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Abstract

A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not
vertex-transitive. Let p be a prime. It was shown by Folkman [J. Folkman, ‘Regular line-symmetric
graphs’, J. Combin. Theory 3 (1967), 215–232] that a regular edge-transitive graph of order 2p or 2p2 is
necessarily vertex-transitive. In this paper an extension of his result in the case of cubic graphs is given.
It is proved that every cubic edge-transitive graph of order 8p2 is vertex-transitive.
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1. Introduction

In this paper we consider an undirected finite connected graph without loops or
multiple edges. For a graph 0, we denote by V (0), E(0) and Aut(0) its vertex
set, edge set and automorphism group, respectively. For u, v ∈ V (0), denote by uv
the edge incident to u and v in 0, and by N0(u) the neighbourhood of u in 0,
that is, the set of vertices adjacent to u in 0. A graph 0̃ is called a covering of a
graph 0 with projection p : 0̃ → 0 if there is a surjection p : V (0̃)→ V (0) such that
p|N0̃ (̃v) : N0̃ (̃v)→ N0(v) is a bijection for any vertex v ∈ V (0) and ṽ ∈ p−1(v). Let
N be a subgroup of Aut(0) such that N is intransitive on V (0). The quotient graph
0/N induced by N is defined as the graph such that the set 6 of N -orbits in V (0)
is the vertex set of 0/N and B, C ∈6 are adjacent if and only if there exist u ∈ B
and v ∈ C such that {u, v} ∈ E(0). A covering 0̃ of 0 with a projection p is said to
be regular (or K-covering) if there is a semiregular subgroup K of the automorphism
group Aut(0̃) such that graph 0 is isomorphic to the quotient graph 0̃/K , say by h,
and the quotient map 0̃ → 0̃/K is the composition ph of p and h (for the purpose of
this paper, all functions are composed from left to right). If K is cyclic or elementary
Abelian then 0̃ is called a cyclic or an elementary Abelian covering of 0, and if 0̃ is
connected K becomes the covering transformation group. The fibre of an edge or a
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vertex is its preimage under p. An automorphism of 0̃ is said to be fibre-preserving if
it maps a fibre to a fibre, while every covering transformation maps a fibre onto itself.
The set of all fibre-preserving automorphisms forms a group called the fibre-preserving
group.

An s-arc in a graph 0 is an ordered (s + 1)-tuple (v0, v1, . . . , vs) of vertices of 0
such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i < s; in other
words, a directed walk of length s which never includes backtracking. A graph 0 is
said to be s-arc-transitive if Aut(0) is transitive on the set of s-arcs in 0. In particular,
0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or
symmetric. A graph 0 is said to be edge-transitive if Aut(0) is transitive on E(0). A
subgroup of the automorphism group of a graph 0 is said to be s-regular if it acts
regularly on the set of s-arcs of 0. It can be shown that a edge- but not vertex-
transitive graph 0 is necessarily bipartite, where the two parts of the bipartition are
orbits of A = Aut(0). Moreover, if 0 is regular these two parts have equal cardinality.
A regular edge- but not vertex-transitive graph will be referred to as a semisymmetric
graph.

Covering techniques have long been known as a powerful tool in topology and
graph theory. Regular covering of a graph is currently an active topic in algebraic
graph theory. The class of semisymmetric graphs was introduced by Folkman [8]. He
constructed several infinite families of such graphs and posed eight open problems.
Subsequently, Bouwer [1, 2], Titov [19], Klin [13], Iofinova and Ivanov [11],
Ivanov [12], Du and Xu [5] and others did much work on semisymmetric graphs.
They gave new constructions of such graphs by combinatorial and group-theoretical
methods. The answers to most of Folkman’s open problems are now known. By
using the covering technique, cubic semisymmetric graphs of order 6p2 and 2p3 were
classified in [14, 17]. Some general methods of elementary Abelian coverings were
developed in [4, 16]. The s-regular cyclic coverings and elementary Abelian coverings
of the three-dimensional hypercube Q3 were classified in [6, 7]. In this paper, by using
the same covering technique and group-theoretical construction, we investigate cubic
semisymmetric graphs of order 8p2. The following is the main result of this paper.

