regular. This contradicts our assumption that (�: , b: ) lies on the smooth locus "sm

23,K
?
0 ,Z(?)

. �

We consider the Breuil-Kisin module

M(%2
ét (� ,Z?))

(over � with respect to {s1/?= }=≥0) associated with %2
ét(� ,Z?).

We define a decreasing filtration Fil8 (MdR (%
2
ét (� ,Z?))) on MdR (%

2
ét(� ,Z?)) as in Subsection

3.2. Let

2dR,� : �dR (�
2
ét(� ,Z?) [1/?]) � �

2
dR (�/� ) [1/?],

2cris,� : �cris (�
2
ét(� ,Z?) [1/?]) � �

2
cris (�:/,) [1/?]
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be the isomorphisms in Subsection 3.4. These isomorphisms are compatible with Chern classes, cup
products and trace maps; see Subsection 11.1 and Subsection 11.2. Hence, we have canonical isomor-
phisms of filtered  -modules

MdR (%
2
ét (� ,Z?)) [1/?] � �dR (%

2
ét(� ,Z?) [1/?]) � %

2
dR (�/� ) [1/?] .

We also have canonical isomorphisms of filtered i-modules

Mcris (%
2
ét (� ,Z?)) [1/?] � �cris (%

2
ét (� ,Z?) [1/?]) � %

2
cris (�:/,) [1/?] .

Lemma 6.2. The canonical isomorphism

MdR(%
2
ét (� ,Z?)) [1/?] � %

2
dR (�/� ) [1/?]

maps MdR (%
2
ét (� ,Z?)) onto %2

dR (�/� ). It also maps Fil8 (MdR (%
2
ét (� ,Z?))) onto Fil8pr for every

8 ∈ Z.

Proof. We shall show the first assertion. The cup product on �2
ét (� ,Z?) induces a perfect pairing on

the Breuil-Kisin module M(�2
ét (� ,Z?)). Because the kernel of a homomorphism of freeS-modules

of finite rank is free, the orthogonal complement

M(〈ch? (b)〉(−1))⊥ ⊂ M(�2
ét (� ,Z?))

is a freeS-module of finite rank. Hence, it is a Breuil-Kisin module (of height ≤ 2). By the characteri-
sation of M(%2

ét(� ,Z?)) in [6, Theorem 4.4], we have

M(%2
ét(� ,Z?)) � M(〈ch? (b)〉(−1))⊥.

By Theorem 3.2, we have MdR(�
2
ét (� ,Z?)) � �2

dR (�/� ). Under this isomorphism, the homo-
morphism MdR (〈ch? (b)〉(−1)) ↩→ MdR(�

2
ét (� ,Z?)) is identified with the inclusion 〈chdR (b)〉 ↩→

�2
dR (�/� ) by Proposition 11.2.
To prove the first assertion, it is enough to show that the cokernel of the injective homomorphism

9 : i∗M(〈ch? (b)〉(−1)) ↩→ i∗M(�2
ét (� ,Z?))

is a free S-module. Indeed, if the cokernel of 9 is a free S-module, we have the following split exact
sequence of S-modules:

0→ i∗M(%2
ét (� ,Z?)) → i∗M(�2

ét (� ,Z?)) � i
∗
M(�2

ét (� ,Z?))
∨

→ i∗M(〈ch? (b)〉(−1))∨ → 0.

By taking ⊗S� , we obtain the following exact sequence of � -modules:

0→MdR(%
2
ét (� ,Z?)) → �2

dR (�/� ) → 〈chdR(b)〉
∨ → 0.

Hence, we have MdR (%
2
ét (� ,Z?)) � %2

dR(�/� ). We shall show that the cokernel of 9 is a free
S-module. As above, we have

M(〈ch? (b)〉(−1)) � M(%2
ét (� ,Z?))

⊥.

Hence, the cokernel of 9 is a torsion-free S-module. Therefore, in order to prove that it is a free S-
module, it now suffices to show that the cokernel of 〈chdR(b)〉 ↩→ �2

dR(�/� ) is ?-torsion-free. This
follows from [56, Corollary 1.4].
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The second assertion follows from the fact that Gr8 (MdR(%
2
ét (� ,Z?))) and Gr8pr are free � -

modules. �

Lemma 6.3. The canonical isomorphism

Mcris(%
2
ét (� ,Z?)) [1/?] � %

2
cris (�:/,) [1/?]

maps Mcris (%
2
ét (� ,Z?)) onto %2

cris (�:/,).

Proof. As in the proof of Lemma 6.2, the assertion follows from the fact that the cokernel of 9 is a free
S-module by using Theorem 3.2 and Corollary 11.6. �

6.2. �-crystals on Shimura varieties and the cohomology of  3 surfaces

In this subsection, we assume that : is a finite field F@ or F@ . We shall compare the ,-module !̃cris,B

associated with a :-valued point B ∈ �K̃ (:) of the integral canonical model �K̃ with the crystalline
cohomology of  3 surfaces.

We consider the following situation.

(1) Let B ∈ "sm
23,K

?
0 ,Z(?)

(:) be a :-valued point and (-,ℒ) the quasi-polarised  3 surface over : of

degree 23 associated with B.
(2) The image of B under the Kuga-Satake morphism KS is denoted by the same notation B ∈ /K

?
0
(Λ) (:).

After replacing : by a finite extension of it, there is a :-valued point of /K? (Λ) mapped to B. We fix
such a point, and it is also denoted by B. Let AB be the Kuga-Satake abelian variety over : associated
with the point B ∈ /K? (Λ) (:).

(3) We take an � -valued point C ∈ "sm
23,K

?
0 ,Z(?)

(� ) lifting B. The morphism /K? (Λ) → /K?0
(Λ)

is étale by Proposition 4.6. Hence, the image of the � -valued point C under the Kuga-Satake
morphism lifts to a unique � -valued point of /K? (Λ) lifting B ∈ /K? (Λ) (:). It is also denoted by
C ∈ /K? (Λ) (� ).

(4) Let (�, b) be the quasi-polarised  3 surface over � of degree 23 associated with C. We assume
that b is a line bundle.

(5) Let C be a geometric point of /K? (Λ) above the generic point of C ∈ /K? (Λ) (� ).

Then the Gal( / )-stable Z?-lattice in a crystalline representation

!̃ ′? := L̃?,C

satisfies the following properties:

◦ !̃ ′? admits an even perfect bilinear form ( , ) over Z? that is compatible with the action of Gal( / ).

◦ There is a Gal( / )-equivariant homomorphism ]? : ΛZ? → !̃ ′? preserving the bilinear forms. The
cokernel of ]? is a free Z?-module.

◦ There is a Gal( / )-equivariant isometry

%2
ét (� ,Z? (1)) � ]? (ΛZ? )

⊥.

See [49, Proposition 5.6].
◦ There is an isometry Mcris ( !̃

′
?) � !̃cris,B that becomes an isomorphism of �-isocrystals after

inverting ?. (See Subsection 4.6.)

We use the following notation on twists of i-modules. Let (#, i) be a pair of a free ,-module of
finite rank and a f-linear map i on # [1/?]. The pair (#, ?−8i) is denoted by # (8).

We put

!̃cris := !̃cris,B .
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The Frobenius automorphism of !̃cris (−1) [1/?] maps the ,-module !̃cris (−1) into itself. Therefore,
!̃cris (−1) is an �-crystal.

We now prove the following proposition, which plays a crucial role in this article.

Proposition 6.4. We have an isomorphism of �-crystals

%2
cris (-/,) � ]cris (Λ, )

⊥(−1) ⊂ !̃cris (−1).

Proof. This proposition was proved in [49, Corollary 5.14] when ? ≠ 2. Here we give a proof using
the integral comparison theorem of Bhatt-Morrow-Scholze [6]. (Our proof works for any ?, including
? = 2.)

By %2
ét(� ,Z?) � ]? (ΛZ? ) (−1)⊥, we have

M(%
2
ét(� ,Z?)) � M(]? (ΛZ? ) (−1))⊥.

(See also the proof of Lemma 6.2.) Moreover, we have Mcris (%
2
ét(� ,Z?)) � %

2
cris (-/,) by Lemma

6.3. Thus, as in the proof of Lemma 6.2, the proposition follows from Proposition 6.5. �

Proposition 6.5. The cokernel of the homomorphism

M(]?) : M(ΛZ? ) →M( !̃
′
?)

is a free S-module.

Proof. Because the cokernel of ]? is a free Z?-module, it follows that

M(]? (ΛZ? )) � M(]? (ΛZ? )
⊥⊥) � M(]? (ΛZ? )

⊥)⊥.

Let M′ be the cokernel of the homomorphism M(]? (ΛZ? ) (−1)⊥) → M( !̃ ′? (−1)). It suffices to prove
that M′ is a free S-module.

The cokernel M′ is a torsion-free S-module. Note that M( !̃ ′? (−1)) is an effective Breuil-Kisin
module of height ≤ 2 and it induces a Frobenius 1 ⊗ i : i∗M′→M

′ .

It is enough to show that the Frobenius of M′ satisfies the following properties:

(1) For every G ∈ i∗M′, the image (1 ⊗ i) (G) is divisible by � (D).
(2) The cokernel of 1 ⊗ i : i∗M′→M

′ is killed by � (D).

In fact, if (1) and (2) are proved, the homomorphism 1/� (D) (1⊗ i) makes M′ a torsion-free i-module
of height 0 in the sense of [47]. Then, we see that M′ is a free S-module by [47, Lemma 2.18 (2)].

We shall prove (1). For simplicity, we put

M := M(]? (ΛZ? ) (−1)⊥), MdR := MdR (]? (ΛZ? ) (−1)⊥),

M̃ := M( !̃
′
? (−1)), M̃dR := MdR ( !̃

′
? (−1)).

Recall that we have %2
ét (� ,Z?) � ]? (ΛZ? ) (−1)⊥. Thus, by Lemma 6.1 and Lemma 6.2, the bilinear

form on MdR induces Gr2(MdR) � Gr0 (MdR)
∨.

Let us show that the perfect bilinear form on M̃dR induces Gr2(M̃dR) � Gr0(M̃dR)
∨. Because the

cokernel of Gr2 (M̃dR) ↩→ M̃dR (respectively Gr0(M̃dR)
∨ ↩→ M̃

∨

dR) is ?-torsion-free, it suffices to show
that we have the desired isomorphism after inverting ?. This follows from the isomorphism

!̃ ′? (−1) [1/?] � ]? (ΛZ? ) (−1) [1/?] ⊕ %2
ét (� ,Z?) [1/?] .
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We obtain the following commutative diagram:

Gr2 (MdR)
� //

��

Gr0 (MdR)
∨

Gr2(M̃dR)
� // Gr0 (M̃dR)

∨.

OO

Hence, Gr0(M̃dR)
∨ → Gr0 (MdR)

∨ is surjective. Because both Gr0 (MdR)
∨ and Gr0 (M̃dR)

∨ are free
� -modules of rank 1, we have Gr0 (MdR)

∨
� Gr0(M̃dR)

∨. Therefore, we have

Gr0 (MdR) � Gr0(M̃dR) and Gr2 (MdR) � Gr2 (M̃dR).

By Gr0(MdR) � Gr0(M̃dR) and Lemma 3.1, we have Fil1 (i∗M̃) + i∗M = i∗M̃. The assertion (1)
follows from this equality.

We shall prove (2). By Gr2(MdR) � Gr2(M̃dR) and Lemma 3.1, we have

Fil2 (i∗M̃) ⊂ Fil1 (i∗M) + � (D)i∗M̃.

We take an element G ∈ M̃. Because M̃ is of height ≤ 2, there is an element H ∈ i∗M̃ such that
(1 ⊗ i) (H) = � (D)2G. By the above inclusion, there are I ∈ Fil1 (i∗M) and F ∈ i∗M̃ such that
H = I + � (D)F. We put (1 ⊗ i) (I) := � (D)I′ for I′ ∈ M. Then we have � (D)G = I′ + (1 ⊗ i) (F). This
shows that � (D)G is zero in the cokernel of i∗M′→M

′ and completes the proof of the assertion (2).
The proof of Proposition 6.5 is complete. �

6.3. Formal Brauer groups

We consider the situation as in Subsection 6.2.
Let B̂r := B̂r(-) denote the formal Brauer group associated with the  3 surface - . Recall that B̂r is

a one-dimensional smooth formal group scheme pro-representing the functor

Φ
2
- : Art: → (abelian groups)

defined by

' ↦→ Ker(�2
ét (-',G<) → �2

ét (-,G<)),

where Art: is the category of local Artinian :-algebras with residue field : and (abelian groups) is
the category of abelian groups; see [2, Chapter II, Corollary 2.12]. (For basic properties of the formal
Brauer group, see also [46, Section 6].) The height ℎ of the  3 surface - is defined to be the height of
B̂r. We have 1 ≤ ℎ ≤ 10 or ℎ = ∞.

There is a natural equivalence from the category of one-dimensional smooth formal group schemes of
finite height over : to the category of one-dimensional connected ?-divisible groups over : . If the height
of - is finite, we identify the formal Brauer group B̂r with the corresponding connected ?-divisible

group over : and let B̂r
∗

denote the Cartier dual of B̂r.
For a crystal ℰ over CRIS(:/Z?), the value ℰ,։: in (Spec : ↩→ Spec,) will be denoted by the

same letterℰ . By [4, (5.3.3.1)], we have a canonical perfect bilinear form

D(B̂r
∗
) × D(B̂r) (−1) → , (−2).

The following Proposition 6.6 and Lemma 6.8 are presumably well known to experts (see [50, 6.27]
for the case ? ≥ 3). We include proofs for completeness.
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Proposition 6.6. Assume that the height of - is finite. The following assertions hold:

(1) There is an isomorphism of �-crystals

!̃cris (−1) � D(B̂r
∗
) ⊕ D(�) (−1) ⊕ D(B̂r) (−1),

where � is an étale ?-divisible group over : .
(2) Under this isomorphism, the bilinear form on !̃cris (−1) is the direct sum of a perfect bilinear

form

D(�) (−1) × D(�) (−1) → , (−2)

and the canonical perfect bilinear form D(B̂r
∗
) × D(B̂r) (−1) → , (−2).

Proof. The breaking points of the Newton polygon of !̃cris (−1) lie on the Hodge polygon of it; see
Lemma 6.8 and its proof.

By the Hodge-Newton decomposition [36, Theorem 1.6.1], there is a decomposition as an �-crystal
over, ,

!̃cris (−1) � !̃1−1/ℎ ⊕ !̃1 ⊕ !̃1+1/ℎ ,

where !̃_ is an �-crystal over, that has a single slope _ for each _ ∈ { 1 − 1/ℎ, 1, 1 + 1/ℎ }. Via this
decomposition, the bilinear form ( , ) is the direct sum of a perfect bilinear form !̃1 × !̃1 → , (−2)
and a perfect bilinear form !̃1−1/ℎ × !̃1+1/ℎ → , (−2).

Similarly, we have a decomposition

%2
cris (-/,) � !1−1/ℎ ⊕ !1 ⊕ !1+1/ℎ .

By Proposition 6.4, we have %2
cris (-/,) = ]cris (Λ, ) (−1)⊥. Because ]cris(Λ, ) (−1) is contained in

!̃1, we have !1−1/ℎ = !̃1−1/ℎ and !1+1/ℎ = !̃1+1/ℎ . We have a natural isomorphism of �-crystals
over,

D(B̂r
∗
) � !1−1/ℎ .

(See [68, Proposition 7] for example. See also Remark 6.7.) Using the perfect bilinear form !̃1−1/ℎ ×

!̃1+1/ℎ → , (−2), we identify !1+1/ℎ with !∨1−1/ℎ (−2) � D(B̂r) (−1).

