
BULL. AUSTRAL. MATH. SOC. 35B20

VOL. 55 (1997) [311-319]

INSTABILITY OF THE DIRICHLET PROBLEM FOR
HAMILTON-JACOBI EQUATION

KEWEI ZHANG

We show the instability of solutions of the Dirichlet problem for Hamilton-Jacobi
equations under quite general conditions.

In this paper we show that under quite general conditions the solutions of the
Dirichlet problem for the Hamilton-Jacobi equation

f H(x,u(x),Du{x)) - 0 , infi

\ w|en = u0

are unstable under L°° external perturbations. We establish this result by constructing
W1'00 approximate solutions which converge in the weak-* sense to a given smooth
subsolution. Let Q C Rn be an open, bounded and connected subset with Lipschitz
boundary. We denote by dil and f2 its boundary and closure respectively. Our main
result is the following:

THEOREM 1. Suppose H : Cl x R x Rn »-» R is continuous and coercive; that

is, for each compact subset K of R, H(x,u,P) —+ +oo as \P\ —> oo uniformly with

respect to (x,u) S fi x K. Suppose u £ C1(fl) is a subsolution of (1) in the sense that

H(x,u(x),Du(x)) ^ 0 in fi. Tien there exists a bounded sequence (UJ) in WllOO(£l),

such that v.j\on =ii|en>

(2) Uj -i- u, in W1'

and

(3) \\H{;uj(-),Duj(-))\\LBO{n)-+0

as j —> oo, where -^ denotes weak-* convergence.

Notice that (3) is equivalent to the existence of a sequence (hj) in L°°(fl), such
that

H(x,ui{x)lDui(x)) = hi{z)

almost everywhere in ft and hj —» 0 in £°°(n).
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REMARK 1. Theorem 1 implies that the solutions of the perturbed system

{ H(x,Uj(x),Duj(x)) = hj(x), for almost every x 6 Q,

converge in L°° norm to the given subsolution, rather than a solution of the original
problem (1). Hence the system is not stable under £°°-perturbations.

REMARK 2. In Theorem 1, we do not assume convexity of H in P £ Rn. What we
really need is a condition such that when u £ M is in a bounded set, {P, H(x,u, P) ^ 0}
is uniformly bounded. Existence results for (1) can be established under additional
assumptions to those of Theorem 1 (see [9, Chapter 4], [2, Section 2.6]). Theorem
1 can be extended to the case fi = Rn if we assume further that the subsolution u

is uniformly continuous and bounded in Rn and H(x,u,P) —» +oo uniformly with
respect to (x,u) £ R " x R .

This result improves on some earlier ones in [6, 7] where a variational approach was
taken in some Lp spaces under stronger hypotheses on H. There is a vast literature
on the Hamilton-Jacobi equation and viscosity solutions of the equation (see [9, 2]
and the references therein). These results are used mainly in the study of problems
in control theory where H(-,u,P) is usually a Lipschitz function of x so that the
corresponding ordinary differential equation can be solved [9, 2]). However, when the
theories on existence, and uniqueness are applied to problems arising from, for example,
the so called Shape-from-Shading in computer vision, the question of stability under
L°° external perturbations may occur and the viscosity solutions might not be the
only preferred solutions for the problem. The shape from shading comes as an inverse
problem. The question is whether we can recover the shape of a graph from its shading
under one single light source (see [8] and the references therein), or what the possible
shapes of the object are provided that the shading information is given. For inverse
problems, an important issue is the stability of solutions under reasonably possible
perturbations of the system. In the shape-from-shading problem, the possibility of
small L°° perturbations cannot be ruled out because of errors in the measurements
and other noise factors. [11, 10] proposed the use of viscosity solutions of Hamilton-
Jacobi equations as the possible solutions because under some delicate conditions on
the shading function (for example, in the case of the eikonal equation (4) below, the
function S has only one zero point in the domain, see [10, Theorem 1]) the viscosity
solution is unique or the solutions can be classified. However, viewing the approximate
solutions given by Theorem 1 for the eikonal equation (4) indicates that the shading
of the approximate graph is almost the same as that of an exact C1-solution [4]. [5]
provides a possible application of shape from shading to the recovery of the shape of
a particular area on the Mars from two pictures taken by a spaceship far away (about
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1500km) from Mars and the area is comparatively small (about 33.1 X 26.5km). The
issue of stability turns out to be very important for this case. I doubt that viscosity
solutions based on the photograph could give the right shape in this case. Therefore, it
is natural to consider all the possible solutions under small perturbations, rather than
viscosity solutions alone. For the case of eikonal equation (4) applied to the shape
from shading problem, Theorem 1 implies that all the smooth subsolutions are possible
shapes for the given image up to some noise.