THEOREM 1.1. Let p be a prime. Then every cubic edge-transitive graph of order
8p2 is vertex-transitive.

2. Primary analysis

Let 0 be a graph and K be a finite group. By a−1 we mean the reverse arc to an arc
a. A voltage assignment (or K-voltage assignment) of 0 is a function φ : A(0)→ K
with the property that φ(a−1)= φ(a)−1 for each arc a ∈ A(0). The values of φ are
called voltages, and K is the voltage group. The graph 0 ×φ K derived from a voltage
assignment φ : A(0)→ K has vertex set V (0)× K and edge set E(0)× K , so that
an edge (e, g) of 0 × K joins a vertex (u, g) to (v, φ(a)g) for a = (u, v) ∈ A(0) and
g ∈ K , where e = uv.
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Clearly, the derived graph 0 ×φ K is a covering of 0 with the first coordinate
projection p : 0 ×φ K → 0, which is called the natural projection. By defining
(u, g′)g = (u, g′g) for any g ∈ K and (u, g′) ∈ V (0 ×φ K ), K becomes a subgroup
of Aut(0 ×φ K ) which acts semiregularly on V (0 ×φ K ). Therefore, 0 ×φ K can
be viewed as a K-covering. For each u ∈ V (0) and uv ∈ E(0), the vertex set
{(u, g) | g ∈ K } is the fibre of u and the edge set {(u, g) (v, φ(a)g) | g ∈ K } is the
fibre of uv, where a = (u, v). Conversely, each regular covering 0̃ of 0 with a
covering transformation group K can be derived from a K -voltage assignment. Given
a spanning tree T of the graph 0, a voltage assignment φ is said to be T-reduced if
the voltages on the tree arcs are the identity. Gross and Tucker [10] showed that every
regular covering 0̃ of a graph 0 can be derived from a T -reduced voltage assignment
φ with respect to an arbitrary fixed spanning tree T of 0. It is clear that if φ is reduced,
the derived graph 0 ×φ K is connected if and only if the voltages on the cotree arcs
generate the voltage group K .

Let 0̃ be a K -covering of 0 with a projection p. If α ∈ Aut(0) and α̃ ∈ Aut(0̃)
satisfy α̃ p = pα, we call α̃ a lift of α, and α the projection of α̃. Concepts such as a
lift of a subgroup of Aut(0) and the projection of a subgroup of 0̃ are self-explanatory.
The lifts and projections of such subgroups are of course subgroups in Aut(0̃) and
Aut(0), respectively. In particular, if the covering graph 0̃ is connected, then the
covering transformation group K is the lift of the trivial group, that is,

K = {̃α ∈ Aut(0̃) : p = α̃ p}.

Clearly, if α̃ is a lift of α, then K α̃ are all the lifts of α.
Let T be a spanning tree of a graph 0. A closed walk W that contains only one

cotree arc is called a fundamental closed walk. Similarly, a cycle W that contains only
one cotree arc is called a fundamental cycle.

Let 0 ×φ K → 0 be a connected K -covering derived from a T -reduced voltage
assignment φ. The problem of whether an automorphism α of 0 lifts or not can be
grasped in terms of voltages as follows. Observe that a voltage assignment on arcs
extends to a voltage assignment on walks in a natural way. Given α ∈ Aut(0), we
define a function α from the set of voltages on fundamental closed walks based at a
fixed vertex v ∈ V (0) to the voltage group K by

(φ(C))α = φ(Cα),

where C ranges over all fundamental closed walks at v, and φ(C) and φ(Cα) are the
voltages on C and Cα , respectively. Note that if K is Abelian, α does not depend on
the choice of the base vertex, and the fundamental closed walks at v can be substituted
by the fundamental cycles generated by the cotree arcs of 0.

The following proposition is a special case of [15, Theorem 4.2].

