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Let X be a finite set and let ST(X) be the full transformation semigroup on X, i.e. the
set of all mappings from X into X, the semigroup operation being composition of
mappings. This paper aims to characterize those elements of 9~(X) which have square
roots. An easily verifiable necessary condition, that of being quasi-square, is found in
Theorem 2, and in Theorems 4 and 5 we find necessary and sufficient conditions for
certain special elements of 3~{X). The property of being compatibly amenable is shown in
Theorem 7 to be equivalent for all elements of 3~(X) to the possession of a square root.

The work reported here formed part of an M.Sc. Thesis [4] submitted to the
University of St Andrews in 1979 by the first-named author.

1. Preliminaries. For unexplained terms in semigroup theory see [2]. Mapping
symbols will be written on the right. We shall denote the range of a mapping a : X —* X by
Xa or by ran a, and by <x°a~l we shall mean the equivalence relation

{(x, y) 6 X x X : xa = ya}.

If |X| = n then the ^-classes of &(X) are J(x\..., JM, where

is the set of mappings of rank r. (See [2, Ex.11.10].) Clearly

The principal factors of 3~(X) are thus J(1) (completely simple) and J(r)U{0}, r = 2,...,n
(completely 0-simple).

Notice that J(n) = <g(X), the symmetric group on X. Since

for each a in S~(X) it follows that an element of JM has a square root in 3~{X) if and only
if it has a square root in J(n). Thus the characterization of squares in J(n) is a purely group
theoretical problem. It is solved by the following theorem, which is deducible from the
results of Isaacs [3], but which is proved here for completeness.

THEOREM 1. Let X be a finite set. An element a of 'S(X) is a square if and only if for
each even number k the decomposition of a into disjoint cycles involves an even number of
cycles of length k.

Proof. Disjoint cycles, since they operate non-trivially on disjoint subsets of X,
commute with each other. Thus if C{,... ,Cr are disjoint cycles then
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Suppose now that a in "S(X) has a square root 0 in ^(X). Writing j3 as C, . . . Cr, a
product of disjoint cycles, we then have that

If we write the cycle Q as (a1a2... at) then if I is odd we have

Cf = (a^ ... a,a2a4 . . . a,.,),

a cycle of (odd) length I; while if / is even then

Cf = (a1a3... a,_!)(a2a4 . . . a,),

a product of two disjoint cycles of equal length Z/2. The decomposition of a into disjoint
cycles is obtained by decomposing each of C 2 , . . . , Cf, and cycles of even length arise
only when C; is of length divisible by 4. The effect is that even cycles occur in pairs of
equal length, so that a has the property described in the theorem.

Conversely, suppose that in the disjoint cycle decomposition of a there is an even
number of cycles of each even length k. Each odd cycle (ata2 . • • <22k+i) is a square, since

{ala2 ... a2k+1) = (aiafc+2a2ak+3 . . . afca2fc+1afc+1)
2.

Also, the product of two disjoint cycles of equal even length / is a square:

(axa2 ... a,)(b1fc2 ...bt) = (aibla2b2 ... a,b,)2 .

By these devices one expresses a as a product C2 . . . Cf, where C1,..., C, are disjoint
cycles. Thus a = /32, where /3 = Q . . . Q. This completes the proof.

In analysing elements of 3~(X) it is useful to observe that since X is finite the descent

cannot continue indefinitely. Evidently if Xai=Xai+1 then Xai+1 = Xai+2; hence there
exists k s= 0 such that

X=>Xa =>. • .=>Xak =Xak + 1 =Xafc+2 = . . . .

Let us refer to fc as the contraction factor of a and write k =cont a. The subset Xak will
be called the stable range of a and will be written as stran a. If cont a = 0 then X = Xa
and so a is a permutation of X. Elements a such that cont a = 1 occur in all /-classes /(r)

with r< n(=|X|): for such elements, a \ Xa is a permutation of Xa. In all cases a | stran a
is a permutation of stran a. We say that a is a quasi-square element of 3~(X) if the
permutation a | stran a has a square root in the symmetric group ^(stran a).