Because we have ?!̃1 = i( !̃1), there is an étale ?-divisible group � over : such that
D(�) (−1) � !̃1. �

Remark 6.7. We assume that the height of - is finite. The proof of [68, Proposition 7] shows that there
is a natural isomorphism of �-crystals over, ,

TC(B̂r) � !1−1/ℎ .

Here TC(B̂r) is the Cartier-Dieudonné module of typical curves of B̂r; see [2, I, Section 3] for example.

The �-crystal TC(B̂r) is naturally isomorphic to the �-crystal D(B̂r
∗
) by [12, (5.8)], [4, Théorème

4.2.14, (5.3.3.1)].

The following strong divisibility result is used in the proof of Proposition 6.6.

Lemma 6.8. We have an isomorphism of,-modules

!̃cris (−1)/i( !̃cris (−1)) � (,/?)⊕20 ⊕,/?2.

Proof. We put

" := Mcris ( !̃
′
?) (−1) � !̃cris (−1).
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The Newton polygon of " has three slopes with multiplicities described as follows:

Slope 1 − 1/ℎ 1 1 + 1/ℎ
Multiplicity ℎ 22 − 2ℎ ℎ

The Newton polygon of " is above the Hodge polygon of " and both polygons have the same initial
point and endpoint; see [36, Theorem 1.4.1]. We put

" ′ := { G ∈ " | ?G ∈ Im(i) }.

Then it is enough to show that there is a surjection,/? → "/" ′.
We put M := M( !̃ ′? (−1)) and define

M
′ := { G ∈ M | � (D)G ∈ Im(1 ⊗ i : i∗M →M) }.

Via i∗M ⊗S , � " , we have a surjection (i∗M/i∗M′) ⊗S , → "/" ′. We shall show that
(i∗M/i∗M′) ⊗S , � ,/?.

Because we have a perfect bilinear form M × M → S(−2) over S that is compatible with the
Frobenius endomorphisms, we have

� (D)2M ⊂ Im(i∗M →M).

Hence, M/M′ is killed by � (D) and M/M′ is a finiteS/� (D)-module. Using the perfect bilinear form
on M again, we see that M/M′ is ?-torsion-free. Because S/� (D) � � is a discrete valuation ring,
it follows that M/M′ is a free S/� (D)-module of finite rank. The dimension of the  -vector space
gr8�dR ( !̃

′
? (−1) [1/?]) is as follows:

dim gr8�dR ( !̃
′
? (−1) [1/?]) =




0 8 ≠ 0, 1, 2,

20 8 = 1,

1 8 = 0, 2.

It follows that M/M′ is a free S/� (D)-module of rank 1 by [39, Lemma 1.2.2]. Therefore, we have

(i∗M/i∗M′) ⊗S , � (S/i(� (D))) ⊗S , � ,/?.

�

6.4. Remarks on the étaleness of the Kuga-Satake morphism

The étaleness of the Kuga-Satake morphism

KS: "sm
23,K

?
0 ,Z(?)

→ /K
?
0
(Λ)

plays an important role in this article. It also plays an important role in Madapusi Pera’s proof of the
Tate conjecture for  3 surfaces [49, 38]. The proof of the étaleness was given by Madapusi Pera in [49,
Theorem 5.8] when ? is odd and in [38, Proposition A.12] when ? = 2.

In the course of writing this article, we found some issues on the proof of the étaleness of KS. We
can avoid these issues using our results in this section. See Remark 6.9 and Remark 6.10 for details.
(See also [51], where Madapusi Pera gave a somewhat different argument.)

Remark 6.9. When ? = 2, the proof of the étaleness of KS in [38, Proposition A.12] seems to
rely on an incorrect statement on the relation between endomorphisms of an abelian scheme and the
crystalline cohomology. Here we explain how to avoid this issue using Proposition 6.5. First, we briefly

https://doi.org/10.1017/fms.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.24


36 Kazuhiro Ito et al.

recall Madapusi Pera’s proof. Let L̃dR be the filtered vector bundle with integrable connection on �K̃0

associated with the �̃0-representation !̃Z(?) . The pullback of L̃dR by KS is also denoted by the same

symbol L̃dR. The Λ-structure for "sm
23,K

?
0 ,Z(?)

induces a homomorphism of vector bundles

]dR : Λ ⊗Z O" sm
23,K

?
0
,Z(?)

→ L̃dR.

In order to prove the étaleness of KS (see [49, Theorem 5.8], [38, Proposition A.12]), Madapusi Pera
showed the orthogonal complement

LdR := ]dR (Λ ⊗Z O" sm
23,K

?
0
,Z(?)

)⊥ ⊂ L̃dR

with respect to the canonical bilinear form on L̃dR is isomorphic to P2
dR (up to twist):

UdR : P2
dR � LdR(−1).

Here P2
dR is the primitive part of the relative de Rham cohomology of the universal family on"sm

23,K
?
0 ,Z(?)

.

See [49, Proposition 5.11] for ? ≥ 3 and the proof of [38, Proposition A.12] for ? = 2. In order to
prove that P2

dR and LdR (−1) are isomorphic, he proved that the cokernel of ]dR is a vector bundle on
"sm

23,K
?
0 ,Z(?)

; see the proof of [38, Proposition A.12]. To prove this, it suffices to show that the cokernel

of ]dR is a free, (F@)-module at every, (F@)-valued point of "sm
23,K

?
0 ,Z(?)

; see the proof of [50, Lemma

6.16 (iv)]. When ? ≥ 3, this freeness property was proved by applying [50, Lemma 6.14] for 4 = 1.
However, when ? = 2, we cannot apply [50, Lemma 6.14] because the statement of [50, Lemma 6.14] is
false when 4 = ?−1. (There are counterexamples when ? = 2 and 4 = 1; see [5, Example 3.18].) To avoid
this issue, we can use Proposition 6.5 to prove the required freeness property. Note that we essentially
used the integral comparison theorem of Bhatt-Morrow-Scholze [6] in the proof of this proposition.

Remark 6.10. There is another issue on the integral comparison map used in the proof of the isomor-
phism UdR : P2

dR � LdR(−1). This issue exists for every ? (including odd ?). In [49, Theorem 5.8] and
[38, Proposition A.12], Madapusi Pera used the integral comparison map for varieties with ordinary
reduction proved by Bloch-Kato [9, Theorem 9.6] and the density of ordinary locus in the special fibre
of "sm

23,K
?
0 ,Z(?)

; see the proof of [49, Lemma 5.10]. Madapusi Pera used the compatibility between the

integral comparison map of Bloch-Kato with other comparison maps used in [49, Section 2]. However,
we could not find appropriate references for the compatibility used in [49, 38], at least for small ?. We
can avoid this issue by using the de Rham comparison map 2dR,� of Scholze [62] and the crystalline
comparison map 2cris,� of Bhatt-Morrow-Scholze [6]. The integral comparison map 2cris,� is a substi-
tute for the integral comparison map of Bloch-Kato; see also Proposition 6.4 in this article. The results
of Blasius-Wintenberger [8], which were used in [49] and [38, Appendix A], also hold using 2dR,� and
2cris,�; see Subsection 11.3. Finally, we remark that the integral comparison map 2cris,� can be applied
to all  3 surfaces including nonordinary ones.

7. Construction of liftings of points on orthogonal Shimura varieties

Let B ∈ /K? (Λ) (F@) be an F@-valued point that is the image of the point corresponding to a quasi-
polarised  3 surface (-,ℒ) of finite height over F@ . Because the Brauer group of F@ is trivial, ℒ is a
line bundle on - . (See [10, Chapter 8, Section 1, Proposition 4].)

In this section, we shall construct characteristic 0 liftings of the point B ∈ /K? (Λ) (F@) over a finite

extension of, (F@) [1/?] corresponding to characteristic 0 liftings of the formal Brauer group B̂r of - .
We construct such liftings using integral ?-adic Hodge theory and our results on �-crystals on Shimura
varieties in Section 6.
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Note that, when ? ≥ 5, a stronger result can be obtained by the method of Nygaard-Ogus [55]; see
Remark 7.2. But, when ? ≤ 3, it seems difficult to apply their methods. (The deformation theory of  3
crystals developed in [55] does not work in characteristic ? = 2 or 3; see [55, p. 498].) The method of
this article can be applied to  3 surfaces of finite height in any characteristic.

7.1. Liftings of points with additional properties

In this subsection, we shall state our results on characteristic 0 liftings of points on /K? (Λ) with
additional properties.

We put : := F@ , and consider the situation as in Subsection 6.2. We assume that the height ℎ of the
 3 surface - is finite.

Let � be a finite totally ramified extension of  0 = , [1/?] and G a one-dimensional smooth formal
group over �� whose special fibre is isomorphic to B̂r. We shall construct a characteristic 0 lifting of
the point B ∈ /K? (Λ) (F@) over a finite extension of, (F@) [1/?] corresponding to G.

By Proposition 6.6, we have an embedding D(B̂r) ↩→ !̃cris. Let

Fil(G) ↩→ D(B̂r) ⊗, � ↩→ !̃cris ⊗, �

be the filtration associated with G; see Subsection 3.3. Take a generator 4 of Fil(G) and let 8(4) :=
(8cris ⊗, �) (4) denote the image of 4 under the embedding

8cris ⊗, � : !̃cris ⊗, � ↩→ End� (�
1
cris (AB/,)

∨ ⊗, �).

Let 8(4) (�1
cris(AB/,)

∨ ⊗, �) be the image of

8(4) : �1
cris (AB/,)

∨ ⊗, � → �1
cris(AB/,)

∨ ⊗, �.

We define a decreasing filtration on !̃cris ⊗, � by

Fil8 ( !̃cris ⊗, �) :=




0 8 ≥ 2,

Fil(G) 8 = 1,

Fil(G)⊥ 8 = 0,

!̃cris ⊗, � 8 ≤ −1.

We also define a decreasing filtration on �1
cris(AB/,)

∨ ⊗, � by

Fil8 (�1
cris (AB/,)

∨ ⊗, �) :=




0 8 ≥ 1,

8(4) (�1
cris(AB/,)

∨ ⊗, �) 8 = 0,

�1
cris (AB/,)

∨ ⊗, � 8 ≤ −1.

The following theorem is the main result of this section.

Theorem 7.1. Let  be the composite of � and , (F@) [1/?]. There is an � -valued point B̃ ∈
/K? (Λ) (� ) satisfying the following properties:

(1) B̃ is a lift of B ∈ /K? (Λ) (F@), where B is a geometric point above B.
(2) The Hodge filtration on �1

cris(AB/,)
∨ ⊗,  corresponding to AB̃ over � coincides with the

filtration defined by

Fil8 (�1
cris (AB/,)

∨ ⊗,  ) := Fil8 (�1
cris (AB/,)

∨ ⊗, �) ⊗�  .
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Remark 7.2. Recall that the  3 surface - over F@ comes from the F@-valued point B ∈ "sm
23,K

?
0 ,Z(?)

(F@)

satisfying the conditions as in Subsection 6.2. In particular, the Kuga-Satake abelian varietyAB is defined
over F@ . When ? ≥ 5, a result stronger than Theorem 7.1 can be obtained by the method of Nygaard-Ogus
in [55]. In fact, when ? ≥ 5, Nygaard-Ogus constructed a characteristic 0 lifting of the  3 surface - over
�� corresponding to the one-dimensional smooth formal group G. By the Kuga-Satake morphism, we
find an�� -valued point B̃ ∈ /K? (Λ) (�� ) lifting B such that the Hodge filtration on �1

cris(AB/,)
∨ ⊗, �

corresponding to AB̃ over �� coincides with the filtration {Fil8 (�1
cris (AB/,)

∨ ⊗, �)}8 defined as

above. Namely, we do not need to take the composite with, (F@) [1/?] when ? ≥ 5. Currently, we do
not know how to obtain an �� -valued point by the methods of this article.

7.2. Some lemmas

In this subsection, we give some lemmas that will be used in the proof of Theorem 7.1.
Let

!̃cris � D(B̂r
∗
) (1) ⊕ D(�) ⊕ D(B̂r)

be the decomposition as in Proposition 6.6. Becausee� is an étale ?-divisible group over : , it canonically
extends over �� and the extension is also denoted by �. Let G∗ denote the Cartier dual of G. We define
a Gal(�/�)-stable Z?-lattice !̃? in a crystalline representation by

!̃? := ()?G
∗)∨(1) ⊕ ()?�)

∨ ⊕ ()?G)
∨.

Lemma 7.3. The Gal(�/�)-module !̃? satisfies the following properties:

(1) !̃? admits an even perfect bilinear form ( , ) that is Gal(�/�)-invariant.
(2) There is a Gal(�/�)-equivariant homomorphism ]? : ΛZ? → !̃? preserving the bilinear forms.

(3) There is an isometry �cris ( !̃? [1/?]) � !̃cris [1/?] of filtered i-modules such that the following
composite

Mcris ( !̃?) [1/?] � �cris ( !̃? [1/?]) � !̃cris [1/?]

maps Mcris ( !̃?) isomorphically onto !̃cris.
(4) The following diagram is commutative:

Λ,
]? //

]cris
$$❍

❍❍
❍❍

❍❍
❍❍

Mcris( !̃?)

�

��
!̃cris.

Proof. We equip the Z?-module ()?G∗)∨(1) ⊕ ()?G)∨ with a natural bilinear form that is even and
perfect. Because � is an étale ?-divisible group, the even perfect bilinear form D(�) × D(�) → ,

induces an even perfect bilinear form ()?�)∨ × ()?�)∨ → Z? that is Gal(�/�)-invariant.
Let Λ∨

Z?
be the ?-divisible group over �� associated with the Z?-module Λ∨

Z?
with the trivial

Gal(�/�)-action. So we have an isomorphism of �-crystals D(Λ∨
Z?
) � Λ, .

The image of the homomorphism ]cris : Λ, → !̃cris is contained in D(�); hence, we have a
homomorphism Λ, → D(�). Therefore, we have a morphism � → Λ∨

Z?
of étale ?-divisible groups

over : . This extends over �� . Then we have a Gal(�/�)-equivariant homomorphism ΛZ? → ()?�)
∨.

This homomorphism preserves the bilinear forms by construction.
The other properties follow from [38, Theorem 2.12]. See also Subsection 3.3 and Subsection

11.4. �

https://doi.org/10.1017/fms.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.24


Forum of Mathematics, Sigma 39

Lemma 7.4. There is a crystalline Gal(�/�)-representation �ét,Q? over Q? such that

�cris (�ét,Q? ) � �
1
cris(AB/,)

∨ [1/?]

as filtered i-modules.

Proof. It is a theorem of Colmez-Fontaine that any weakly admissible filtered i-module is admissible;
see [20, Théorème A]. (Today, there are several alternative proofs of this theorem. For example, see
[39, Proposition 2.1.5].) Hence, it is enough to prove that the filtered i-module �1

cris (AB/,)
∨ [1/?] is

weakly admissible.
As in Subsection 4.6, we fix an isomorphism of,-modules

�, � �
1
cris (AB/,)

∨

that carries {BU} to {BU,cris,B} and makes the following diagram commutative:

!̃,

�

��

8 // End, (�, )

�

��
!̃cris

8cris // End, (�1
cris(AB/,)

∨).

Using this isomorphism, we equip �1
cris(AB/,)

∨ with a right action of the Clifford algebra Cl, :=
Cl ⊗Z, using the natural right action of Cl, on �, .

The Clifford algebra ClF? is a central simple algebra over the finite field F? by [11, §9.4, Corollaire].
Hence, it is isomorphic to M= (F?) as an F?-algebra where = = 211. Then ClZ? is isomorphic to M= (Z?)

as a Z?-algebra by [42, Chapter IV, Lemma 5.1.16]. We fix an isomorphism ClZ? � M= (Z?). Using
this isomorphism, we equip �1

cris (AB/,)
∨ with a right M= (,)-action.