PROPOSITION 2.1. Let 0 ×α K → 0 be a connected K -covering derived from a T -
reduced voltage assignment φ. Then an automorphism α of 0 lifts if and only if α
extends to an automorphism of K .

The next proposition is a special case of [14, Lemma 3.2].
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PROPOSITION 2.2. Let 0 be a connected semisymmetric cubic graph with bipartition
sets U (0) and W (0). Moreover, suppose that N is a normal subgroup of A := Aut(0).
If N is intransitive on bipartition sets, then N acts semiregularly on both U (0) and
W (0), and 0 is an N-regular covering of an A/N-semisymmetric graph.

Two coverings 0̃1 and 0̃2 of 0 with projection p1 and p2, respectively, are said to
be equivalent if there exists a graph isomorphism α̃ : 0̃1 → 0̃2 such that α̃ p2 = p1.
We quote the following propositions.

PROPOSITION 2.3 [18]. Two connected regular coverings 0 ×φ K and 0 ×ψ K ,
where φ and ψ are T -reduced, are equivalent if and only if there exists an
automorphism σ ∈ Aut(K ) such that φ(u, v)σ = ψ(u, v) for any cotree arc (u, v)
of 0.

PROPOSITION 2.4 [17, Proposition 2.4]. The vertex stabilizers of a connected G-
edge-transitive cubic graph 0 have order 2r

· 3, r ≥ 0. Moreover, if u and v are
two adjacent vertices, then |G : 〈Gu, Gv〉| ≤ 2, and the edge stabilizer Gu ∩ Gv is
a common Sylow 2-subgroup of Gu and Gv .

3. Proof of Theorem 1.1

We denote by Q3 the three-dimensional hypercube which is bipartite with partite
sets {a, b, c, d} and {w, x, y, z}. Let T be a spanning tree of Q3, as shown by dark
lines in Figure 1. Let φ be such a voltage assignment defined by φ = 0 on T and
φ = z1, z2, z3, z4 and z5 on the cotree arcs (b, y), (c, w), (c, x), (d, w) and (d, x)
respectively, where 0 is the identity element of K and zi ∈ K (1 ≤ i ≤ 5). It is well
known that Aut(Q3)∼= S4 × Z2. Let α = (bcd) (xyz), β = (ab) (cd) (wx) (yz) and
γ = (aw) (bx) (cy) (dz). Then α, β and γ are automorphisms of Q3.

Note that, by [3], throughout this paper we may assume that p ≥ 11.

LEMMA 3.1. Suppose that 0 is a connected semisymmetric cubic graph of order 8p2.
Then 0 is a connected N-regular covering of Q3 such that the subgroup of Aut(Q3)
generated by α and β lifts, where N ∼= Zp × Zp or Zp2 .

PROOF. Let 0 be a cubic graph satisfying the assumptions and let A = Aut(0).
Therefore 0 is bipartite graph. Denote by U (0) and W (0) the bipartition sets of
0. By Proposition 2.4, |A| = 2r

· 3 · p2, where r ≥ 2 as A is transitive on a set of size
4p2. A is solvable, for if it were not, then by [9] its composition factors would have to
be PSL(3, 3) or PSL(2, 17), which is a contradiction. Let Q = Op(A) be the maximal
normal p-subgroup of A. We show that |Q| = p2.

Suppose first that Q = 1. Let N be a minimal normal subgroup of A. So N
is solvable. N is not transitive on bipartition sets U (0) and W (0), and hence by
Proposition 2.2, N acts semiregularly on bipartition sets U (0) and W (0). Therefore,
N is isomorphic to Z2 or Z2 × Z2. First, assume that N ∼= Z2. By Proposition 2.2,
N acts semiregularly on U (0) and W (0). Now we consider the quotient graph
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FIGURE 1. A spanning tree and a voltage assignment on Q3.

0N = 0/N of 0 relative to N , where A/N is semisymmetric on bipartition sets of
0N . We claim that Op(A/N ) 6= 1.