2. Quasi-square elements. We begin by proving

LEMMA 1. Let a e J(r) c &(X) \ 'S(X) and suppose that cont a = 1. Let fc3=2 be an
integer. If there exists /3 in 2T(X) such that /3fc = a then /3 | ran a is a permutation of ran a
and (/3 | ran a)k = a |ran a.
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Proof. Let ran a = {ar,..., ar}. Since cont a = 1 we have that a \ ran a is a permuta-
tion. Thus

ata = ait, (i = 1 , . . . , r),

where /x is a permutation of { 1 , . . . , r}. If we write aitLa~^ = Af (i = 1 , . . . , r), we have
af € Aj and we may write

a =

If /3k = a then /3 must be of rank s2*r and (i°ti~x ^a°a~l. Since at(a°a~^) = A( we have

If af/3(=Bi|3) = fe, (i = 1 , . . . , r), then

Hence, for j = 1 , . . . , r,

and so

fef = afj3 = bi( i-|3k = bi(1-.a e{a 1 ; . . . , ar}.

Thus {bi , . . . , br}s{a,,..., a,.}, and since bx,..., br are all distinct the two sets are in fact
equal. Hence /3 | ran a is a permutation of ran a ={a t , . . . , ar}. Since pk = a it is now
obvious that

(/3 | ran a)k = a | ran a.

THEOREM 2. Let a e S"(X) where X is a finite set. If a has a square root in ZT(X) then a
is quasi-square.

Proof. If cont a = 0 this is trivial, while if cont a = 1 Lemma 1 shows that the
existence of a square root for a implies that |3 | ran a is a square root within ^(ran a) for
the permutation a | ran a. Suppose now that cont a = k > 1 and that a has a square root /3
in 3~{X). Then Xak = Xa2k and so cont (ak) = 1. Moreover 02fc = ak and so by Lemma 1,
(3 | ran ak is a permutation of ran ak = stran a. Since /32 = a it is now easily seen that

(P | stran a)2 = a | stran a.

Thus a is quasi-square.

The main usefulness of this theorem lies in its contrapositive form: if a is not
quasi-square then it cannot have a square root in 3~(X). Thus, for example, if X =
{ 1 , . . . , 9} and

_/I 2 3 4 5 6 7 8 9
a \ 2 3 4 3 8 9 8 9 7
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then stran ct=Xa2 = {3,4,7, 8,9} and a | stran a = (34)(789). By Theorem 1 this has no
square root in ^({3,4,7, 8, 9}) and so a has no square root in 3~{{\,..., 9}).

In the case where cont a = 1 we have a converse to Theorem 2.

THEOREM 3. Let a e ST(X) and suppose that cont a = 1. Then a has a square root in
ST(X) if and only if it is quasi-square.

Proof. Half of this is included in Theorem 2. Suppose now that a, with contraction
factor 1, is quasi-square. We may, as in the proof of Lemma 1, write a as

Au...,Ar

alM.,..., am

where ateAi (i = 1 , . . . , r) and where /J, is a permutation of { 1 , . . . , r}. The permutation
a | ran a is described by af —> ai(i (i = 1 , . . . , r). Since a is quasi-square there exists a
permutation v of { 1 , . . . , r} such that v2 = /A. Then the element

fi = fAu...,Ar

V f l i , , , . . . , On,

of 3~(X) is a square root for a.

This completes the proof of Theorem 3. Notice, however, that by [2, Ex.II.10] the
square root /3 obtained for a has the property that j3 % a; for a and /3 have the same
range {at,... ,ar}, and a "a"1, ^°P~1 both have equivalence classes A 1 ; . . . ,Ar. We thus
have:

COROLLARY. Let a e 3~(X), with cont a = 1. If a has a square root in ST{X) then it has
a square root in its own dK-class.

3. Elements in extremal ^-classes. We have seen (Theorem 1) how to recognise
squares in the top ^-class JM. The bottom ,^-class J(1) presents no problem at all. It con-
sists of all the constant mappings of X and is a right zero semigroup. Every element is its
own square root.

We now examine the ̂ -classes J(n~x) and J(2).

THEOREM 4. Let \X\ = n 5= 3 and let a e J'""". Then a has a square root in 2T(X) if and
only if a is quasi-square and cont a = 1.