In [6, 4], the instability for the eikonal equation

(4) \Du(x)\ = £{x)

was established. In [4], we further exhibited, by using some viewing software, the
graphs of the exact solutions of (4) and those of the approximate solutions based on
subsolutions. Under the given viewing conditions assumed by the model, we cannot
tell the difference between the shading given by an exact solution and an approximate
solution while the latter is much closer to a subsolution in C(ft) than to the exact
solution. This is the main motivation of the present work for the Hamilton-Jacobi
equation in its general form (1).

We need some preparatory notation and results for the proof of Theorem 1. Let
e i , . . . , en be the canonical basis for Rn. Let Lp(ft) ( l ^ p ^ o o ) b e the usual Lebesgue
spaces. We denote by Ck(ft) (k = 0,1,2.. . ) the restrictions of fc-continuously differen-
tiable functions denned in Kn to ft. We let C°(ft) = C(ft) and WllP(ft), 1 ^ p ^ oo,
denote the usual Sobolev space. Since dCl is Lipschitz, elements of Wl'p(Vt) admit
traces on dft (see [1]). We also define WQ'P(Q), as usual, by

Wo
llP(n) = {u£ WllP(ft), the trace on dft of u is 0}.

For a function u : ft -» E , let Du(x) be the gradient of u at x G ft. If v : ft -> E n

is a vector valued function such that each of its components is in Cfc(ft) (Zp(ft),
respectively), we say that v belongs to C*(ft;Rn) (^(ft .K"), respectively). Weak
convergence in W^llP(fl) is denoted by —* and strong convergence by —*.

Our construction of the approximate solutions is based on some simple observations
on Young measures (see, for example, [3, 12]).

LEMMA 1. Let {ZJ} be a bounded sequence in I°°(ft;R*). Then there exist a
subsequence {zjk} of {ZJ} and a family {vx}> a; G ft, of probability measures on R'
(Young measures}, depending measurably on x £ ft, such that
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for every continuous function f : R* —> R.

In order to find some necessary conditions for possible approximate sequences, we
associate with (1) a functional given by

/ ( « ) = / I H(x,u(x),Du(x)) I dx.
Jn

The following is a simplified version of a result established in [7, Proposition 1].

LEMMA 2 . Suppose H satisfies the assumptions of Theorem 1. We further as-
sume that H(x,u,P) is convex in P £ Rn for each fixed (x,u) € fi x R. Suppose that
there exists a sequence (UJ) in W1'00^) such that *

Km / I H(x,Uj(x),Duj(x)) I dx = 0.
i—°° Jn

Then up to a subsequence

(5) Uj ^-u in W1'00^)

and

(6) H(x,u[x), Du(x)) ^ 0 almost everywhere in fi.

If {i/,}jgn > is the family of Young measures corresponding to {DUJ}, then

(7) supp./* C {P; H{x,u{x),P) = 0}

for almost every x € Q, where supp ux is the support of vx in R n .

To conclude our preparation, we state a simple result in real analysis.

LEMMA 3 . Suppose Cl C R n is a bounded and open subset. Then there exists a
sequence of open hypercubes (Dk), A; = 1,2,... with side length 2~>k for some positive

integer jk and with their edges parallel to the coordinate axes, such that Dkf\ D, = 0
and

oo

fie |Jlh cn.

PROOF OF THEOREM 1: Our construction of the approximate sequence is based

on the observation on the Young measures (7). If we write UJ in Lemma 2 as u + <f>j,

where u is the smooth subsolution of (1), we see that <j>j —<• 0. Let {i/,},gn be the

family of Young measures corresponding to {D<j>j). We have that

supp 17̂  c HXt<x) := {X 6 R", H{x,u(x),Du(x) + A) = 0}
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almost everywhere in f2.