Suppose to the contrary that Op(A/N )= 1. Now let Op′(A/N ) 6= 1 and T/N
= Op′(A/N ). T/N is not transitive on bipartition sets of 0N = 0/N . Therefore,
by Proposition 2.2, T/N acts semiregularly on bipartition sets of 0N = 0/N , and
|Op′(A/N )| = 2. Now consider the quotient graph 0T = 0/T of 0 relative to T . Let
H/T be a minimal normal subgroup of A/T . So H/T is solvable, and |H/T | = p
or |H/T | = p2. Therefore H has a normal subgroup of order divisible by p, which
is characteristic in H , and hence is normal in A. It contradicts our assumption that
Op(A)= 1. Hence Op′(A/N )= 1.

Now suppose that T/N is a minimal normal subgroup of A/N . Since
Op(A/N )= 1 and Op′(A/N )= 1, therefore T/N is nonsolvable. This is a
contradiction.

Suppose now that N ∼= Z2 × Z2. Let 0N = 0/N be the quotient graph of 0 relative
to N . Let T/N be a minimal normal subgroup of A/N . Then T/N is solvable, and by
Proposition 2.2, T/N ∼= Zp or Zp × Zp. Therefore T has a normal subgroup of order
divisible by p, which is characteristic in T , and hence is normal in A. It contradicts
our assumption that Op(A)= 1. Therefore |Q| 6= 1.

Suppose, finally, that |Q| = p; we show that this leads to a contradiction. Let
0Q = 0/Q be the quotient graph of 0 relative to Q. Let N/Q be a minimal normal
subgroup of A/Q. Hence N/Q is solvable, and by Proposition 2.2, N/Q ∼= Z2
or Z2 × Z2 or Zp. By our assumption, N/Q is not isomorphic to Zp. If N/Q
∼= Z2, we consider the quotient graph 0/N . Now let K/N be a minimal normal
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TABLE 1. Fundamental cycles and their images with corresponding voltages.

C φ(C) Cα φ(Cα) Cβ φ(Cβ) Cγ φ(Cγ )

azby z1 axcz −z3 byaz z1 wdxc z2 + z5 − z3 − z4
bzcw z2 cxdw z3 + z4 − z2 − z5 aydx z5 xdya −z5
azcx z3 axdy −z5 bydw z1 + z4 wdyb −z1 − z4

aydwbz z4 azbwcx z3 − z2 bzcxay z3 − z1 wczaxd z4 − z2 − z5
aydx z5 azby z1 bzcw z2 wczb −z2

subgroup of A/N . Therefore K/N is solvable, and K/N ∼= Z2 or Zp. By our
assumption K/N cannot be isomorphic to Zp, so K/N ∼= Z2. Consider the quotient
graph 0K = 0/K , where A/K is semisymmetric on bipartition sets of 0K . Let
L/K be a minimal normal subgroup of A/K . Thus L/K is solvable, and since
Q = |Op(A)| = p, therefore L/K ∼= Z2. Again we consider the quotient 0L , and
let M/L be a minimal subgroup of A/L . Hence M/L is solvable and M/L ∼= Zp,
which contradicts our assumption that Q = |Op(A)| = p. If N/Q ∼= Z2 × Z2, by
considering the quotient graph 0N with the same reasoning as before, a contradiction
can be obtained.

Therefore, Q = Op(A) is normal in A. The only graph of valency 3 on eight
vertices is Q3, so by Proposition 2.2, 0 is a connected Q-regular covering of Q3,
where |Q| = p2. In addition, since 0 is semisymmetric and Q is normal in A, so
fibre-preserving automorphism group is edge-transitive, and hence the projection of
the fibre-preserving automorphism group is edge-transitive on the base graph Q3.
Therefore, the subgroup generated by α and β lifts. 2

Denote by i1i2 . . . is a directed cycle which has vertices i1, i2, . . . , is in
consecutive order. There are five fundamental cycles azby, bzcw, azcx , aydwbz,
and aydx in Q3, which are generated by the five cotree arcs (b, y), (c, w), (c, x),
(d, w), and (d, x), respectively. Each cycle is mapped to a cycle of the same length
under the actions of α, β, and γ . We list all these cycles and their voltages in Table 1,
in which C denotes a fundamental cycle of Q3 and φ(C) denotes the voltage of C .