Proof. In view of Theorem 3 we require to show only that if a e Jin~l) and cont a > 1
then a has no square root. A square root |3 for such an a would have to lie in J(n~n, since
j3eJ(n) implies /32eJ(n). If cont/3 = 1 then X/32 = X/34; hence cont((32) = l and so /32

cannot equal a. On the other hand if cont |3 > 1 then X/32 <= X(i and so

hence again |32 cannot equal a, and so no square root of a can exist.
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THEOREM 5. Let \X\ = n s=4 and let a e J(2). Then a has a square root in ST{X) if and
only if either (i) a is idempotent or (ii) cont a =2 and ran a is contained in an ( a o a - 1 ) -
class containing at least 3 elements.

Proof. If cont a = 1 we may write

where /x is a permutation of {1, 2} and where a! e A1; a2eA2. If a is to be quasi-square
then fi must be the identical permutation and so

/A, A2\
\ a , a2)

an idempotent. It is now obvious that if a e J<2) and cont a = 1 then a has a square root if
and only if it is idempotent.

Now suppose that cont a = 2; this is the only other possibility since Xa =5 Xa2 implies
|Xa2| = 1 and no further descent is possible. Writing

/A,
\x, x2,

with x, ,x2eA,, we suppose that |Ai | ^3 . Choose y in AAlxi .x^ and let

A{y}, y A 2 ^

xu x2, y
then /32 = a.

Conversely, suppose that cont a = 2 and that

(A A \
) (with Xi, x2 in A,)

X! X2/

has a square root j3. Let zeA2 and let zj3 = y. Then

y/3 = za = x2.

If y e A2 then ya = x2 and so
x2 = ya = y/32 = x2/3.

But then

x, = x2a = x2/3
2 = x2/3 = x2,

which is a contradiction. Hence y sA , .
If y = x, then x^ = x2; hence

and so
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again a contradiction. Hence y ^ xa. If y = x2 we have x2/3 = x2, which as we saw in the last
paragraph leads to a contradiction. Hence yj=x2 and so there must exist y in Aj distinct
from both x, and x2. Thus l A ^ S as required.

4. Duals; amenable elements. The results of Section 3 make it clear that Theorem 3
will not extend to elements a for which conta3=2. For example, if X = {1, 2, 3} and

1 2 3

then a is certainly quasi-square but by Theorem 4 cannot have a square root. Some
further concepts are now required.

If a 6 3~(X) then for each x in X we have a sequence

x, xa, xa2,...

of elements of X, and since X is finite these elements cannot all be distinct. If r is the least
element of the non-empty set

{w GN U{0}: (3Z > w)xa" = xaz}

we call r the index of x relative to a and write either r = ia(x) or (where no confusion will
arise) r = i(x). Notice that i(x) s= 1 unless x e stran a and that in all cases xalMestran a. If
q is the least element of the non-empty set

we call q the period of x relative to a and write either q = pa(x) or q = p(x). It is always
the case that p(x)^ l .

In attempting to find necessary and sufficient conditions for an element a of 5"(X) to
have a square root we are led to consider what we shall call a '7-dual' of an element x in
X\ran a. Because of Theorem 2 we may confine attention to quasi-square elements; i.e.
we may suppose that a \ stran a is a permutation of stran a having square root 7. Now
define y to be a y-dual of x if y eX\ran a and one of the following four conditions is
satisfied:

(Dl) i(y) = i(x) and (xai<x))y = ya'(y);

(D2) i(y) = i(x) and xaiM = (yai(y))y;

(D3) i(y) = i(x) + l and (xai(x))y = yai(y);

(D4) i(y) = j (x ) - l and xaiM = (yai(y))y.

If it is necessary to specify more exactly the relationship of y to x we shall say (for
example) that 'y is a 7-dual of x under rule (Dl)'. It is easy to see that if y is a 7-dual of x
then x is a 7-dual of y.

We define an (a°a~')-class A in X to be basic if A flran a = 0 , and we say that
x e X is a basic element if it belongs to a basic (a°a~1)-class, i.e. if x(a°a~1)nran a = 0 .
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We say that a is amenable if it is quasi-square and if there exists a square root 7 of the
permutation a | stran a such that every basic element of X has a -y-dual. Then we have

THEOREM 6. Let a e2T{X). If a has a square root in 3~(X) then a is amenable.