The right M= (Z?)-action on �1
cris(AB/,)

∨ [1/?] is compatible with the Frobenius automorphisms,
and Fil0 is an M= (�)-submodule of �1

cris (AB/,)
∨⊗, � . Therefore, a f-linear endomorphism i⊗f on

�1
cris (AB/,)

∨ [1/?] ⊗M= ( 0) ( 0
=)

is well defined, and we consider the following �-vector subspace:

Fil0 ⊗M= (�) (�
=) ⊂ (�1

cris (AB/,)
∨ ⊗, �) ⊗M= (�) (�

=).

They determine the structure of a filtered i-module on

� := �1
cris (AB/,)

∨ [1/?] ⊗M= ( 0) ( 0
=).

Because we have an isomorphism of filtered i-modules

�= � �1
cris (AB/,)

∨ [1/?],

it suffices to show that � is weakly admissible.
The embedding 8cris induces an isomorphism of,-modules

Cl( !̃cris) � EndCl, (�
1
cris (AB/,)

∨),

which is an isomorphism of filtered i-modules after inverting ?. By the Morita equivalence, we have

EndCl 0
(�1

cris (AB/,)
∨ [1/?]) � End 0 (�).
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Hence, we have an isomorphism Cl( !̃cris [1/?]) � End 0 (�) of filtered i-modules. Because !̃cris [1/?]
is weakly admissible by Lemma 7.3, the filtered i-module Cl( !̃cris [1/?]) is weakly admissible. There-
fore, � ⊗ 0 �

∨
� End 0 (�) is also weakly admissible.

In order to show that � is weakly admissible, we have to show C� (�
′) ≤ C# (�

′) for every filtered
i-submodule �′ ⊂ �. (For the definition of the functions C� and C# , see [39, 1.1.3] for example.) Note
that we have C� (�) = C# (�) = −210. Because � ⊗ 0 �

∨ is weakly admissible, we have

C� (�
′ ⊗ �∨) ≤ C# (�

′ ⊗ �∨).

Each side of the inequality may be computed as

C� (�
′ ⊗ �∨) = dim 0 (�

′)C� (�
′) + dim 0 (�

∨)C� (�
∨)

= dim 0 (�
′)C� (�

′) − dim 0 (�)C� (�)

and

C# (�
′ ⊗ �∨) = dim 0 (�

′)C# (�
′) + dim 0 (�

∨)C# (�
∨)

= dim 0 (�
′)C# (�

′) − dim 0 (�)C# (�).

It follows that C� (�′) ≤ C# (�′).
Therefore, � is weakly admissible, and the proof of Lemma 7.4 is complete. �

7.3. ?-Divisible groups adapted to general spin groups

By Lemma 7.4, there is a crystalline Gal(�/�)-representation �ét,Q? over Q? such that

�cris (�ét,Q? ) � �
1
cris(AB/,)

∨ [1/?]

as filtered i-modules.
The tensors {BV,cris,B} ⊂ {BU,cris,B} corresponding to ?±, {A48 }1≤8≤222 , and the endomorphism c′

preserve the filtration on (�1
cris(AB/,)

∨ ⊗, �)⊗ by Proposition 2.2. (For the tensors ?±, {A48 }1≤8≤222

and c′, see Subsection 2.3 for details.) Therefore, the tensors {BV,cris,B} induce tensors {B′V,?} in �⊗ét,Q?
.

By Proposition 2.2 again, the injection

8cris ⊗, � : !̃cris ⊗, � ↩→ End� (�
1
cris (AB/,)

∨ ⊗, �)

preserves the filtrations. Therefore, 8cris ⊗, � induces an inclusion of crystalline Gal(�/�)-
representations

!̃? [1/?] ↩→ EndQ? (�ét,Q? ).

(See Subsection 7.2 for the Gal(�/�)-stable Z?-lattice !̃? in a crystalline representation.)

The derived group �̃der
Q?

of �̃Q? is the spin double cover of �̃0,Q? = SO( !̃Q? ) and a simply connected

semisimple algebraic group overQ? . So, we have �1 (Q? , �̃
der
Q?
) = 1 by [59, Theorem 6.4]. This implies

that �1(Q? , �̃Q? ) = 1 and every �̃Q? -torsor over Q? is trivial. Hence, there is an isomorphism of
Q?-vector spaces

�Q? � �ét,Q?
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that carries {BV} to {B′V,?} and induces the following commutative diagram:

!̃Q?

�

��

8 // EndQ? (�Q? )

�

��
!̃? [1/?] // EndQ? (�ét,Q? ),

where !̃Q? � !̃? [1/?] is an isometry over Q? .

Because the tensors {B′V,?} are fixed by Gal(�/�) and �̃ (Q?) is the stabiliser of the tensors {BV},
we have the following commutative diagram:

GSpin( !̃?) (Q?)
� //

��

�̃ (Q?)

��
Gal(�/�)

d0 //

d
77♦♦♦♦♦♦♦♦♦♦♦

SO( !̃?) (Q?)
� // �̃0(Q?).

Here d0 is the map corresponding to the action of Gal(�/�) on !̃? [1/?].

Lemma 7.5. We have d(Gal(�/�)) ⊂ GSpin( !̃?) (Z?).

Proof. Because we have an exact sequence of group schemes over Z? ,

1→ G<,Z? → GSpin( !̃?) → SO( !̃?) → 1,

it follows that

GSpin( !̃?) (Z?) → SO( !̃?) (Z?)

is surjective by Hilbert’s theorem 90 and the smoothness ofG<,Z? . Moreover, we have d0(Gal(�/�)) ⊂

SO( !̃?) (Z?). Thus, for every 6 ∈ Gal(�/�), there are 6′ ∈ GSpin( !̃?) (Z?) and 0 ∈ Q×? such that

d(6) = 06′. Let a : GSpin( !̃?) → G<,Z? be the spinor norm. Because Gal(�/�) is compact, we have

a(06′) = a(d(6)) ∈ Z×? . Hence, we have 0 ∈ Z×? and d(6) = 06′ ∈ GSpin( !̃?) (Z?). In conclusion, we

have d(Gal(�/�)) ⊂ GSpin( !̃?) (Z?). �

By Lemma 7.5, we see that Cl( !̃?) is a Gal(�/�)-stable Z?-lattice in the crystalline representation
�ét,Q? , which will be denoted by �ét.

Let  be the composite of � and , (F@) [1/?]. In Proposition 7.7, we shall show that �ét satisfies
properties that should be satisfied when �ét is the ?-adic Tate module of the abelian scheme AB̃
associated with a desired lift B̃ ∈ /K? (Λ) (� ).

The next lemma will be used in the proof of Proposition 7.7.

Lemma 7.6. There is an isometry !̃? � !̃Z? over Z? .

Proof. There is an isometry !̃cris � !̃, over, ; see Subsection 4.6. We have an isometry Mcris ( !̃?) �

!̃cris over, by Lemma 7.3. By using [40, Corollary 1.3.5], we see that there is an isometry !̃? ⊗Z?, �

Mcris ( !̃?) over , . So, the functor Isom( !̃? , !̃Z? ) on Z?-algebras that sends a Z?-algebra ' to the set

of isometries over ' from ( !̃?)' to !̃' is represented by an O( !̃Z? )-torsor, which is also denoted by

Isom( !̃? , !̃Z? ). Here O( !̃Z? ) is the orthogonal group over Z? . This O( !̃Z? )-torsor corresponds to an

element G ∈ �1 (Z? ,O( !̃Z? )). Because there is an isometry !̃? [1/?] � !̃Q? over Q? , it follows that G
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comes from an element of �1(Z? , SO( !̃Z? )). By Lang’s theorem and the smoothness of SO( !̃Z? ), we

have �1 (Z? , SO( !̃Z? )) = 1. Thus, we see that the O( !̃Z? )-torsor Isom( !̃? , !̃Z? ) is trivial. �

Proposition 7.7. There are Gal(�/�)-invariant tensors {BU,?} in �⊗ét and an isomorphism of, (F@)-
modules

Φ : Mcris(�ét) ⊗, , (F@)
�

−→ �1
cris(AB/,)

∨ ⊗, , (F@)

satisfying the following properties:

(1) There is an isomorphism of Z?-modules �Z? � �ét that carries {BU} to {BU,?} and induces the
following commutative diagram:

!̃Z?

�

��

8 // EndZ? (�Z? )

�

��
!̃? // EndZ? (�ét),

where !̃Z? � !̃? is an isometry over Z? .
(2) Φ is an isomorphism of �-isocrystals after inverting ?.
(3) Φ carries {Mcris(BU,?)} to {BU,cris,B}.
(4) The following diagram is commutative:

Mcris ( !̃?) ⊗, , (F@) // End, (F@) (Mcris(�ét) ⊗, , (F@))

�

��
!̃cris ⊗, , (F@)

8cris // End, (F@) (�
1
cris(AB/,)

∨ ⊗, , (F@)),

where we identify Mcris( !̃?) ⊗, , (F@) with !̃cris ⊗, , (F@) using the isomorphism Mcris ( !̃?) �

!̃cris in Lemma 7.3.

Proof. There is an isometry 5 : !̃? � !̃Z? over Z? by Lemma 7.6. We fix such an isometry. Let

{ 5 ∗(BU)} be the tensors in �⊗ét = Cl( !̃?)⊗ corresponding to the tensors {BU} under 5 . Because we have

d(Gal(�/�)) ⊂ GSpin( !̃?) (Z?), these tensors are Gal(�/�)-invariant. Let {M( 5 ∗(BU))} denote the
induced tensors in M(�ét)

⊗.
As in the proofs of [40, Proposition 1.3.4, Corollary 1.3.5], there are an isomorphism ofS-modules

Φ 5 : M(�ét) � �S

and an isometry q 5 : M( !̃?) � !̃S such that Φ 5 carries {M( 5 ∗(BU))} to {BU} and a similar diagram
as in Proposition 4.2 commutes. Let

Φ
′ : �, � �

1
cris(AB/,)

∨

be an isomorphism as in Subsection 4.6. Let q′ : !̃, � !̃cris denote the induced isometry. Consider the
composite of the following isomorphisms:

k : !̃cris = Mcris ( !̃?)
q 5
−→ !̃,

q′

−→ !̃cris.

We may assume det(k) = 1 as follows: Suppose det(k) = −1. We take an isometry ℎ : !̃Z? � !̃Z?
with det(ℎ) = −1. (For example, ℎ can be constructed using a decomposition !̃Z? � *Z? ⊕ *

⊥
Z?

of
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quadratic spaces.) The isomorphism �S → �S induced by this isometry is also denoted by ℎ. Then the
composite

M(�ét)
Φ 5
−→ �S

ℎ
−→ �S

carries {M((ℎ ◦ 5 )∗(BU))} to {BU} and the composite

!̃cris = Mcris ( !̃?)
ℎ◦q 5 // !̃,

q′ // !̃cris

has determinant 1. Therefore, after replacing { 5 ∗(BU)} by {(ℎ ◦ 5 )∗(BU)} and replacing Φ 5 by ℎ ◦Φ 5 ,
we may assume det(k) = 1.

Then there is an element 6 ∈ �̃ (,) whose image under the surjection �̃ (,) ։ �̃0(,) is (q 5 ◦

q′)−1 ∈ �̃0(,). After replacing Φ′ by Φ′ ◦ 6, we may assume k = id.
Under the isomorphism Φ 5 , the Frobenius on Mcris(�ét) [1/?] has the form of 1f for some 1 ∈

�̃ ( 0). Similarly, under the isomorphism Φ′, the Frobenius on �1
cris(AB/,)

∨ [1/?] has the form of 1′f

for some 1′ ∈ �̃ ( 0). Because k = id, the elements 1 and 1′ have the same image under the surjection
�̃ ( 0) ։ �̃0( 0). Hence, there is an element D ∈  ×0 such that 1 = D1′.

We shall show D ∈ ,×. Because the Hodge-Tate weights of �ét,Q? are in {0, 1} (i.e.,
Gr8 (�dR (�ét,Q? )

∨) = 0 if 8 ≠ 0, 1), the effective Breuil-Kisin module M(�∨ét) is of height ≤ 1. Hence,
the cokernel of the Frobenius of Mcris (�ét)

∨ is killed by ?. Moreover, because AB is an abelian vari-
ety of dimension 221, the cokernel of the Frobenius of �1

cris (AB/,) is isomorphic to (,/?)⊕221
as a

,-module. From these facts, we conclude D ∈ ,×.
Take an element E ∈ , (F@)× such that f(E)/E = D. Then the isomorphism

Mcris (�ét) ⊗, , (F@)
Φ 5
−→ �, (F@ )

×E
−→ �, (F@)

Φ′

−→ �1
cris(AB/,)

∨ ⊗, , (F@)

is an isomorphism of �-isocrystals after inverting ?. This isomorphism satisfies the properties of the
proposition.

The proof of Proposition 7.7 is complete. �

Recall that there is an equivalence of categories between the category of ?-divisible groups over
�� and the category of Gal(�/�)-stable Z?-lattices in crystalline representations whose Hodge-Tate
weights are in {0, 1}; see [39, Corollary 2.2.6], [48, Theorem 2.2.1]. Therefore, there is a (unique)
?-divisible group H over �� whose ?-adic Tate module is isomorphic to �ét.

By Proposition 7.7, the base change H� is a lift of the ?-divisible group AB [?
∞] associated with

AB . As a corollary of Proposition 7.7, the ?-divisible group H� is �̃-adapted to AB [?
∞] in the sense

of [38, Definition 3.3].

Corollary 7.8. The ?-divisible group H� is �̃-adapted to AB [?
∞].

Proof. The assertion follows from Proposition 7.7 and [38, Theorem 2.5]. �

7.4. Proof of Theorem 7.1

In this subsection, we shall complete the proof of Theorem 7.1.
By Corollary 7.8, there is a lift B̃ ∈ �K̃ (� ) of B ∈ �K̃ (F@) such that the ?-divisible group associated

with AB̃ is isomorphic to H� . See [38, Lemma 3.8] and the proof of [38, Proposition 4.6] for details.
Although the residue field is assumed to be finite in [38, Lemma 3.8], the same result holds for � 
because the ?-divisible group AB [?

∞] is defined over the finite field : .
Proposition 7.7 (4) implies that the 0th piece of the Hodge filtration on�1

cris(AB/,)
∨⊗,  coincides

with Fil0(�1
cris (AB/,)

∨ ⊗,  ) defined in Subsection 7.1.
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To prove Theorem 7.1, it remains to show B̃ ∈ �K̃ (� ) lifts to an � -valued point of /K? (Λ). By

the construction of �ét, we have a Gal( / )-equivariant homomorphism

ΛZ? ⊂ !̃? → EndZ? (�ét).

Therefore, we get ΛZ(?) → End� (H� ) lifting the map ΛZ(?) → End
F@
(AB [?

∞]) induced by ]. By
the Serre-Tate theorem, the Λ-structure ] lifts to a homomorphism

ΛZ(?) → End� (AB̃)Z(?) .

By construction, this is a Λ-structure for B̃. The proof of Theorem 7.1 is complete. �

8. Kisin’s algebraic groups associated with Kuga-Satake abelian varieties over finite fields

In this section, we attach an algebraic group � over Q to a quasi-polarised  3 surface of finite height
over F@ . It is a subgroup of the multiplicative group of the endomorphism algebra of the Kuga-Satake
abelian variety. Then we study its action on the formal Brauer group of the  3 surface.

8.1. Kisin’s algebraic groups

Let B ∈ /K? (Λ) (F@) be an F@-valued point and B ∈ /K? (Λ) (F@) a geometric point above B. Let
AutQ(AB) denote the algebraic group over Q defined by

AutQ(AB) (') := (End
F@
(AB) ⊗Z ')

×

for every Q-algebra '.
After replacing F@ by a finite extension of it, we may assume that all endomorphisms of AB are

defined over F@ . Namely, we have EndF@ (AB) � End
F@
(AB).