LEMMA 3.2. Let N ∼= Zp2 and suppose that 0 = Q3 ×φ Zp2 is a connected Zp2-
regular covering of Q3. If the subgroup of Aut(Q3) generated by α and β can be
lifted then 0 is symmetric.

PROOF. Since α and β can be lifted, by Proposition 2.1, α and β can be extended to
automorphisms of Zp2 . We denote these automorphisms by α∗ and β∗, respectively.

Since α∗ and β∗ always exist, by Table 1, zα
∗

1 = −z3, zα
∗

5 = z1, zβ
∗

5 = z2 and zα
∗

4
= z3 − z2. The first three equations imply that z1, z2, z3 and z5 have the same
order and the last equation implies that the order of z1 is divisible by the order
of z4. Since 〈z1, z2, z3, z4, z5〉 = Zp2 , each of z1, z2, z3 and z5 generates the
group Zp2 . By Proposition 2.3, we may assume that z1 = 1 and z2 = k such that

(k, p2)= 1 and 1 ≤ k ≤ p2
− 1. Since zβ

∗

1 = z1, β∗ is the identity automorphism
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of Zp2 . Thus, zβ
∗

2 = z5 and zβ
∗

3 = z1 + z4 imply that z5 = k and z3 − z4 = 1. As

zα
∗

5 = z1, α∗ is the automorphism of Zp2 induced by 1 → k−1, where k−1 is the inverse

of k in Z∗

p2 . Now, it follows that z3 = −k−1 and z4 = −k−1
− 1 because zα

∗

1 = −z3

and z3 − z4 = 1. Consequently, we have the equations

z1 = 1, z2 = k, z3 = −k−1, z4 = −k−1
− 1, z5 = k, (3.1)

where 1 ≤ k ≤ p2
− 1 and (k, p2)= 1.

Using the equations in (3.1) and 1α
∗

= k−1, we have 2(k2
+ k + 1)= 0 and k3

= 1
because zα

∗

2 = z3 + z4 − z2 − z5 and zα
∗

4 = z3 − z2. By Table 1, α, β and γ can be
extended to the automorphisms of Zp2 induced by 1 → k−1, 1 → 1 and 1 → −1,
respectively, so by Proposition 2.1, the subgroup 〈α, β, γ 〉 of Aut(Q3) lifts. Therefore
0 is symmetric. 2

LEMMA 3.3. Let N ∼= Zp × Zp and suppose that 0 = Q3 ×φ Z2
p is a connected N-

regular covering of Q3 such that the subgroup of Aut(Q3) generated by α and β can
be lifted. Then 0 is symmetric.

PROOF. Since α∗ and β∗ always exist, with the same reasoning as in the proof of
Lemma 3.2, z1, z2, z3 and z5 have the same order and the order of z1 is divisible
by the order of z4. If z1 = 0 then zα

∗

1 = 0. By Table 1, z3 = −z1
α∗

= 0. Also,

z5 = 0 and z2 = 0 because zα
∗

3 = −z5 and zβ
∗

5 = z2. Thus, 〈z1, z2, z3, z4, z5〉 = 〈z4〉

= Z2
p, which is a contradiction. Similarly, if z2 = 0 the same contradiction can be

obtained. Consequently, z1 6= 0 and z2 6= 0. Now, we claim that z1 and z2 are linearly
independent. Suppose to the contrary that z2 is a scalar multiple of z1, say z2 = kz1.
Then, k 6= 0. Since zβ

∗

2 = kzβ
∗

1 , we have z5 = kz1. As zα
∗

5 = kzα
∗

1 , z3 is a scalar

multiple of z1, say z3 = lz1. And, z4 is also a scalar multiple of z1 because zβ
∗

3 = lzβ
∗

1 .
It follows that 〈z1, z2, z3, z4, z5〉 = 〈z1〉 = Z2

p, which is a contradiction. Thus, z1 and
z2 are linearly independent. Similarly, z1 and z3 are also linearly independent.