Proof. Let a s ST(X) and suppose that a has a square root B. Let x be a basic element
of X. Then i(x)^2, since i(x)=£l would imply that there exists m ^ l such that
xa = xam+l. This would give xam ex(a°a" 1 ) , in contradiction to the definition of a basic
element.

By the definition of index and period we have

xa'M _ xaKx)+p(x)

and

(Vm eN) xai(x)- ' + xai(x)~1+m.

Hence

and

(Vm 6 N) x/32Kx)-2 + x/32Kx)-2+2m.

Rewriting these slightly, we get

(xB)B2iix)~l = (xj3)/32i(x)"1+2p(x>

and

(Vm 6N) (xB)B2iM~3 + (x|8)/32i(x)-3+2

It follows that

(x/3)62'oo _

and

(VmeN) (xP)/32i(x)-4 + (x/3)/32i(x)-4+2m,

i.e. that

(xB)aiM = (xB)aiM+pM (A)

and

(VmeN) (x/3)ai(x)-2^(x|3)ai(x)-2+2m. (B)

From (A) it follows that ia(xB)*£i(x) and from.(B) it follows that ia(xB)>i(x)-2. Thus
either i(xB) = i(x) or i(xB) = i(x)-l.

We now find it convenient to consider four cases as follows:
. (1) xB£rana, i{xB) = i(x)-1;

(2) x0£rana, i(xB) = i{x);
(3) x|3erana, i(xB) = i{x)-l;
(4) xBemna, i(xB) = i(x).

https://doi.org/10.1017/S0017089500004912 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004912


144 MARY SNOWDEN AND J. M. HOWIE

Let 7 = |3 | stran a; by Lemma 1, y is a permutation of stran a and y2 = a\ stran a. Since
in case (1) we have

i(x/3) = i (x ) - l and xaiM = [(xP)aiM-l]y,

the element x(i is a -/-dual for x under rule (D4). Similarly in case (2) the element x/3 is a
7-dual for x under rule (Dl).

The element xj3 cannot be a 7-dual in cases (3) and (4), since one of the requirements
for a 7-dual is that it belong to X\ran a. In both these cases, however, there exists an
element x, in X such that xxa = x/3. Then Xj ^ ran a, since if we had x, = ta(t e X) it would
follow that

xa = x/32 = x,a/3 = ta2/3 = (f/3a)a;

hence
ex(a°a~1)nran a,

in contradiction to the hypothesis that x is a basic element.
Notice next that

so that i(x1)^i(^/3) + l. This is in fact an equality, since if

x1a
r = x^ar+m (m>0)

then r ^ l and so

By the definition of i(x/3) it then follows that r-ls=i(x/3). Hence r3=i(x/3) + l and it is
now clear that

In case (3) we now have

i(x1) = i(x) and jcai(x)

so that xx is a 7-dual of x under rule (D2). Similarly in case (4) we find that X! is a 7-dual
of x under rule (D3). Thus a is amenable.

5. Compatibly amenable elements. The refined necessary condition for the exis-
tence of a square root given by Theorem 6 is unfortunately still not sufficient. We shall
eventually give an example, but this will be easier to explain if we defer it until we have
introduced some further concepts. Let us begin by noticing that in checking for amenabil-
ity we do not need to check every basic element, for if x and x' are basic elements in the
same basic (a°a~1)-class then xa = x'a; hence i(x) = i(x') (5=2) and any element y of"
X\ran a that is a 7-dual for x is also a 7-dual for x'. It is thus sufficient to check that
7-duals exist for the elements in a cross-section of the basic (a ° a "^-classes.
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Suppose now that a is an amenable element of ST(X), and choose a cross-section
Bas a of the basic (a°a~')-classes. We can express the amenability of a by saying that for
some square root y of the permutation a | stran a there is a mapping A: Bas a —> X\ran a
associating each x in Bas a with a 7-dual xA in X\ran a. We shall refer to A as a dualizar
mapping. If (y, z)e A (i.e. if y eBas a and z = yA) define

(y, z)(1) ={(y, z), (z, ya), (ya, za), (za, ya2),. . .},

(y, z)(2) = {(z, y), (y, za), (za, ya), (ya, za2),...}.