The global sections {B?U} of + ? (A)⊗ give rise to global sections {BU,ℓ } of +ℓ (A)⊗. The A?
5
-local

system Ṽ? and the embedding 8? give a Qℓ-local system Ṽℓ and an embedding 8ℓ : Ṽℓ ↩→ End(+ℓ (A))
of Qℓ-local systems for every ℓ ≠ ?. The Λ-structure for B ∈ /K? (Λ) (F@) gives a homomorphism

]ℓ : ΛQℓ → Ṽℓ,B . We fix an isomorphism of Qℓ-vector spaces

�Qℓ � +ℓ (AB)

that carries {BU} to {BU,ℓ,B} and induces the following commutative diagram:

ΛQℓ
//

]ℓ !!❇
❇❇

❇❇
❇❇

❇
!̃Qℓ

�

��

8 // EndQℓ (�Qℓ )

�

��
Ṽℓ,B

8ℓ // EndQℓ (+ℓ (AB)),

where !̃Qℓ � Ṽℓ,B is an isometry over Qℓ .
Let �, � �1

cris(AB/,)
∨ be an isomorphism as in Subsection 4.6. After inverting ? and composing

an element of �̃ (, [1/?]), we can find an isomorphism

�, [1/?] � �
1
cris (AB/,)

∨ [1/?]

that carries {BU} to {BU,cris,B} and induces the same diagram as above by [50, Lemma 2.8] and the fact
that every GSpin(!, [1/?])-torsor over , [1/?] is trivial (see [59, Theorem 6.4] and the arguments in
Subsection 7.3). We fix such an isomorphism.
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Kisin introduced an algebraic group �̃ℓ over Qℓ for every prime number ℓ (including ℓ = ?) and an
algebraic group �̃ over Q as follows; see [41, (2.1.2)] for details.

(1) For a prime number ℓ ≠ ?, let Frob@ ∈ EndQℓ (�Qℓ ) denote the Qℓ-endomorphism of �Qℓ induced

by the @th power Frobenius ofAB . Because Frob@ fixes the tensors {BU,ℓ,B}, we have Frob@ ∈ �̃ (Qℓ).

For every integer < ≥ 1, we define an algebraic Qℓ-subgroup �̃ℓ,< of �̃Qℓ by

�̃ℓ,<(') := { 6 ∈ �̃ (') | 6 Frob<@ = Frob<@ 6 }

for every Qℓ-algebra '. For sufficiently divisible < ≥ 1, the algebraic group �̃ℓ,< does not depend
on <, and it is denoted by �̃ℓ .

(2) For ℓ = ?, we define an algebraic group �̃?,< over Q? by

�̃?,<(') := { 6 ∈ �̃ (' ⊗Q? , (F@< ) [1/?]) | 6i = i6 }.

For sufficiently divisible < ≥ 1, the algebraic group �̃?,< does not depend on <, and it is denoted
by �̃? .

(3) Let �̃ ⊂ AutQ(AB) be the largest closed Q-subgroup of AutQ(AB) mapped into �̃ℓ for every ℓ
(including ℓ = ?).

Replacing F@ by a finite extension of it, we may assume �̃ℓ,1 = �̃ℓ and �̃?,1 = �̃? .
For our purpose, we need an algebraic subgroup � ⊂ �̃ over Q defined using the Λ-structure; see

Definition 4.3. If ! is self-dual at ?, it coincides with Kisin’s algebraic group associated with anF@-valued
point of the integral canonical model of ShK0 (SO(!Q), -!) taken in a similar way as in Subsection 6.2.

Definition 8.1.

(1) Let � ⊂ �̃ be the algebraic subgroup over Q defined by

� (') := { 6 ∈ �̃ (') | 6ℎ6−1
= ℎ in End

F@
(AB)' for every ℎ ∈ ](ΛQ) }

for every Q-algebra '.
(2) For a prime number ℓ ≠ ?, let �ℓ ⊂ �̃ℓ be the algebraic subgroup over Qℓ defined by

�ℓ (') := { 6 ∈ �̃ℓ (') | 6ℎ6
−1

= ℎ in EndFrob@ (�Qℓ )' for every ℎ ∈ 8(ΛQℓ ) }

for every Qℓ-algebra '.
(3) For ℓ = ?, let �? ⊂ �̃? be the algebraic subgroup over Q? defined in a similar way as above.

As in Kisin’s paper [41], we shall prove that the natural map

�Qℓ → �ℓ

is an isomorphism of algebraic groups over Qℓ for every ℓ (including ℓ = ?). Here we prove it for some
ℓ ≠ ?. The case of general ℓ will be proved later; see Corollary 9.9.

Proposition 8.2.

(1) For some prime number ℓ ≠ ?, the natural map �Qℓ → �ℓ is an isomorphism of algebraic groups
over Qℓ .

(2) The algebraic groups � and GSpin(!Q) over Q have the same rank. (Recall that the rank of an
algebraic group over a field : is the dimension of a maximal :-torus of it.)

Proof. (1) We fix a prime number ℓ ≠ ? such that GSpin(!Q) and �̃Q are split at ℓ and all of the
eigenvalues of Frob@ acting on �Qℓ are contained in Qℓ . We shall show that the assertion (1) holds
for such ℓ. By the proof of [41, Corollary 2.1.7], the homomorphism �̃Qℓ → �̃ℓ is an isomorphism.
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(Precisely, Kisin proved it in [41] assuming ? ≥ 3 and the restriction of k to �Z(?) is perfect. These
assumptions are unnecessary; see the proof of [38, Theorem A.8].) By Tate’s theorem, we have

EndF@ (AB)Qℓ � EndFrob@ (�Qℓ ).

Now, the assertion (1) follows from the definitions of � and �ℓ .
(2)We follow Kisin’s proof of [41, Corollary 2.1.7]. Because Frob@ and �ℓ act trivially on 8(ΛQℓ ), we

have Frob@ ∈ GSpin(!Qℓ ) and �ℓ ⊂ GSpin(!Qℓ ); see [50, (2.6.1)]. The element Frob@ ∈ GSpin(!Qℓ )
is semisimple because the action of Frob@ on +ℓ (AB) is semisimple. Thus, the connected component
( of the Zariski closure of the group 〈Frob@〉 generated by Frob@ is a split torus in GSpin(!Qℓ ) by the
hypotheses on ℓ. Because �ℓ is the same as the centraliser of Frob<@ in GSpin(!Qℓ ) for a sufficiently
divisible <, it follows that �ℓ coincides with the centraliser of (. Therefore, �ℓ contains a split maximal
torus of GSpin(!Qℓ ). (Hence, �ℓ is a connected split reductive group over Qℓ .) In particular, the rank
of �ℓ as an algebraic group over Qℓ is equal to the rank of GSpin(!Qℓ ) as an algebraic group over Qℓ .
Because we have �Qℓ � �ℓ , the ranks of the algebraic groups � and GSpin(!Q) over Q are equal. �

Remark 8.3. With the results of [38], it should be possible to show that Kisin’s result [41, Corollary
2.2.5] on CM liftings of mod ? points on integral canonical models of Shimura varieties of Hodge type
up to isogeny is valid in any characteristic ? > 0 including ? = 2. Then this would imply that, for every
? > 0 including ? = 2, the map �̃Qℓ → �̃ℓ (and hence �Qℓ → �ℓ) is an isomorphism for every prime
number ℓ (including ℓ = ?); see [41, Corollary 2.3.2] for the case ? ≥ 3. In this article, we will prove
such a result only under the assumption that B ∈ /K? (Λ) (F@) arises from a quasi-polarised  3 surface
of finite height; see Corollary 9.9.

8.2. The action of Kisin’s groups on the formal Brauer groups of  3 surfaces

We consider the situation as in Section 7 and keep the notation. In particular, we assume that the height
ℎ of - is finite. We attach the algebraic group � over Q to B ∈ /K? (Λ) (F@).

As in the proof of Proposition 6.6, we have a decomposition

%2
cris (-/,) � !1−1/ℎ ⊕ !1 ⊕ !1+1/ℎ .

Here, !_ is an �-crystal over, that has a single slope _ for each _ ∈ {1 − 1/ℎ, 1, 1 + 1/ℎ}. Moreover,
there is an isomorphism of �-crystals over, :

D(B̂r) � !1+1/ℎ (1).

By Proposition 6.4, the algebraic group � acts on %2
cris(-/,) (1) [1/?]. Hence, we have the following

homomorphism of algebraic groups over Q?:

�Q? → Res 0/Q? GL(%2
cris (-/,) (1) [1/?]).

For a one-dimensional smooth formal group � over a ring �, let AutQ? (�) denote the Q?-group
such that

AutQ? (�) (') := (End�(�) ⊗Z? ')
×

for every Q?-algebra '.

Lemma 8.4. There is a homomorphism

�Q? → (AutQ? (B̂r))op

that is compatible with �Q? → Res 0/Q? GL(%2
cris (-/,) (1) [1/?]) via the projection %2

cris (-/,) (1) →

D(B̂r).
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Proof. We put +_ := !1+_ (1) [1/?] for each _ ∈ {−1/ℎ, 0, 1/ℎ}. For an �-isocrystal " over  0, let
GLi (") denote the algebraic group over Q? defined by

GLi (") (') := { 6 ∈ GL 0⊗Q?'
(" ⊗Q? ') | 6i = i6 }

for every Q?-algebra ', where i is the Frobenius of " . We have an isomorphism of algebraic groups
over Q?:

GLi (%
2
cris (-/,) (1) [1/?]) � GLi (+−1/ℎ) × GLi (+0) × GLi (+1/ℎ).

Let �Q? → GLi (+1/ℎ) be the composite of the map �Q? → GLi (%2
cris (-/,) (1) [1/?]) with the projec-

tion GLi (%2
cris (-/,) (1) [1/?]) → GLi (+1/ℎ). Note that we have an isomorphism (AutQ? (B̂r))op

�

GLi (+1/ℎ), which completes the proof. �

9. Lifting of  3 surfaces over finite fields with actions of tori

In this section, we prove our main results on CM liftings of  3 surfaces of finite height over finite fields
using the results of Section 7.

9.1.  3 surfaces with complex multiplication

In this subsection, we recall the definition and basic properties of  3 surfaces with complex multipli-
cation over C.

Let . be a projective  3 surface over C. Let

). := Pic(. )⊥
Q
⊂ �2

� (.,Q(1))

denote the transcendental part of the singular cohomology, which has the Q-Hodge structure coming
from �2(.,Q(1)).

Let

�. := EndHdg (). )

denote the Q-algebra of Q-linear endomorphisms on ). preserving the Q-Hodge structure on it. We say
that . has complex multiplication (CM) if �. is a CM field and dim�. (). ) = 1. Here a number field is
called CM if it is a purely imaginary quadratic extension of a totally real number field.

Let MT(). ) denote the Mumford-Tate group of ). . By the definition, it is the smallest algebraic
Q-subgroup of SO(). ) such that ℎ. (S(R)) ⊂ MT(). ) (R), where

ℎ. : S→ SO(). )R

is the homomorphism overR corresponding to theQ-Hodge structure of). . By the results of Zarhin [76,
Section 2], the  3 surface . has CM if and only if the Mumford-Tate group MT(). ) is commutative.

In the rest of this subsection, we fix a C-valued point C ∈ "sm
23,K

?
0 ,Q
(C). Let (., b) be the quasi-

polarised  3 surface over C associated with C. The image of C under the Kuga-Satake morphism KS is
also denoted by C ∈ /K

?
0
(Λ) (C).

Proposition 9.1. Assume that . is a  3 surface with CM over C. Then C ∈ "sm
23,K

?
0 ,Q
(C) is defined over

a number field.

Proof. This proposition follows from Rizov’s result [61, Corollary 3.9.4] as follows. The image of
C ∈ /K

?
0
(Λ) (C) under the morphism /K

?
0
(Λ) → �K̃0

is denoted by the same symbol C. If . has CM,

then the residue field of the image C ∈ �K̃0
(C) is a number field by the definition of the canonical
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model �K̃0 ,Q
= ShK̃0

over Q. Because the morphism /K
?
0
(Λ) → �K̃0

is finite by Proposition 4.6, the

residue field of C ∈ /K
?
0
(Λ) (C) is a number field. Now, the assertion follows from the étaleness of the

Kuga-Satake morphism KS (in characteristic 0). �

Remark 9.2. Pjateckiı̆-Šapiro and Šafarevič also showed that every  3 surface with CM is defined over
a number field; see [58, Theorem 4].

For the quasi-polarised  3 surface (., b) over C, the primitive singular cohomology is defined by

%2
� (.,Q(1)) := ch� (b)

⊥ ⊂ �2
� (.,Q(1)).

We fix aC-valued point of /K? (Λ) mapped to C, and it is also denoted by C ∈ /K? (Λ) (C). We have the
Kuga-Satake abelian variety AC over C corresponding to C ∈ /K? (Λ) (C). As in Subsection 6.2, the stalk

+̃C := Ṽ�,C

satisfies the following properties:

◦ +̃C admits a perfect bilinear form ( , ) over Q that is a polarisation.
◦ There is a homomorphism ]� : ΛQ → +̃C preserving the bilinear forms and the Q-Hodge structures.
◦ There is an isometry %2

� (.,Q(1)) � ]� (ΛQ)
⊥ over Q preserving the Q-Hodge structures.

◦ The following diagram commutes:

GSpin(+̃C )R

��

// GL(�1
� (AC ,Q)

∨)R

S
ℎ0

//

ℎ

;;✇✇✇✇✇✇✇✇✇✇✇
SO(+̃C )R,

where ℎ0 is the homomorphism of algebraic groups over R corresponding to the Q-Hodge structure
on +̃C and the composite

S
ℎ
→ GSpin(+̃C )R → GL(�1

� (AC ,Q)
∨)R

corresponds to the Q-Hodge structure on �1
� (AC ,Q)

∨.

Proposition 9.3. The  3 surface . has CM if and only if the Kuga-Satake abelian variety AC has CM.

Proof. This proposition was essentially proved by Tretkoff; see [71, Corollary 3.2]. We give an argument
from the point of view of algebraic groups. Because ℎ0 is the composite of ℎ. with the following
inclusions,

SO(). )R ↩→ SO(%2
� (.,Q(1)))R ↩→ SO(+̃C )R,

we have MT(). ) � MT(+̃C ). We shall show that MT(+̃C ) is commutative if and only if MT(�1
� (AC ,Q)

∨)

is commutative. Because MT(�1
� (AC ,Q)

∨) is contained in GSpin(+̃C ) and MT(+̃C ) is contained in the

image of MT(�1
� (AC ,Q)

∨), we only have to show MT(�1
� (AC ,Q)

∨) is commutative if MT(+̃C ) is so.

We assume that MT(+̃C ) is commutative. Then the inverse image of MT(+̃C ) under the homomor-
phism GSpin(+̃C ) → SO(+̃C ) is a solvable algebraic group and contains MT(�1

� (AC ,Q)
∨). Because

MT(�1
� (AC ,Q)

∨) is a reductive group (see [25, Proposition 3.6]), it is commutative. �

Corollary 9.4. Let � be a field that can be embedded in C. Let / be a  3 surface over �. If / ⊗�, 9 C
has CM for an embedding 9 : � ↩→ C, then / ⊗�, 9′ C has CM for every embedding 9 ′ : � ↩→ C.

Proof. The assertion follows from Proposition 9.3 and the fact that, for an abelian variety � over Cwith
CM and every automorphism 5 : C � C, the abelian variety � ⊗C, 5 C has CM. �
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Remark 9.5. Let � be a field of characteristic 0 that can be embedded into C and / a  3 surface over
�. We say that / has CM if / ⊗�, 9 C has CM for some embedding 9 : � ↩→ C, in which case / ⊗�, 9′ C
has CM for every embedding 9 ′ : � ↩→ C by Corollary 9.4.