Since z1 and z2 are linearly independent and 〈z1, z2, z3, z4, z5〉 = N , z3, z4 and z5
can be expressed as a combination of z1 and z2.

Let z3 = i z1 + j z2, z4 = i ′z1 + j ′z2 and z5 = i ′′z1 + j ′′z2. By Proposition 2.3,
with the linear independence of z1 and z2 we may assume that z1 = (1, 0) and
z2 = (0, 1) are the standard basis of the vector space Zp × Zp.

By zα
∗

3 = i zα
∗

1 + j zα
∗

2 and zβ
∗

3 = i zβ
∗

1 + j zβ
∗

2 , −z5 = i(−z3)+ j (z3 + z4

− z2 − z5) and z1 + z4 = i z1 + j z5, so −i ′′z1 − j ′′z2 = −i2z1 − i j z2 + i j z1 + j2z2
+ i ′ j z1 + j j ′z2 − j z2 − i ′′ j z1 − j j ′′z2 and z1 + i ′z1 + j ′z2 = i z1 + j (i ′′z1 + j ′′z2).
By the linear independence of z1 and z2, we have the following formulae:

(1) i ′′ − i2
+ i j + i ′ j − i ′′ j = 0;

(2) j ′′ − i j + j2
+ j j ′ − j − j j ′′ = 0;
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(3) 1 + i ′ − i − i ′′ j = 0;
(4) j ′ − j j ′′ = 0.

Now by considering the image of z4 = i ′z1 + j ′z2 and z5 = i ′′z1 + j ′′z2, under α∗

and β∗, we have:

(5) i + i i ′ − i j ′ − i ′ j ′ + i ′′ j ′ = 0;
(6) j − 1 + i ′ j − j j ′ − j ′2 + j ′ + j ′ j ′′ = 0;
(7) 1 + i i ′′ − i j ′′ − i ′ j ′′ + i ′′ j ′′ = 0;
(8) i ′′ j − j j ′′ − j ′ j ′′ + j ′′ + j ′′2 = 0;
(9) i − 1 − i ′ − i ′′ j ′ = 0;
(10) j − j ′ j ′′ = 0;
(11) i ′′ + i ′′ j ′′ = 0;
(12) j ′′2 − 1 = 0.

By (11), i ′′ = 0 or j ′′ + 1 = 0. First assume that i ′′ = 0, by (4) and (10)
( j + j ′) (1 − j ′′)= 0. If 1 − j ′′ = 0, by (7) and (3), i = 1 and i ′ = 0. Now by (1)
and (5), j = 1 and j ′ = 1. Therefore,

z1 = (1, 0), z2 = z4 = z5 = (0, 1) z3 = (1, 1).

From Table 1, it is easy to check that α, β and γ can be extended to automorphisms of
Zp2 . By Proposition 2.1, α, β and γ lift, so 0 is symmetric.

Now if j ′ + j = 0, we show that it leads to a contradiction. By (4), j (1 + j ′′)= 0.
If j = 0 then j ′ = 0. By (2), j ′′ = 0, so by (7), 1 = 0, which is a contradiction. Hence
1 + j ′′ = 0. By (7) and (3), i ′ = −1, so by (9) i = 0. Now by (1) and (2), j ′′ = 0,
which is a contradiction.

Now assume that 1 + j ′′ = 0; again we show that this leads to a contradiction. By
(10), j = − j ′. Now by (8), i ′′ j = 0. So i ′′ = 0 or j = 0. If j = 0 by (2), −1 = 0,
which is a contradiction. If i ′′ = 0, by (7) and (3) i = 0 and i ′ = −1, so by (2) −1 = 0,
which is a contradiction. 2

PROOF OF THEOREM 1.1. This follows by Lemmas 3.1, 3.2 and 3.3. 2
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