Both these sets are in fact finite, with size dependent on the index and period of y and z.
For each subset A of A we define

A A = U (y,z)(1)u U (y,z)(2),
(y,z)eA (y.z)sA\A

and we say that A is a compatible dualizer mapping if for some A g A the relation AA is a
partial mapping, i.e. if AA satisfies

(v, w) e AA and {v, w') e AA => w = w'.

We say that an element a of ST(X) is compatibly amenable if it is amenable and if there
exists a compatible dualizer mapping.

Before describing an example of an amenable element that is not compatibly
amenable, we establish two fairly easy properties of compatible dualizer mappings.

LEMMA 2. If A:Bas a —*X\ran a is a compatible dualizer mapping, then A is
one-one.

Proof. Suppose that (x, z), (y, z) e A, where x, ye Bas a. Since A is compatible, there
exists A £ A for which AA is a partial mapping. On the face of it there are four
possibilities:

(i) (x,z)eA, (y, z )eA;
(ii) (x, z)eA, (y, z )eA\A;

(iii) (x, z)eA\A, (y, z)<=A;
(iv) (x,z)eA\A, (y,z)eA\A.

In case (i) we have, by definition of AA,

(z, xa),(z, ya)eAA.

Hence, by the partial mapping property, xa = ya; hence, since x, y are members of a
cross-section of (a°a-1)-classes, x = y.

Case (ii) cannot arise, since we have (x, z), (z, y) e AA and hence y = xa e ran a, a
contradiction. A similar argument shows that case (iii) is impossible. In case (iv) we have
(z, x), (z, y) e AA and so x = y.

LEMMA 3. Suppose that x1; x2, yi, y2 are distinct elements of Bas a such that each of
y,, y2 is a y-dual for each of xu x2. / / the y-dualizer mapping A contains the pairs (x1; yj),
(x2. y2)> (yi> x2), (y2, xj), then it is not compatible.
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Proof. Suppose by way of contradiction that A is compatible, i.e. that there exists
A £ A for which AA is a partial mapping. Suppose first that (x,, yx)e A. Then (x,, y^e AA

and so (y2, x,)eA (since otherwise (x,, y2)eAA in contradiction to the partial mapping
property). Hence (xl5 y2a)e AA and so y, = y2a. This is a contradiction since y,6Bas a <=,
X\ran a.

Hence (x,, y J ^ A and so (y,,x1)eAA. But this implies (y,,x2)^A (since otherwise
(y!,x2)eAA and the partial mapping condition is violated). Hence (y,,x2a)eAA and so
x, = x2a, again a contradiction, since x,eBasa. This completes the proof.

EXAMPLE. Let X = { 1 , . . . , 13} and let

/{1,2}, {3,4}, {5,6}, {7,8}, 9, 10, 11, 12, 13
5, 1, 3, 2, 7, 8, 4, 6, 11

„-(<
Here stran a =Xa3 = {l, 3, 5} and a | stran a =(153), a cycle of length 3. This has the
unique square root 7 = (135) and so a is quasi-square. The basic (a°a~1)-classes are

{9}, {10}, {12}, {13}

and so the only possible choice for Bas a is {9, 10, 12,13}. Notice that in this case we have
Bas a = X\ran a.

About the basic elements we summarise the relevant information in a table:

X

9
10
12
13

i(x)
3
3
2
3

xaiM

5
5
3
1

(xai(x)

1
1
5
3

)Y

Possible y-duals of 9 are 12 (rule (D4)) and 13 (rule (Dl)); possible 7-duals of 10 are 12
(rule (D4)) and 13 (rule (D2)). Hence, bearing in mind the restrictions imposed by
Lemmas 2 and 3, we see that the only possible compatible dualizer mappings are

A(1) = {(9,12), (10,13), (13,10), (12, 9)},

A(2) = {(9,13), (10,12), (12,10), (13, 9)}.