9.2. A lemma on liftings of formal groups with action of tori

The following result on characteristic 0 liftings of one-dimensional smooth formal groups is presumably
well known. (For the definition of AutQ? (G0) and AutQ? (G), see Subsection 8.2.)

Lemma 9.6. Let G0 be a one-dimensional smooth formal group over F@ . Let )? be an algebraic torus
over Q? and

d : )? → AutQ? (G0)

a homomorphism of algebraic groups over Q? . Assume that the height of G0 is finite and the Frobenius
Φ of G0 over F@ is contained in d()? (Q?)). Then, there exist a finite totally ramified extension � of  0

and a smooth formal group G over �� satisfying the following properties:

(1) The special fibre of G is isomorphic to G0.
(2) The homomorphism d factors as

)? → AutQ? (G) → AutQ? (G0).

Proof. We fix an isomorphism G0 � Spf F@ [[G]] and consider G0 as a formal group law in F@ [[G, H]].
The composite of d with the inclusion AutQ? (G0) → AutQ? (G0,F@

) is also denoted by d. Take a

maximal Q?-torus ) ′? of AutQ? (G0,F@
) containing d()?). It is well known that End

F@
(G0,F@

) ⊗Z? Q?

is a central division algebra over Q? and End
F@
(G0,F@

) is the maximal order of it; see [33, Corollary

20.2.14]. Hence, there is a maximal commutative Q?-subalgebra

 ′ ⊂ End
F@
(G0,F@

) ⊗Z? Q?

such that  ′× = ) ′? as algebraic groups over Q? , and we have � ′ ⊂ End
F@
(G0,F@

). Moreover, because

) ′? (Q?) contains the Frobenius Φ of G0 over F@ , the endomorphisms in  ′ commute with Φ. Hence,
we have � ′ ⊂ EndF@ (G0).

We regard the formal group law G0 as a formal � ′-module over F@ in the sense of [33, (18.6.1)].
The universal formal � ′-module Guniv exists and it is a formal � ′-group over a polynomial ring
� ′ [((8)8∈N] with infinitely many variables over � ′; see [33, (21.4.8)]. (See also [28, Proposition
1.4]. Beware that Guniv does not classify isomorphism classes of formal � ′-modules but formal � ′-
modules.)

We take a finite totally ramified extension � of  0 such that � is a  ′-algebra. Then there is a formal
� ′-module G ∈ �� [[G, H]] over �� whose reduction modulo the maximal ideal of �� is equal to G0

such that the homomorphism � ′ → EndF@ (G0) factors as

� ′ → End�� (G) → EndF@ (G0).

(See also [28, Corollary (2) to Proposition 1.4].) Therefore, the homomorphism d factors as )? →
AutQ? (G) → AutQ? (G0). �

9.3. Liftings of  3 surfaces over finite fields with actions of tori

Let (., b) be a quasi-polarised  3 surface over a field : of characteristic 0 or ?. Let : be an algebraic
closure of : . For a prime number ℓ ≠ ?, the primitive part of the ℓ-adic cohomology is denoted by

%2
ét (.: ,Qℓ (1)) := chℓ (b)

⊥ ⊂ �2
ét (.: ,Qℓ (1)).
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It is equipped with a canonical action of Gal(:/:). When : is a subfield of C, we have a canonical
isomorphism

%2
ét (.: ,Qℓ (1)) � %

2
� (.C,Q(1)) ⊗Q Qℓ .

We consider the situation as in Subsection 6.2 and Section 7 and keep the notation. In particular,
(-,ℒ) is a quasi-polarised  3 surface of finite height over F@ . We attach the algebraic group � over Q
to the F@-valued point B ∈ /K? (Λ) (F@); see Definition 8.1.

The following theorem concerns characteristic 0 liftings of  3 surfaces of finite height over fi-
nite extensions of , (F@) [1/?]. Because every  3 surface with CM is defined over a number field
(see Proposition 9.1 and Remark 9.2), Theorem 9.7 implies Theorem 1.1 in the Introduction; see
Corollary 9.10.

Theorem 9.7. Let) ⊂ � be a maximal torus overQ. Then there exist a finite extension  of, (F@) [1/?]
and a quasi-polarised  3 surface (X,L) over � such that the special fibre (X

F@
,L
F@
) is isomorphic

to (-
F@
,ℒ
F@
) and, for every embedding  ↩→ C, the quasi-polarised  3 surface (XC,LC) satisfies the

following properties:

(1) The  3 surface XC has CM.
(2) There is a homomorphism of algebraic groups over Q

) → SO(%2
� (XC,Q(1))).

(3) For every ℓ ≠ ?, the action of ) (Qℓ ) on %2
� (XC, Q(1)) ⊗QQℓ is identified with the action of ) (Qℓ )

on %2
ét(-F@ ,Qℓ (1)) via the canonical isomorphisms

%2
� (XC,Q(1)) ⊗Q Qℓ � %

2
ét(XC,Qℓ (1)) � %

2
ét (-F@ ,Qℓ (1)))

(using the embedding  ↩→ C, we consider  as a subfield of C).
(4) The action of every element of ) (Q) on %2

� (XC,Q(1)) preserves the Q-Hodge structure on it.

Proof. Recall that B̂r = B̂r(-) is the formal Brauer group associated with - . Let �Q? → (AutQ? (B̂r))op

be the homomorphism in Lemma 8.4. This induces a homomorphism

)Q? → AutQ? (B̂r)

of algebraic groups over Q? .
By Lemma 9.6, there exist a finite totally ramified extension � of  0 and a one-dimensional smooth

formal group G over�� whose special fibre is isomorphic to B̂r such that the homomorphism d factors as

)Q? → AutQ? (G) → AutQ? (B̂r).

As in Section 7, we have the filtration associated with G,

Fil1 (G) ↩→ D(B̂r) ⊗, � ↩→ !̃cris ⊗, �.

Take a generator 4 of Fil1 (G) and let 8(4) := (8cris ⊗ 0 �) (4) denote the image of 4 under the embedding

8cris ⊗, � : !̃cris ⊗, � ↩→ End� (�
1
cris (AB/,)

∨ ⊗, �).

By Theorem 7.1, there exist a finite extension  of , (F@) [1/?] containing � and an � -valued
point B̃ ∈ /K? (Λ) (� ) such that
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◦ B̃ is a lift of B and
◦ the 0th piece Fil0

B̃
⊂ �1

cris (AB/,)
∨ ⊗,  � �1

dR(AB̃/ )
∨ of the Hodge filtration coincides with the

image 8(4) (�1
cris(AB/,)

∨ ⊗,  ).

Because the embedding 8cris is �Q? -equivariant and the action of )Q? on !̃cris [1/?] preserves Fil1 (G),

we see that the action of ) on �1
dR(AB̃/ )

∨ preserves Fil0
B̃
. Therefore, the Q-torus ) can be considered

as a Q-torus in (End� (AB̃) ⊗Z Q)
×.

Because the Kuga-Satake morphism is étale (see Proposition 5.2), the � -valued point B̃ ∈
/K? (Λ) (� ) can be lifted to an � -valued point of "sm

23,K
?
0 ,Z(?)

. This lift is also denoted by B̃. Let

(X,L) be the quasi-polarised  3 surface over � corresponding to B̃. Its special fibre is isomorphic to
(-
F@
,ℒ
F@
).

We choose an embedding  ↩→ C. We shall show that X ⊗� C satisfies the conditions of Theorem
9.7. Let G denote the C-valued point that comes from B̃ and the embedding  ↩→ C. The algebraic group
) over Q can be considered as a subgroup of GL(�1

� (AG ,Q)
∨). We fix an isomorphism of Q-vector

spaces

�Q � �
1
� (AG ,Q)

∨

that carries {BU} to {BU,�,G} and induces the following commutative diagram:

ΛQ //

]�
��❄

❄❄
❄❄

❄❄
❄

!̃Q

�

��

8 // EndQ(�Q)

�

��
+̃G

8� // EndQ(�1
� (AG ,Q)

∨).

This isomorphism identifies GSpin(+̃G) with the subgroup of GL(�1
� (AG ,Q))

∨ defined by {BU,�,G}.

Then ) is contained in GSpin(+̃G). Moreover, because ) is contained in �, we see that ) is compatible
with ]� (ΛQ). Hence, we have

) ↩→ GSpin(%2
� (XC,Q(1))).

Composing this inclusion with GSpin(%2
� (XC,Q(1))) → SO(%2

� (XC,Q(1))), we have a homomor-
phism of algebraic groups over Q,

) → SO(%2
� (XC,Q(1))).

The base change of this homomorphism to Qℓ is identified with the homomorphism

)Qℓ → SO(%2
ét (-F@ ,Qℓ (1)))

via the canonical isomorphism %2
� (XC,Q(1)) ⊗Q Qℓ � %

2
ét (-F@ ,Qℓ (1)).

Finally, we shall prove that the  3 surface XC has CM. It is enough to show that the Mumford-
Tate group of %2

� (XC,Q(1)) is commutative; see Subsection 9.1. It suffices to prove that the
image of S→ SO(%2

� (XC,R(1))) is contained in the image of )R. To prove this, it suffices to show that
the image of

S→ GSpin(%2
� (XC,R(1)))

is contained in )R. By Proposition 8.2, it follows that ) is a maximal Q-torus of GSpin(%2
� (XC,Q(1))).

Therefore, it suffices to show that the image of S is contained in the centraliser of )R. Because ) (Q) is
Zariski dense in )R, this follows from the fact that every element of ) (Q) comes from an element of
EndC(AG) ⊗Z Q.

The proof of Theorem 9.7 is complete. �
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Remark 9.8. As suggested by the referee, it should be possible to apply our methods to any F?-valued
point B of /K? (Λ) (or on more general orthogonal Shimura varieties), such that the associated �-crystal
!̃cris,B (−1) has a decomposition

!̃cris,B (−1) � !̃1−1/ℎ ⊕ !̃1 ⊕ !̃1+1/ℎ

as in the proof of Proposition 6.6, in order to show that the point B admits CM liftings. However, we do
not discuss it in this article.

Using Theorem 9.7, we can show that the assertion of Proposition 8.2 (1) holds for every ℓ (including
ℓ = ?).

Corollary 9.9. For every prime number ℓ (including ℓ = ?), the canonical homomorphism �Qℓ → �ℓ is
an isomorphism.

Proof. The assertion follows from Proposition 8.2 and Theorem 9.7. (See the proof of [41, Corollary
2.3.2] for details.) �

We shall give applications of Theorem 9.7 to CM liftings and quasi-canonical liftings of  3 surfaces
of finite height over a finite field. For the definition of CM liftings used in this article, see Subsection
1.1. For the definition of quasi-canonical liftings, see [55, Definition 1.5].

Corollary 9.10. Let - be a  3 surface of finite height over F@ . Then there is a positive integer < ≥ 1
such that -F@< admits a CM lifting.

Proof. After replacing F@ by its finite extension, we may assume that - comes from an F@-valued point
B ∈ "sm

23,K
?
0 ,Z(?)

(F@) satisfying the conditions as in Subsection 6.2. By Theorem 9.7 and Proposition

9.1, after replacing F@ by its finite extension again, there exist a number field �, a finite place E of �
with residue field F@ and a  3 surface � over ��, (E) whose special fibre �F@ is isomorphic to - and
generic fibre �� is a  3 surface with CM over �. �

Corollary 9.11. Let - be a  3 surface of finite height over F@ . Then there is a positive integer < ≥ 1
such that -F@< admits a quasi-canonical lifting.

Proof. After replacing F@ by its finite extension, we may assume that - comes from an F@-valued
point B ∈ "sm

23,K
?
0 ,Z(?)

(F@) satisfying the conditions as in Subsection 6.2. Because Frob<@ ∈ ) (Q)

for a sufficiently divisible < ≥ 1, the characteristic 0 lifting constructed in Theorem 9.7 is a quasi-
canonical lifting in the sense of Nygaard-Ogus. Hence, the assertion follows from Theorem 9.7 and
Proposition 9.1. �

Remark 9.12. Corollary 9.11 was previously known when ? ≥ 5 by Nygaard-Ogus [55, Theorem
5.6]. Precisely, when ? ≥ 5, Nygaard-Ogus proved the existence of quasi-canonical liftings without
extending the base field F@ . On the other hand, by the methods of this article, it is necessary to take a
finite extension F@< of F@ for some < ≥ 1, and we do not know how to control <.

10. The Tate conjecture for the square of a  3 surfaces over finite fields

In this section, combining Theorem 9.7 with the results of Mukai and Buskin on the Hodge conjecture
for products of  3 surfaces, we shall prove the Tate conjecture for the square of a  3 surface over a
finite field.

10.1. The statement of the main results

We recall the statement of the Tate conjecture. Let + be a projective smooth variety over F@ . For a
prime number ℓ ≠ ?, the Tate conjecture for ℓ-adic cohomology states the surjectivity of the ℓ-adic
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cycle class map

cl8ℓ : / 8 (+) ⊗Z Qℓ → �28
ét (+F@ ,Qℓ (8))

Gal(F@/F@)

for every 8. Similarly, the Tate conjecture for crystalline cohomology states the surjectivity of the
crystalline cycle class map

cl8cris : / 8 (+) ⊗Z Q? → �28
cris (+/, (F@))

i=?8 ⊗Z Q

for every 8. Here / 8 (+) denotes the group of algebraic cycles of codimension 8 on+ . (See [55, Conjecture
0.1], [69, Section 1], [70, Conjecture 1.1].)

Here is the statement of our results on the Tate conjecture for the square of a  3 surface over a finite
field. As before, let ? be a prime number and @ a power of ?.

Theorem 10.1. Let - be a  3 surface (of any height) over F@ . We put - × - := - ×Spec F@ - and
-
F@
× -

F@
:= -

F@
×Spec F@

-
F@

.

(1) For every prime number ℓ ≠ ?, the ℓ-adic cycle class map

cl8ℓ : / 8 (- × -) ⊗Z Qℓ → �28
ét (-F@ × -F@ ,Qℓ (8))

Gal(F@/F@)

is surjective for every 8.
(2) The crystalline cycle class map

cl8cris : / 8 (- × -) ⊗Z Q? → �28
cris ((- × -)/, (F@))

i=?8 ⊗Z Q

is surjective for every 8.

10.2. Previous results on the Tate conjecture

In this subsection, we recall previously known results on the Tate conjecture that will be used to prove
Theorem 10.1.

Lemma 10.2. Let + be a projective smooth variety over F@ . Let ℓ be a prime number different from
?. Let 8 be an integer and < ≥ 1 a positive integer. If the Tate conjecture holds for algebraic cycles
of codimension 8 on the variety +F@< over F@< , then the Tate conjecture holds for algebraic cycles of
codimension 8 on the variety + over F@ .

Proof. See [70, Section 2, p.6] for example. �

Lemma 10.3. Let - be a  3 surface over F@ . Let ℓ be a prime number different from ?. The ℓ-adic
cycle class map cl8ℓ for - × - is surjective for every 8 ≠ 2. The same is true for the crystalline cycle
class map cl8cris for every 8 ≠ 2.

Proof. It is enough to prove the assertion for 8 = 1, 3. For 8 = 1, the Künneth formula gives an
isomorphism:

�2
ét (-F@ × -F@ ,Qℓ (1))

�

⊕

(8, 9)=(0,2) , (2,0)

�8ét(-F@ ,Qℓ) ⊗Qℓ �
9

ét(-F@ ,Qℓ) ⊗Qℓ Qℓ (1).