Notice that the origin 0 of R n is always in the set Hx<u(x) or in

<?.,.(.) = {A 6 Rn, H(x,u(x),Du{x) + A) < 0}.

In order to construct a simple sequence such that the gradients of the functions generate

such a Young measure, we pick up 2™ vectors on

by dividing each Dk evenly into 2™ hypercubes. Thus we can define a sequence

Let T>\ — {Dk }j.Li be a decomposition of fl by hypercubes given by Lemma 3.

J ( l ) can be a finite positive integer or +oo. We define X>2 = {Dk }fcLx by dividing

each Dk evenly into 2™ smaller hypercubes. Therefore 2?2 is also a decomposition of

fl. Suppose that for some integer j > 1, we can define Vj — {Dk }^d\ , we then define

"Dj+i by dividing each Dk evenly into

of decompositions T>j by induction. Let

= (* ! ,* , , . . . , z B ) ,4« < x . < xft + htjP, s = 1,2,. . . , n } ,

where hk
}) > 0. We denote by c[j) the central point of Dk

j). If we set

hj= sup

from our construction of T>j and the fact that il is bounded, we see that hj —> 0 as

j —> oo. We consider two different cases.

CASE 1. H(ck'\u(ck
i)\Du(ck

i)X\ = 0. In this case we define

<t>[j)(x) = 0 for x £ D[j).

CASE 2. H(c[j),u(c[j)YDu(c[j))) < 0. In this case, we let

Au) =au) 6t Au) =au) e 3 = i

be vectors in R n such that

ai! - — sup< t, HlcJ ,u\cj?
t<:o I \ \

From our coercivity condition on H, boundedness of u in fi and a simple compactness

argument, we see that ak \ + > 0 and ak \ _ < 0 both exist and are uniformly bounded,

say, by some finite M > 0 for all j = 1 ,2 , . . . .
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Now we define, in Dk
3 , the following affine functions

fU) tx\-Ji) (x XU)\

AJ) (x\-J-i) L _ (Jj) +hb")\]
Jkta,— \ / ktBt— | * \ Jfe,« ' k / I '

for s = 1,2,... ,n. Notice that both fkt+ and fk8 _ are nonnegative affine functions

in Dk
3 and they vanish only on

jx e D[3\ x. = x[3^j and j x £ D{
k
3), x. = x(/j + h[})

respectively. We then define

in Dk
3 • It is easy to see that <j>k is a piecewise affine function in Dk and

= 0. We extend <j>k to be defined in ft by zero outside Dk .

Combining both cases, we define

|

t=i

1 > o o (in fl. It is easy to see that (f>j belongs to W0
1>oo(fi). We seek to prove that the sequence

(<f>j) satisfies

(a) ^ j - O as j -> oo;

(b) ||^(-,u(-) + fc(-),2M-) + ̂ -(OJIlL-cn) - 0 as i ^ oo.

To prove (a), we first consider \\</>j H^OO/Q) • We have, from the fact that <frk (x)<p\3'(x)

= 0 whenever k ̂  I, 1 < k,l < J ( j ) , that

sup

sup max < maxj fk t +(x),

sup Mhk ^ Mhj.

Since hj —* 0, we see that ||<Aj|x,«.(n) 0 as j —» oo.
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Since

•e-l}}
we see that (<j>j) is a bounded sequence in WQ'°°(CI). If (<f>j) does not converge in
the weak-* sense to 0 in W0

lOO(fi), there exists a subsequence {<j>jm) converging in
the weak-* sense to some <f>o in WQ'°°(n) and <j>o is not identically zero in $7. This
contradicts the fact that <f>j —> 0 uniformly in fi. (a) is proved. To prove (b), we have

sup

< sup

+ sup i.))]] (D U))\

where

if} = sup

sup

|| nSince H is continuous in Q X R x Rn, u belongs to C1 (fi) , ||.D#j || r ̂ (^u)^ ' s bounded

by M and 4>j ~* 0 uniformly in fl, we see that

lim i j 1 } = 0.

We now have
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where

because

almost everywhere in D£ and

for all k,s,j; while

H (•,«(•),

hence AfjJ —> 0 as j —> oo, because j <»*, ± | is bounded by M, H is uniformly

continuous in every bounded set of fi x R x R n and the side length hjj' of D ^ is

bounded by hj which converges to 0 as j —> oo. D
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