For brevity let us now write

K = {(2,1), (1, 5), (5,5), (5, 3), (3, 3), (3,1), (1,1)}.

Routine calculation show that

(9,12)(1> = {(9,12), (12, 7), (7, 6), (6,2), (2, 3), (3,5), (5,1), (1,3)},
(9,12)(2) = {(12,9), (9, 6), (6, 7), (7, 3), (3, 2)} U K,
(9,13)(1> = {(9,13), (13,7), (7,11), (11, 2), (2,4), (4, 5), (5,1), (1, 3), (3,5)},
(9,13)(2> = {(13, 9), (9,11), (11, 7), (7,4), (4, 2)} U K,

(10,12)(1) = {(10,12), (12, 8), (8, 6), (6, 2), (2, 3), (3, 5), (5,1), (1, 3)},
(10,12)(2> = {(12,10), (10,6), (6, 8), (8, 3), (3,2)} U K,
(10,13)(1) = {(10,13), (13, 8), (8,11), (11, 2), (2, 4), (4, 5), (5,1), (1, 3), (3, 5)},
(10,13)(2) = {(13,10), (10,11), (11, 8), (8, 4), (4, 2)} U K.
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Hence, since (9,12)(2)(=(12, 9)(1)), (9,13)<2), (10,12)(2) and (10,13)(2) all lack the partial
mapping property, the only possible choice for A c A(1) giving a partial mapping AA° is

A ={(9,12), (10,13)}.

But even this does not work, since examination of (9,12)(1) and (10,13)0) shows that
(2, 3), (2, 4)e A^\ Thus A(1) is not a compatible dualizer mapping.

Similarly, for A(2) the only subset A that has any chance of providing a partial
mapping A^ is

A ={(9,13), (10,12)},

and this fails since (2, 3), (2,4) e A^'. We conclude that a is amenable but not compatibly
amenable.

Hence a has no square root, by virtue of our final theorem:

THEOREM 7. Let X be a finite set and let a be an element of the full transformation
semigroup 3~(X). Then a has a square root in 3~(X) if and only if it is compatibly amenable.

Proof. Suppose first that a has a square root /3. Then a is amenable, by Theorem 6.
Recalling the method of proof of that theorem, we return to the four cases there
considered. Effectively we divided Bas a into four disjoint subsets Au ..., A4:

A, = {x eBas a: x/3$£ran a, i(x|3) = i(x)— 1},
A2 = {xeBasa: x/3^rana, i(xf}) = i(x)},
A3 = {x e Bas a: x/3 e ran a, i(xfi) = i(x)-1},
A4 = {x e Bas a: x/3 e ran a, i(x/3) = i(x)}.

We defined 7 as 0 | stran a and chose x/3 as 7-dual of x if x € A] U A2. If x e A3 U A4 we
introduced a new element x, such that x ^ = x/3 and took xt as 7-dual of x. We do not
change this latter procedure, but in order to ensure that our dualizer mapping A is
compatible we need to be a little more careful in choosing the 7-dual of an element of
A,UA2. It may be that x/3^Basa but that there exists an element 2 in (x^)(j3°/3~1)n
Bas a. There certainly will not exist more than one such z, since two distinct elements of
Bas a cannot be (a°a~1)-equivalent. But if there does exist such a z we choose it rather
than x|3 to be the 7-dual of x. Since (x£)|3m = z|3m for all m ̂  1 it certainly serves as well.
If

(x/3)(/3°|3~1)nBasa = 0

we choose 7-dual x/3 as before. Notice that for all x in Aa U A2 and for all m 3= 1 we have

(xA)am=xj3am=x«m/3;

also,

(xA)/3 = xa.

Now let A = {(x, xA): x e At U A2}, so that

AA= U (x,xA)mU U ( W 2 ) -
xsA,UA2 XSA3UA4
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We show that AA is a partial mapping.
For each y in A1UA2,

(y, yA)(1) = {(y, yA), (yA, yo), (ya, ya/3), (ya|3, ya 2 ) , . . . , (ya1, ya'/3),...},

and for each z in A3UA4,

(z, z,)<2) = {(2i, z), (z, zfi), (zft za), {za, zap),..., (za>, za'p),...}.