Every element in the left-hand side fixed by Gal(F@/F@) is written as pr∗1U + pr∗2V for some U, V ∈

�2
ét (- ⊗F@ F@ ,Qℓ (1)) fixed by Gal(F@/F@), where pr1, pr2 : - ×- → - are the projections. By the Tate

conjecture for the  3 surface - (see [18, 38, 49, 52]), such elements U and V areQℓ-linear combinations
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of classes of divisors on - . Hence, pr∗1U + pr∗2V is a Qℓ-linear combination of classes of divisors on

- × - . This proves the surjectivity of cl1ℓ .
To show the surjectivity of cl3ℓ , we take an ample line bundle ℒ on - × - . By the hard Lefschetz

theorem, the cup product with the square (chℓ (ℒ))2 of the first Chern class induces a Gal(F@/F@)-
equivariant isomorphism:

�2
ét (-F@ × -F@ ,Qℓ (1)) � �

6
ét(-F@ × -F@ ,Qℓ (3)).

Taking the Gal(F@/F@)-invariants and using the surjectivity of cl1ℓ , we see that cl3ℓ is surjective.
The proof for the crystalline cohomology is exactly the same. �

Lemma 10.4. Let - be a  3 surface over F@ . Assume that Theorem 10.1 (1) holds for 8 = 2 and for some
ℓ ≠ ?. Then Theorem 10.1 (1) holds for 8 = 2 and for every ℓ ≠ ?, and Theorem 10.1 (2) holds for 8 = 2.

Proof. Let #2(- × -) := /2 (- × -)/∼num denote the group of numerically equivalent classes of
algebraic cycles of codimension 2 on -×- . It is a finitely generated abelian group. Assume that Theorem
10.1 (1) holds for a prime number ℓ0 ≠ ?. Because the action of the geometric Frobenius morphism
Frob@ on the ℓ0-adic cohomology �4

ét (-F@ × -F@ ,Qℓ0 (2)) is semisimple (see [24, Corollaire 1.10]), the

order of the zero at C = 1 of the characteristic polynomial %(C) of Frob@ on �4
ét (-F@ × -F@ ,Qℓ0 (2)) is

equal to the rank of #2(- × -); see [69, Theorem 2.9]. For any prime number ℓ ≠ ?, the following
inequality holds (see [69, Proposition 2.8 (iii)]):

rankZ #
2 (- × -) ≤ dimQℓ (�

4
ét (-F@ × -F@ ,Qℓ (2))

Gal(F@/F@) ).

Because the characteristic polynomial of Frob@ does not depend on ℓ, the above inequality is an equality
for any ℓ ≠ ?. Hence, Theorem 10.1 (1) holds for 8 = 2 and for every ℓ ≠ ?.

The same argument works also for crystalline cohomology. We put @ = ?A ,  0 := , (F@) [1/?] and

� := �4
cris ((- × -)/, (F@)) ⊗Z Q.

The Ath power iA of the absolute Frobenius automorphism acts  0-linearly on �, and the characteristic
polynomial of iA on � coincides with the characteristic polynomial of Frob@ on the ℓ-adic cohomology

for every ℓ ≠ @. Hence, we have the following equality: rankZ #2 (- × -) = dim 0 (�
iA=@2

). The

action of ?−2i on the  0-vector space �i
A=@2

can be considered as a semilinear action of Gal( 0/Q?)

on �i
A=@2

. By Hilbert’s theorem 90, we have dimQ? (�
i=?2
) = dim 0 (�

iA=@2
). Hence, we have

rankZ #2 (- × -) = dimQ? (�
i=?2
). Consequently, Theorem 10.1 (2) holds for 8 = 2. �

Remark 10.5. We can prove the following: If Theorem 10.1 (2) holds for 8 = 2, then Theorem 10.1 (1)
holds for 8 = 2 and for every ℓ ≠ ?. To prove this, it is enough to show that, for a  3 surface - over F@
with @ = ?A , the action of iA on the crystalline cohomology of - is semisimple. When - is of finite
height, it follows from the semisimplicity of Frobenius for the Kuga-Satake abelian variety. (See [49,
Theorem 5.17 (3)]. For the case ? = 2, see also [38, Appendix A].) When - is supersingular, it follows
from the Tate conjecture for -; see Lemma 10.6.

The following results on supersingular  3 surfaces are well known.

Lemma 10.6. Let - be a  3 surface over an algebraically closed field : of characteristic ? > 0. Then
- is supersingular (i.e., the height of - is∞) if and only if the rank of the Picard group Pic(-) is 22.

Proof. See [46, Theorem 4.8] for example. (Precisely, the characteristic ? is assumed to be odd in [46,
Theorem 4.8]. But the same proof works in the case ? = 2 because the Tate conjecture for  3 surfaces
in characteristic 2 is now proved by [38, Theorem A.1]. See also [51].) �
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Lemma 10.7. Let - be a supersingular  3 surface over F@ . Then the Tate conjecture for - × - holds
for the ℓ-adic cohomology for every prime number ℓ ≠ ? and for the crystalline cohomology.

Proof. Fix a prime number ℓ ≠ ?. After replacing F@ by a finite extension of it, we may assume that
�2

ét (-F@ ,Qℓ (1)) is spanned by classes of divisors on - defined over F@ by Lemma 10.6. The Künneth

formula implies that �4
ét (-F@ × -F@ ,Qℓ (2)) is spanned by classes of algebraic cycles of codimension

2 on - × - . Thus, the Tate conjecture holds for - × - . The same proof works for the crystalline
cohomology. �

Remark 10.8. By the same argument, we can prove that the Tate conjecture holds for any power
- × · · · × - for a supersingular  3 surface - over F@ .

10.3. Endomorphisms of the cohomology of a  3 surface over a finite field

Let - be a  3 surface of finite height over F@ . After replacing F@ by its finite extension, we may assume
that - comes from an F@-valued point B ∈ "sm

23,K
?
0 ,Z(?)

(F@) satisfying the conditions as in Subsection

6.2. Let � be the algebraic group over Q associated with B ∈ /K? (Λ) (F@); see Definition 8.1.
In this subsection, we fix a prime number ℓ ≠ ?. Let

+ℓ := chℓ (Pic(-
F@
))⊥ ⊂ �2

ét (-F@ ,Qℓ (1))

denote the transcendental part of the ℓ-adic cohomology. By the Tate conjecture for - [18, 38, 49, 52],
none of the eigenvalues of Frob@ is a root of unity.

Lemma 10.9.

(1) There is a Gal(F@/F@)-equivariant isomorphism

�4
ét (-F@ × -F@ ,Qℓ (2))

� Qℓ ⊕ (Pic(-
F@
)⊗2 ⊗Z Qℓ) ⊕ (Pic(-

F@
) ⊗Z +ℓ)

⊕2 ⊕ EndQℓ (+ℓ).

(2) The Tate conjecture holds for - × - if and only if the Qℓ-vector subspace

EndFrob@ (+ℓ) = EndQℓ (+ℓ)
Gal(F@/F@)

is spanned by classes of algebraic cycles of codimension 2 on - × - .

Proof. (1) We have

�8ét(-F@ ,Qℓ) �




Qℓ 8 = 0

(Pic(-
F@
) ⊗Z Qℓ (−1)) ⊕ +ℓ (−1) 8 = 2

Qℓ (−2) 8 = 4

0 8 ≠ 0, 2, 4.

By the Poincaré duality, we have isomorphisms +ℓ ⊗Qℓ +ℓ � +
∨
ℓ
⊗Qℓ +ℓ � EndQℓ (+ℓ). Hence, the

assertion (1) follows by the Künneth formula.
(2) TheQℓ-vector space Pic(-

F@
) ⊗Z+ℓ has no nonzero Gal(F@/F@)-invariants. Hence, the assertion

(2) follows. �

Because the action of � (Qℓ) on the primitive part %2
ét (-F@ ,Qℓ (1)) commutes with Frob@ , it also acts

on +ℓ . For a sufficiently divisible < ≥ 1, the following conditions are satisfied:
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◦ �ℓ = �ℓ,< = �Qℓ (for the definition of �ℓ , �ℓ,<, see Subsection 8.1).
◦ The image of �ℓ,< under the homomorphism GSpin(+ℓ) → SO(+ℓ) is equal to the centraliser

SOFrob<@ (+ℓ) of Frob<@ in SO(+ℓ).

In the rest of this subsection, we fix an integer < ≥ 1 satisfying the above conditions.
Let EndFrob<@ (+ℓ) denote the set ofQℓ-linear endomorphisms of+ℓ commuting with Frob<@ . Similarly,

let EndFrob<@ (+ℓ ⊗Qℓ Qℓ) denote the set of Qℓ-linear endomorphisms of +ℓ ⊗Qℓ Qℓ commuting with
Frob<@ . We have a map

� (Qℓ) → EndFrob<@ (+ℓ).

Similarly, we also have a map � (Qℓ) → EndFrob<@ (+ℓ ⊗Qℓ Qℓ).

Lemma 10.10. The Qℓ-vector space EndFrob<@ (+ℓ ⊗Qℓ Qℓ) is spanned by the image of � (Qℓ).

Proof. Let ' ⊂ End
Qℓ
(+ℓ ⊗Qℓ Qℓ) be theQℓ-vector subspace generated by the image of � (Qℓ). Because

the action of � (Qℓ) on +ℓ ⊗Qℓ Qℓ is semisimple, ' is a semisimple Qℓ-subalgebra. Hence, it suffices to

prove that every element of EndFrob<@ (+ℓ ⊗Qℓ Qℓ) commutes with every element in the commutant of '.

Because the action of Frob<@ preserves the bilinear form on+ℓ , ifU is an eigenvalue of Frob<@ , then U−1

is also an eigenvalue of Frob<@ . Because none of the eigenvalues of Frob<@ on+ℓ is a root of unity, we may

write U1, U
−1
1 , . . . , UA , U

−1
A ∈ Qℓ for the distinct eigenvalues of Frob<@ . Let,1,,

−
1 , . . . ,,A ,,

−
A denote

the eigenspaces of the eigenvalues U1, U
−1
1 , . . . , UA , U

−1
A , respectively. Because Frob<@ acts semisimply

on +ℓ , we have

+ℓ ⊗Qℓ Qℓ �

A⊕

8=1

(,8 ⊕,
−
8 ).

Hence, we have

EndFrob<@ (+ℓ ⊗Qℓ Qℓ) �

A⊕

8=1

(End
Qℓ
(,8) ⊕ End

Qℓ
(,−8 )),

SOFrob<@ (+ℓ ⊗Qℓ Qℓ) �

A∏

8=1

GL(,8).

By Schur’s lemma, every element 6 ∈ End
Qℓ
(+ℓ ⊗Qℓ Qℓ) in the commutant of ' is written as 6 =⊕A

8=1(68 ⊕ 6
−
8 ), where 61, 6

−
1 , . . . , 6A , 6

−
A are multiplication by scalars. Hence, 6 commutes with every

element of EndFrob<@ (+ℓ ⊗Qℓ Qℓ). �

Lemma 10.11. Let � be an algebraic group over an algebraically closed field : of characteristic 0. Let
+ be a finite-dimensional :-vector space and d : � → GL(+) a morphism of algebraic groups over
: . For any Zariski dense subset / ⊂ � (:), we have 〈d(/)〉 = 〈d(� (:))〉, where 〈d(/)〉 (respectively
〈d(� (:))〉) is the :-vector subspace of End: (+) spanned by d(/) (respectively d(� (:))).

Proof. We put 3 := dim: 〈d(� (:))〉. Let k be the composite of the following maps:

� (:)3 :=
3∏

8=1

� (:) →

3∏

8=1

End: (+) → ∧
3 End: (+).

If dim: 〈〈d(/)〉 < 3, we havek(/3) = {0}. Because /3 ⊂ � (:)3 is Zariski dense, we havek(� (:)3) =
{0}, which is absurd. The contradiction shows dim: 〈d(/)〉 = 3. �
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Lemma 10.12.

(1) As a Qℓ-vector space, EndFrob<@ (+ℓ) is spanned by the image of semisimple elements in � (Q).
(2) There exist maximal tori )1, . . . , )= ⊂ � over Q such that the Qℓ-vector space EndFrob<@ (+ℓ) is

spanned by the image of )1 (Q), . . . , )= (Q).

Proof. (1) Because � is a connected reductive algebraic group over Q, the set of semisimple elements
in � (Q) is Zariski dense in � (Qℓ); see [27, Expose XIV, Corollaire 6.4]. By Lemma 10.10 and Lemma
10.11, the Qℓ-vector space EndFrob<@ (+ℓ ⊗Qℓ Qℓ) is spanned by the image of semisimple elements in

� (Q). Because EndFrob<@ (+ℓ ⊗Qℓ Qℓ) = EndFrob<@ (+ℓ) ⊗Qℓ Qℓ , the Qℓ-vector space EndFrob<@ (+ℓ) is also
spanned by the image of semisimple elements in � (Q).

(2) The assertion follows from the fact that every semisimple element of � (Q) is contained in a
maximal torus of � over Q. �

10.4. The results of Mukai and Buskin

The following theorem will be used in our proof of Theorem 10.1.

Theorem 10.13 (Mukai, Buskin). Let ) and ( be projective  3 surfaces over C. Let k : �2
� ((,Q) �

�2
� (),Q) be an isomorphism of Q-vector spaces that preserves the cup product pairings and the Q-

Hodge structure. Let [k] ∈ �4
� (( × ),Q(2)) be the class corresponding to k by the Poincaré duality

and the Künneth formula. Then [k] is the class of an algebraic cycle of codimension 2 on ( × ) .

Proof. See [13, Theorem 1.1], [53, Theorem 2]. (See also [35, Corollary 0.4].) �

10.5. Proof of Theorem 10.1

In this subsection, we shall prove Theorem 10.1.
By Lemma 10.7, it is enough to prove Theorem 10.1 for  3 surfaces of finite height.
Let - be a  3 surface of finite height over F@ . After replacing F@ by its finite extension, we may

assume that - comes from an F@-valued point B ∈ "sm
23,K

?
0 ,Z(?)

(F@) satisfying the conditions as in

Subsection 6.2. Let � be the algebraic group overQ associated with B ∈ /K? (Λ) (F@); see Definition 8.1.
By Lemma 10.4, it is enough prove Theorem 10.1 (1) for a fixed ℓ. We fix a prime number ℓ ≠ ?.

We take a sufficiently divisible integer < ≥ 1 as in Subsection 10.3. Replacing F@ by a finite extension
of it (see Lemma 10.2), we may assume < = 1.

By Lemma 10.12, there exist maximal tori )1, . . . , )= ⊂ � over Q such that EndFrob@ (+ℓ) is spanned
by the image of )1 (Q), . . . , )= (Q). By Lemma 10.3 and Lemma 10.9, it is enough to show that, for
every 8 with 1 ≤ 8 ≤ =, the image of )8 (Q) in EndFrob@ (+ℓ) is spanned by classes of algebraic cycle of
codimension 2 on -

F@
× -

F@
.

Fix an integer 8 with 1 ≤ 8 ≤ =. By Theorem 9.7, there exist a finite extension  of, (F@) [1/?] and
a quasi-polarised  3 surface (X,L) over� whose special fibre is isomorphic to (-

F@
,ℒ
F@
) such that,

for any embedding  ↩→ C, there is a homomorphism of algebraic groups over Q,

)8 → SO(%2
� (XC,Q(1))),

and the action of every element of )8 (Q) on %2
� (XC,Q(1)) preserves the Q-Hodge structure on it. We

extend the action of )8 (Q) on the primitive part %2
� (XC, Q(1)) to the full cohomology �2

� (XC, Q(1))
so that every element of )8 (Q) acts trivially on the first Chern class ch� (LC). Hence, we have a
homomorphism of algebraic groups )8 → SO(�2

� (XC,Q(1))) over Q whose image preserves the Q-
Hodge structure on �2

� (XC,Q(1)).
By the results of Mukai and Buskin (see Theorem 10.13), the image of every element of )8 (Q) in

SO(�2
� (XC,Q(1))) is a class of an algebraic cycle of codimension 2 on XC × XC.
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Taking the specialisation of algebraic cycles, we conclude that the image of every element of )8 (Q)
in EndFrob@ (+ℓ) is a class of an algebraic cycle of codimension 2 on -

F@
× -

F@
.

The proof of Theorem 10.1 is complete. �

11. Compatibility of ?-adic comparison isomorphisms

Throughout the article, we only use the following types of ?-adic period morphisms from the literature:

(1) the de Rham comparison map of Scholze [62],
(2) the crystalline comparison map of Bhatt-Morrow-Scholze [6],
(3) Faltings’s comparison map for ?-divisible groups over � [29] and
(4) Lau’s period morphism in display theory [45].

All of these period morphisms are known to be compatible. The maps (1) and (2) are compatible via
the Berthelot-Ogus isomorphism by [6, Theorem 13.1]. For abelian schemes over � , (2) and (3) are
compatible by [65, Proposition 14.8.3]; see also [63, Proposition 4.15] for the Hodge-Tate counterpart.
Finally, (3) and (4) are compatible by [45, Proposition 6.2]. More details are given in the rest of this
section.

We also check some basic properties of (1) and (2) to use the results of Blasius-Wintenberger [8].
In this section, we fix a perfect field : of characteristic ? > 0. We put , := , (:). We fix a finite

totally ramified extension  of , [1/?] and an algebraic closure  of  . We use the same notation as
in Section 3.

11.1. The de Rham comparison map of Scholze

We give some basic properties of the de Rham comparison map constructed by Scholze [62]. (Compare
with [73, Theorem A1].)

Let - be a smooth proper variety over  , and let -ad denote the adic space associated with it. By
[62, Theorem 8.4], we have an isomorphism

�8dR (-
ad/ ) ⊗ �dR � �

8
ét(-

ad
� ,Q?) ⊗Q? �dR,

where � is the completion of  . Another construction of the same map is given in [6, Theorem 13.1].
Combined with GAGA results such as [34, Theorem 3.7.2], we get a filtered isomorphism of Gal( / )-
modules

2dR,- : �8dR(-/ ) ⊗ �dR
�

−→ �8ét (- ,Q?) ⊗Q? �dR.

By construction, the de Rham comparison map 2dR,- is functorial in - with respect to pullback and
compatible with cup products.

Remark 11.1. The construction of 2dR,- can be generalised to any smooth proper algebraic space -
over  . Indeed, [22] supplies a functorial construction of the analytification of - and the corresponding
adic space -ad. As before, we have an isomorphism

�8dR(-
ad/ ) ⊗ �dR � �

8
ét (-

ad
� ,Q?) ⊗Q? �dR

by [62, Theorem 8.4]. In order to construct 2dR,- , it is enough to show

�8dR(-/ ) � �
8
dR(-

ad/ ) and �8ét (- ,Q?) � �
8
ét (-

ad
� ,Q?).

(The analytification induces a morphism of étale topoi.)

◦ Concerning the isomorphism for de Rham cohomology, by the Hodge-de Rham spectral sequence, it
is enough to show �8 (-,Ω 9 ) � �8 (-ad,Ω 9 ) for every 8, 9 . It follows from GAGA results in [22].
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◦ For the isomorphism for ?-adic étale cohomology, we take an étale covering U = {*U → -}U of -
that consists of schemes. We put U := {(*U) → - }U and Uad

�
:= {(*U)ad

�
→ -ad

�
}U. The

analytification preserves étale coverings. We have the Čech-to-cohomology spectral sequences

�
8, 9

2 = �̌8 (U , �
9 (Z/?=Z)) ⇒ �

8+ 9

ét (- ,Z/?
=Z),

�
8, 9

2 = �̌8 (Uad
� , �

9 (Z/?=Z)) ⇒ �
8+ 9

ét (-
ad
� ,Z/?

=Z).

(See [66, Tag 03OW].) There is a canonical morphism between these spectral sequences. By
Huber’s theorem [34, Theorem 3.8.1], it induces isomorphisms between �2-terms. Therefore, we
have an isomorphism

�8ét (- ,Z/?
=Z) � �8ét (-

ad
� ,Z/?

=Z)

for every 8 and =. Taking the projective limit with respect to = and tensoring with Q? , the required
isomorphism for ?-adic étale cohomology follows.

Proposition 11.2. Let ℒ be a line bundle on - , and let chdR (ℒ) and ch? (ℒ) denote the first Chern
classes of ℒ in the de Rham cohomology and the ?-adic étale cohomology respectively. The following
equality holds:

2dR,- (chdR(ℒ)) = ch? (ℒ) ∈ �
2
ét (- ,Q?) (1) ⊂ �

2
ét(- ,Q?) ⊗Q? �dR.

Here, Q? (1) is naturally embedded into �dR.

Proof. The proof given below shows an analogous statement for any smooth proper rigid analytic variety
over  as well.

First, we recall the definition of chdR (ℒ). There are an exact sequence of complex of sheaves on -

0→ (1
1↦→0
−→ Ω

≥1
- ) → (O

×
-

3 log
−→ Ω

≥1
- ) → O×- → 0

and an isomorphism

(1
1↦→0
−→ Ω

≥1
- ) � (0 −→ Ω

≥1
- ).

These induce the Chern class map

chdR : �1 (-,O×- ) → �2
dR (-/ ).

This construction can be analytified.
There is a similar construction on the pro-étale site -ad

proét. Recall that Scholze [64] defined a sheaf

OB+dR of O- -modules on -ad
proét with a surjection \ : OB+dR → Ô- . In the above construction, we will

replace O×-

3 log
−→ Ω≥1

-
by

OB+×dR

3 log
−→ OB+dR ⊗O- Ω

≥1
- .

Similarly, we replace (1
1↦→0
−→ Ω≥1

-
) by

1 + Ker \
3 log
−→ OB+dR ⊗O- Ω

≥1
- .

Because OB+dR is complete with respect to Ker \, we have the logarithm map

log: 1 + Ker \ → Ker \.

This finishes the construction on -ad
proét.
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On the other hand, ch? (ℒ) is defined at the level of the pro-étale site as follows: it is induced by the
following exact sequence of sheaves on -ad

proét

0→ Ẑ? (1) → Ô×
-♭

= lim
←−−
G ↦→G?

Ô×- → Ô×- → 0.

The following commutative diagram completes the proof:

Ẑ? (1)

��

// Ô×
-♭

1⊗[−]

��

// Ô×-

��
1 + Ker \ // OB+×dR

// Ô×- ,

where [−] denotes the Teichmüller lift. �

Corollary 11.3. The de Rham comparison map 2dR,- is compatible with Chern classes of vector bundles
and hence classes of algebraic cycles.

Proof. This follows from the splitting principle and the previous proposition. (The class of an algebraic
cycle is written as a Q-linear combination of Chern classes of vector bundles.) �

Corollary 11.4. If - is of equidimension 3, the de Rham comparison map 2dR,- is compatible with
trace maps. Therefore, 2dR,- is functorial in - with respect to pushforward.

Proof. This follows from the compatibility with cycle classes of a point. �

11.2. The crystalline comparison map of Bhatt-Morrow-Scholze

Let � be a smooth proper algebraic space over � with generic fibre - . We assume that the generic
fibre - and the special fibre �: are both schemes. For example, it is satisfied for smooth proper curves
and surfaces over � because a smooth proper algebraic space of dimension ≤ 2 over a field is a
scheme.

As in the proof of [19, Theorem 2.4], the formal completionX of � along the special fibre is a formal
scheme (rather than a formal algebraic space), and there is an isomorphism C (X)[ � -

ad of adic spaces
over  , where C (X)[ denotes the adic generic fibre of X. We remark that the isomorphsim C (X)[ � -

ad

is functorial in �; this can be seen by an argument similar to [22, Theorem 2.2.3].
We recall the construction of the crystalline comparison map of Bhatt-Morrow-Scholze in

[6]. Let �cris denote the ?-adic completion of the divided power envelope of �inf with respect
to Ker \.

The absolute crystalline comparison theorem in [6, Theorem 14.3 (iii)] (and [6, Theorem 14.3 (iv)])
gives the following isomorphism:

�8cris(���/?/�cris) ⊗�cris �cris
�

−→ �8ét(- ,Z?) ⊗Z? �cris.

By [6, Proposition 13.21] and the base change of crystalline cohomology, we have an isomorphism

�8cris(���/?/�cris) [1/?] � �
8
cris(�:/,) ⊗, �cris [1/?] .

The above two isomorphisms give us the crystalline comparison map

2cris,� : �8cris (�:/,) ⊗, �cris
�

−→ �8ét (- ,Z?) ⊗Z? �cris.
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Proposition 11.5. The crystalline comparison map 2cris,� is compatible with the de Rham comparison
map 2dR,- under an isomorphism

�8cris (�:/,) ⊗,  � �8dR (-/ )

of Berthelot-Ogus [5].

Proof. By [6, Proposition 13.23, Remark 13.20], we have an isomorphism

�8cris (���/?/�cris) ⊗�cris �
+
dR � �

8
dR(-/ ) ⊗ �

+
dR.

It is already shown in [6, Theorem 14.5(i)] that 2dR,- is compatible with 2cris,� under this identification.
The above identification induces a  -linear map

BdR : �8dR(-/ ) → �8cris(���/?/�cris) ⊗�cris �
+
dR

such that the composite of BdR with the following map obtained by the reduction modulo b

�8cris (���/?/�cris) ⊗�cris �
+
dR → �8cris(���/?/�cris) ⊗�cris �

� �8dR(-�/�)

(this has no ambiguity; see the commutative diagram (6.5.7) in [16]) is equal to the canonical map

�8dR(-/ ) → �8dR(-�/�).

The  -linear map BdR is characterised as a unique Gal( / )-equivariant  -linear map satisfying this
property.

On the other hand, [6, Proposition 13.21] gives a,-linear map

Bcris : �8cris (�:/,) [1/?] → �8cris(���/?/�cris) [1/?]

such that the composite of Bcris with the following map obtained by the specialisation �cris → , (:)

�8cris(���/?/�cris) [1/?] → �8cris(���/?/�cris) ⊗�cris , (:) [1/?]

� �8cris(�:/, (:)) [1/?]

is equal to the canonical map

�8cris (�:/,) [1/?] → �8cris (�:/, (:)) [1/?] .

The,-linear map Bcris is also characterised as a unique Gal( / )-equivariant,-linear map satisfying
this property, which is i-equivariant. Because the images of BdR and Bcris ⊗  coincide, the reduction
modulo Ker \ induces an isomorphism

Bcris ⊗  : �8cris (�:/,) ⊗,  � �8dR (-/ ),

and 2cris,� and 2dR,- are compatible under Bcris ⊗  . So, we need only show that Bcris ⊗  is equal to
the Berthelot-Ogus isomorphism.

We can finish by recalling the following well-known interpretation of the Berthelot-Ogus iso-
morphism: Fix a uniformiser s and a system {s1/?= }=≥0 ⊂  of ?=th roots of s such that
(s1/?=+1 ) ? = s1/?= , and let (s be the ?-adic completion of the PD envelope of the surjection
, [D] → � defined by D ↦→ s. Then, there is a unique i-equivariant section

B : �8cris(�:/,) [1/?] → �8cris(�� /?/(s) [1/?],
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and B ⊗  induces the Berthelot-Ogus isomorphism. The section B can be constructed in a way parallel
to [5] and [6, Proposition 13.21]; see [14, Proposition 5.1] for example. This implies that B = Bcris under
an isomorphism

�8cris (�� /?/(s) ⊗(s �cris [1/?] � �
8
cris(���/?/�cris) [1/?]

by base change along the embedding (s → �cris defined by D ↦→ [s♭], and the specialisation of B is
indeed the Berthelot-Ogus isomorphism. �

Corollary 11.6. The crystalline comparison map 2cris,� is

◦ functorial in � with respect to pullback and pushforward and
◦ compatible with cup products, Chern classes of vector bundles on �, classes of algebraic cycles on

� and trace maps.

Proof. The above properties are already checked for the de Rham comparison map 2dR,- . Therefore, it
suffices to show that the Berthelot-Ogus isomorphism satisfies the above properties. This is done in [5]
and [32, B. Appendix], at least when � is a scheme.

Let us briefly explain a variant using the interpretation of the Berthelot-Ogus isomorphism given
in the proof of Proposition 11.5, which works in the semistable case as well. The functoriality with
respect to pullback and the compatibility with cup products are checked (by the same argument as) in
[72, Corollary 4.4.13]. Next, we check the compatibility with the first Chern classes of line bundles. We
freely use the notation from the proof of Proposition 11.5. Let ℒ be a line bundle on �. This gives the
first Chern class chcris(ℒ/(s) in �2

cris (�� /?/(s) lifting chcris (ℒ). By the characterisation of B, we
see that the following equality holds:

B(chcris(ℒ)) = chcris(ℒ/(s).

Because it is well known that chcris (ℒ/(s) maps to chdR(ℒ) modulo Ker((s → � ), we conclude
that the Berthelot-Ogus isomorphism maps chcris (ℒ) to chdR (ℒ). Now, the other compatibilities and
functoriality can be deduced from what we have shown. �

Remark 11.7. In the above proof, we implicitly use that the isomorphism C (X)[ � -
ad is compatible

with line bundles in the following sense: For a line bundle ℒ on �, let L be the formal completion of
ℒ along the special fibre and C (L)[ the corresponding line bundle on C (X)[ . Let ℒ be the restriction
of ℒ to the generic fibre - and (ℒ )

ad its analytification. Then there is an isomorphism of line bundles
C (L)[ � (ℒ )

ad on C (X)[ � -ad.
This can be seen as follows: By the construction of C (X)[ � -ad and étale descent for line bundles

on rigid analytic varieties, the above claim reduces to an analogous statement in the case where � is a
scheme of finite type, but not necessarily proper, over � : we only have a morphism C (X)[ → -ad in
this case, and the statement is that the pullback of (ℒ )

ad is isomorphic to C (L)[ .

11.3. Remarks on the work of Blasius-Wintenberger on ?-adic properties of absolute Hodge cycles

The theory of integral canonical models of Shimura varieties relies on the results of Blasius-Wintenberger
[8], where ?-adic properties of absolute Hodge cycles were studied.

Technically speaking, one chooses constructions of comparison maps when using their results. In
this article, we choose the comparison maps 2dR,- and 2cris,�. Then the main results of [8] hold as all
requirements are checked above. This fact for 2dR,- is also used implicitly in [15].

Moreover, to fill in details of the proofs of [49, Proposition 5.3, Proposition 5.6 (4)], one should
generalise ‘Principle B’ in Blasius’s paper [8] to smooth algebraic spaces. (Let XM̃23,Q

→ M̃23,Q be
the universal family considered in [49]. This morphism is representable by an algebraic space, not a
scheme.) For this purpose, one needs to generalise the arguments in the proof of [8, Theorem 3.1]
allowing - in its statement to be an algebraic space. This requires us to check the following:
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◦ Artin’s comparison theorem and GAGA for algebraic spaces over C. (See [67, Proposition 3.4.1
(iii)] for the former. GAGA is well known and follows from the standard argument using Chow’s
lemma.) Artin’s comparison theorem for algebraic spaces was also used in the construction of Uℓ in
[49, Proposition 5.6 (1)].

◦ A functorial construction of pure Hodge structure in the cohomology of smooth proper algebraic
spaces over C. (The usual construction works; see [57, Part I, Section 2.5]. Also, we have geometric
variations in this setting; see [57, Part IV, Corollary 10.32].)

◦ A generalisation of Deligne’s theorem on the fixed part [23, Théorème 4.1.1] to algebraic spaces
over C. (The argument in [23] works using Chow’s lemma for algebraic spaces.)