Thus for the most part the relation AA coincides with the function j3. The only exceptions
are some elements y in A,UA2, and elements zx (zeA3UA4). If yeA ,UA 2 and
(y/3)(/3°/3"1)nBasa^=0 then yAsA3UA4. Thus

(yA,ya)e(y,yA)(1)cAA

(yA,(yA)^)e(yA,(yA)1)(2)sAA.

Since (yA)j3 = ya this does not destroy the partial mapping property of AA.
If zeA 3 UA 4 we may have z1eA1UA2. But in that case the set

(z,|3)(/3°/3~1)nBas a contains the (necessarily unique) element z and so the pair (z,, z,A)
in (zj, ZiA)(1) coincides with the pair (z,, z) in (z, Zi)(2). We conclude that AA is a partial
mapping and thus that a is compatibly amenable.

Now suppose that a is compatibly amenable, with y as square root of a | stran a, with
Bas a as the chosen cross-section of the basic (a°a~')-classes, with A as compatible
dualizer mapping and with subset A of A such that AA is a partial mapping. We find it
convenient to partition X into three disjoint subsets, P, Q, R as follows:

P = U [Bas a U (Bas a)A]ar,
r=0

Q = stran a \ (P Pi stran a),

R=X\(P\JQ).

Notice that if xeran a\stran a then xeP; for either xe (Bas a)a or there exists
x, e ran a such that xxa = x; then either x, e (Bas a)a, giving x e (Bas a)a2, or there exists
x2€rana such that x2a = x; and so on. Thus r a n a g P U Q and so R consists of those
elements in X \ r a n a not in Bas a U(Bas a)A. If xeR then either

(which happens if x(a°a~]) is a basic (a°a"1)-class) or x(a°a~^) intersects with ran a.
Thus either x ( a ° a ~ 1 ) n P ^ 0 or x (a°a~ 1 )nQ^ 0 .

From the definitions of P and AA it is clear that dom AA = P. We now define a
mapping /3 :X-» X as follows: if x e P let x/3 = xAA; if x e Q let x/3 = xy. If x e R then
either (i) x (a°a~ 1 )nP^ 0 in which case we choose y in x(a°a~1)nP, or (ii) x(aoa~a)n
P = 0 and x(a°a"')Pi Q ^ 0 , in which case we choose y in xiaoa'*)DQ. In either case
y/3 is already defined and we define x|3 = y/3.

We show that |32 = a. Let xeP. Then the definition of AA makes it clear that
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xAA eP, and so xj32 = xAi. But the construction of AA entails that xAA = xa for all x in
P = dom AA.

Now let xeQ, so that x/3 = X7. Then X7 e stran a. We shall show that XY e Q. For
suppose by way of contradiction, that xyeP. Then there exists 2 in BasaU(Basa)A
such that zar = x7. Since za r es t rana we must have rs=i(z) and so

Now the element z has a dual zA, and (zai(2))7 is equal either to (zA)ai(zA) (rule (Dl) or
(D3)) or to (zA)ai(2A)+1 (rule (D2) or (D4)). Hence either

xa = (zA)i(2*)+r-iz or xa = (zA)i(2A)+r-i(z)+1,

and in either case xa e P. Hence xa' eP for t = 1, 2 , . . . . But since x 6stran a we have
that x a ' = x for some f2=l. Hence x e P , contrary to assumption. We conclude that
X7 e Q, and it is now obvious that

xj3 =X7 =xa.

Finally, suppose that x e R. Then x/3 = y|3 where y e P U Q and ya = xa. Hence

x/32 = y£2 = ya = xa

in this case also. This completes the proof of Theorem 7.
REMARK. The criterion we have established for the existence of a square root is

disappointingly complicated, but for small sets X is not too hard to apply. Moreover, as
the proof makes clear, the permutation 7 and the partial mapping AA do actually in effect
construct the square root.

If one visualises elements of 3~(X) as directed graphs it is possible to view the
problem as one of finding square roots (in a natural sense) for a certain kind of digraph.
The only reference we have found on this topic [1] (for which we are indebted to Dr Ian
Anderson) does not seem to be very helpful in our algebraic context.
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