◦ Existence of a smooth compactification of - . (Use [21] and [7].)
◦ The de Rham comparison theorem for smooth proper algebraic spaces over a ?-adic field. (See

Remark 11.1.)

11.4. Comparison isomorphisms for ?-divisible groups

In [29], Faltings constructed a comparison map

2� : �cris (()?�)
∨ [1/?]) � D(�: ) (,) [1/?]

for a ?-divisible group� over � . The purpose of this subsection is to show that Faltings’s comparison
map 2� coincides with the comparison map used by Kim-Madapusi Pera in [38, Theorem 2.12 (2.12.3)].
This fact is used implicitly in the proof of [38, Proposition 3.12] to apply Kisin’s result [41, Lemma
1.1.17].

Let � be a ?-divisible group over � . For the base change �� /? of �, we have a (contravariant)
crystal D(�� /?) over CRIS((� /?)/Z?). Its value

D(�� /?) (�cris) := D(�� /?)�cris։��/?

in (Spec��/? ↩→ Spec �cris) is a free �cris-module of finite rank and equipped with a Frobenius
endomorphism i. We define a filtration

Fil1 D(�� /?) (�cris) ↩→ D(�� /?) (�cris)

by the inverse image of the Hodge filtration Fil1D(�� /?) (��) under the surjectionD(�� /?) (�cris) ։

D(�� /?) (�� ).
In [29], Faltings constructed a period map

Percris,� : )?�→ HomFil,i (D(�� /?) (�cris), �cris).

Here the right-hand side is theZ?-module of �cris-linear homomorphisms fromD(�� /?) (�cris) to �cris

that commute with Frobenius endomorphisms and map Fil1 D(�� /?) (�cris) into Fil1 (�cris) := Ker \.
When ? ≠ 2, the period map Percris,� is an isomorphism by [29, Theorem 7] (see also [31, Section
5.2]). When ? = 2, it is an injection and the cokernel is killed by 2.

By the rigidity of quasi-isogenies, there is a unique quasi-isogeny

5 ∈ Hom� /? (�: ⊗: � /?, �� /?) ⊗Z? Q?

lifting the identity of �: . The quasi-isogeny 5 induces an isomorphism

D(�� /?) (� ) [1/?] � D(�: ) (,) ⊗,  ,

and the Hodge filtration on the left-hand side makes D(�: ) (,) [1/?] a filtered i-module. This isomor-
phism is equal to the isomorphism given by Berthelot-Ogus [5, Proposition 3.14]; see Remark 11.10.
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The quasi-isogeny 5 also induces an isomorphism

D(�� /?) (�cris) ⊗�cris �
+
cris � D(�: ) (,) ⊗, �+cris,

which in turn induces a bijection

HomFil,i (D(�� /?) (�cris), �cris) [1/?] � HomFil,i (D(�: ) (,) [1/?], �
+
cris).

Here the right-hand side is the set of homomorphisms fromD(�: ) (,) [1/?] to �+cris that commute with
Frobenius endomorphisms and preserving the filtrations after base change to ; we equip �+cris⊗, [1/?] 

with a filtration Ker(\ ⊗,  ) ⊂ �+cris ⊗, [1/?]  . The following composite is Gal( / )-equivariant:

)?�[1/?] � HomFil,i (D(�� /?) (�cris), �cris) [1/?]

� HomFil,i (D(�: ) (,) [1/?], �
+
cris),

where the first isomorphism is Percris,� with ? inverted. It induces an isomorphism of filtered i-modules

2� : �cris (()?�)
∨ [1/?]) � D(�: ) (,) [1/?] .

Next, we shall recall the construction of the comparison map given in [38, Theorem 2.12 (2.12.2)],
which is based on the theory of Dieudonné displays developed by Zink and Lau.

We put S := , [[D]]. For a Breuil-Kisin module M (over � with respect to {s1/?= }=≥0) of
height ≤ 1, there is an S-linear homomorphism q : M → i∗M such that i ◦ q is the multiplication
by ?� (D)/� (0). Let M

C be a Breuil-Kisin module such that its underlying S-module is M
∨ :=

HomS (M,S) and its Frobenius i∗(M∨) = (i∗M)∨ →M
∨ is given by 5 ↦→ 5 ◦ q.

Lau constructed an equivalence M′ from the category of ?-divisible groups over � to the category
of Breuil-Kisin modules (over � with respect to {s1/?= }=≥0) of height ≤ 1; see [44, Corollary 5.4,
Theorem 6.6]. LetM! be the (Cartier) dual of the equivalence of categories constructed by Lau. Namely,
we put

M
! (�) := M

′(�)C .

By [45, Proposition 4.1, Proposition 8.5], there is an isomorphism

)?� � Homi (M
! (�),Snr).

For the ring Snr, see [45, Section 7] for example. It is equipped with a Frobenius endomorphism and
there are inclusions S ↩→Snr ↩→ �inf commuting with the Frobenius endomorphisms.

Let Fil1((s) be the kernel of the surjection (s → � . (Recall that (s is the ?-adic completion of
the PD envelope of the surjection, [D] → � defined by D ↦→ s.) Let D(�� /?) ((s) be the value in
(Spec� /? ↩→ Spec (s). It is equipped with a Frobenius endomorphism i and a filtration

Fil1 D(�� /?) ((s) ↩→ D(�� /?) ((s),

which is the inverse image of the Hodge filtration Fil1 D(�� /?) (� ) under the surjection
D(�� /?) ((s) ։ D(�� /?) (� ).

Let 2′ ∈ (s be a unique unit that maps to 1 ∈ , with

2′i(2′−1) = i(� (D)/� (0)) ∈ (s .

(For the element _ ∈ (s [1/?] in [39, Subsection 1.1.1], we have 2′ = i(_).) By [44, Proposition 7.1],
there is a canonical isomorphism

i∗M
′(�) ⊗S (s � D(�� /?) ((s)

∨.
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The dual of this isomorphism multiplied by 2′ is an isomorphism

D(�� /?) ((s) � i
∗
M
! (�) ⊗S (s

that is compatible with Frobenius endomorphisms and maps Fil1 D(�� /?) ((s) onto

{ G ∈ i∗M
! (�) ⊗S (s | (1 ⊗ i) (G) ∈ Fil1((s) (M

! (�) ⊗S (s) }.

Let M(()?�)∨) be the Breuil-Kisin module associated with the dual ()?�)∨ of the ?-adic Tate
module of � defined by Kisin; see Subsection 3.2. By construction, there is a canonical isomorphism

)?� � Homi (M(()?�)
∨),Snr).

By [38, Theorem 2.12 (2.12.2)] and its proof, there is an isomorphism of Breuil-Kisin modules

M
! (�) � M(()?�)

∨)

such that, under this isomorphism, the isomorphism )?� � Homi (M
! (�),Snr) is compatible with

the above isomorphism.
The comparison isomorphism used by Kim-Madapusi Pera in [38, Theorem 2.12 (2.12.3)] is defined

as the composite of the following isomorphisms:

�cris (()?�)
∨ [1/?]) � Mcris (()?�)

∨) [1/?]

� i∗M
! (�) ⊗S , [1/?]

� D(�� /?) ((s) ⊗(s (s/D(s [1/?]

� D(�: ) (,) [1/?],

where the last isomorphism is provided by the crystalline property of D(�� /?). It is an isomorphism
of filtered i-modules and denoted by 2!

�
.

Proposition 11.8. 2!
�

coincides with 2�.

Proof. We put M!
cris(�) := i∗M! (�) ⊗S , . There is an (s-linear homomorphism

5
M
! (�) : M

!
cris(�) ⊗, (s [1/?] � i

∗
M
! (�) ⊗S (s [1/?]

that commutes with Frobenius endomorphisms and lifts the identity of M!
cris (�). In fact, it is charac-

terised by such properties. Translating the construction of the isomorphism

�cris (()?�)
∨ [1/?]) � Mcris (()?�)

∨) [1/?]

in [39, Proposition 2.1.5] in terms of Gal( / )-representations, we see that the isomorphism 2!
�

corresponds to the composite of the following isomorphisms:

)?�[1/?] � Homi (M
! (�),Snr) [1/?]

� HomFil,i (i
∗
M
! (�), �cris) [1/?]

� HomFil,i (M
!
cris(�) [1/?], �

+
cris)

� HomFil,i (D(�: ) (,) [1/?], �
+
cris).

Here, the second isomorphism is induced by the Frobenius of M! (�) and the injection Snr ↩→ �cris,
and the third isomorphism is induced by 5

M
! (�) . Using the uniqueness of the isomorphism 5

M
! (�) , we
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may replace the composite of the last two isomorphisms by the following composite:

HomFil,i (i
∗
M
! (�), �cris) [1/?] � HomFil,i (D(�� /?) ((s), �cris) [1/?]

� HomFil,i (D(�� /?) (�cris), �cris) [1/?]

� HomFil,i (D(�: ) (,) [1/?], �
+
cris).

Here, the second isomorphism is induced by the base change D(�� /?) ((s) ⊗(s �cris �

D(�� /?) (�cris), and the third isomorphism is induced by the quasi-isogeny 5 .
Therefore, the assertion follows from the following Proposition 11.9, which was essentially proved

by Lau in [45]. �

Proposition 11.9 (Lau). Let Per′ be the following composite:

)?� � Homi (M
! (�),Snr)

→ HomFil,i (i
∗
M
! (�), �cris)

� HomFil,i (D(�� /?) ((s), �cris)

� HomFil,i (D(�� /?) (�cris), �cris).

Then, Faltings’s period map Percris,� coincides with Per′.

Proof. We shall explain how the equality Percris,� = Per′ follows from Lau’s result [45, Proposition
6.2]. We freely use the notion of a frame and a window from Lau’s papers [44, 45].

We have the following commutative diagram of homomorphisms of rings:

S // Snr pnr
//

��

Ŵ(�̃ )

]

��
�cris

pcris // Ŵ+(�̃ ).

The above diagram induces the following commutative diagram of homomorphisms of frames:

ℬ // ℬnr pnr
//

��

�̂
�̃ 

]

��
Acris

pcris // �̂+
�̃ 
.

(For the above two commutative diagrams, see [45].) The homomorphism pnr : ℬnr → �̂
�̃ 

(respec-

tively ] : �̂
�̃ 
→ �̂+

�̃ 
) is a D-homomorphism (respectively D0-homomorphism) of frames for a unit

D ∈ Ŵ(�̃ ) (respectively D0 ∈ Ŵ
+(�̃ )). There is a unique unit 2 ∈ Ŵ(�̃ ) (respectively 20 ∈ Ŵ

+ (�̃ ))
that maps to 1 ∈ , with 2i(2−1) = D (respectively 20i(2

−1
0 ) = D0).

The Breuil-Kisin module M
′(�) corresponds to a window over ℬ, and let M′(�)nr be the window

over ℬnr obtained by base change. There is a window over Acris associated with D(�� /?) (�cris),
which will be denoted by the same notation; see [45, Section 6]. The base change of M′(�)nr to Acris is
identified with the dual D(�� /?) (�cris)

C by [44, Proposition 7.1]. (For the dual of a window, see [44,
Section 2A].)
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For a window �, let ) (�) denote the module of invariants; see [45, Section 3]. There are natural
isomorphisms

) (M
′(�)nr) � Homi (M

! (�),Snr),

) (D(�� /?) (�cris)
C ) � HomFil,i (D(�� /?) (�cris), �cris).

Under the above isomorphisms, the isomorphism Per′ is identified with the following composite:

)?�
� // ) (M′(�)nr)

G ↦→2′⊗G// ) (D(�� /?) (�cris)
C ).

Here the image of 2′ ∈ (s in �cris is denoted by the same letter.
In [45, Proposition 4.1], Lau constructed a period isomorphism

Per� : )?� � ) (p
nr
∗ M

′(�)nr).

Here we normalise this period map as in [45, Remark 4.2]. By [45, Proposition 8.5], the homomorphism

) (M
′(�)nr) → ) (pnr

∗ M
′(�)nr)

defined by G ↦→ 2 ⊗ G is an isomorphism. The composite of Per� with the inverse of the above
isomorphism is identified with the isomorphism )?� � ) (M′(�)nr) by the definition of )?� �
Homi (M

! (�),Snr).
By [45, Proposition 6.2], the following diagram commutes:

)?�
Percris,� //

�

��
Per�

zz

) (D(�� /?) (�cris)
C )

G ↦→1⊗G

��

) (M′(�)nr)

G ↦→2⊗G

��
) (pnr

∗ M
′(�)nr)

G ↦→20⊗G // ) (]∗pnr
∗ M

′(�)nr).

Let g denote the right vertical homomorphism, which is an isomorphism; see [45, Proposition 6.2].
Using ](2)20 = pcris(2

′), we see that the composite of Per� and the bottom horizontal arrow is equal to
the composite of Per′ and g. Therefore, we have

g ◦ Percris,� = g ◦ Per′.

Because g is an isomorphism, the equality Percris,� = Per′ is proved.
The proof of Proposition 11.9 is complete. �

Remark 11.10. The isomorphism D(�� /?) (� ) [1/?] � D(�: ) (,) ⊗,  induced by the quasi-
isogeny 5 is equal to the isomorphism given by Berthelot-Ogus [5, Proposition 3.14]. This follows from
the fact that there is a unique i-equivariant isomorphism

D(�� /?) ((s) ⊗(s (s [1/?] � D(�: ) (,) ⊗, (s [1/?]

that lifts the Berthelot-Ogus isomorphism. This isomorphism can be constructed in a way similar to [5,
Proposition 3.14].

Remark 11.11. Given the construction of 2!
�

and Proposition 11.8, we can restate [38, Theorem 2.12
(2.12.3), (2.12.4)] using Faltings’s comparison map 2� as follows:
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(1) The composite

Mcris(()?�)
∨) [1/?] � �cris (()?�)

∨ [1/?])
2�
� D(�: ) (,) [1/?]

maps Mcris (()?�)
∨) onto D(�: ) (,).

(2) The composite

MdR (()?�)
∨) [1/?] � �dR (()?�)

∨ [1/?])
2�
� D(�� /?) (� ) ⊗�  

maps MdR (()?�)
∨) ontoD(�� /?) (� ) and maps Fil1(MdR (()?�)

∨)) onto Fil1 D(�� /?) (� ).

Assume that� is the ?-divisible group B[?∞] associated with an abelian scheme B over � . By [4,
Théorème 2.5.6, Proposition 3.3.7], there is a natural isomorphism

D(�: ) (,) � �
1
cris(B:/,).

Proposition 11.12. Let B be an abelian scheme over � and � := B[?∞] the ?-divisible group
associated with B. Let )?� denote the ?-adic Tate module of �. Under the isomorphisms ()?�)∨ �
�1

ét (B ,Z?) and D(�: ) (,) � �1
cris (B:/,), the isomorphism 2� is compatible with the crystalline

comparison map 2cris,B.

Proof. By [4, Théorème 2.5.6, Proposition 3.3.7], there is a natural isomorphism

D(�� /?) (�cris) � �
1
cris(B� /?/�cris).

After inverting ?, this isomorphism is identified with the base change of the map D(�: ) (,) �
�1

cris (B:/,) along, → �cris [1/?] under the isomorphism

D(�� /?) (�cris) [1/?] � D(�: ) (,) ⊗, �cris [1/?]

induced by the quasi-isogeny 5 and the isomorphism

�1
cris(B� /?/�cris) [1/?] � �

1
cris (B:/,) ⊗, �cris [1/?]

in Subsection 11.2. This follows from the characterisation of the ,-linear map Bcris in the proof of
Proposition 11.5. Now, the assertion follows from [65, Proposition 14.8.3]. (Alternatively, one can use
the Hodge-Tate version [63, Proposition 4.15] by checking a certain compatibility, but we omit the
details.) �
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