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The evaporation of liquid from within a porous medium is a complicated process involving
coupled capillary flow, vapour diffusion and phase change. Different drying behaviour is
observed at different stages during the process. Initially, liquid is drawn to the surface
by capillary forces, where it evaporates at a near constant rate; thereafter, a drying
front recedes into the material, with a slower net evaporation rate. Modelling drying
porous media accurately is challenging due to the multitude of relevant spatial and
temporal scales, and the large number of constitutive laws required for model closure.
Key aspects of the drying process, including the net evaporation rate and the time of the
sudden transition between stages, are not well understood or reliably predicted. We derive
simplified mathematical models for both stages of this drying process by systematically
reducing an averaged continuum multi-phase flow model, using the method of matched
asymptotic expansions, in the physically relevant limit of slow vapour diffusion relative to
the local evaporation rate (the large-Péclet-number limit). By solving our reduced models,
we compute the evolving net evaporation rate, fluid fluxes and saturation profiles, and
estimate the transition time to be when the initial constant-rate-period model ceases to
be valid. We additionally characterise properties of the constitutive laws that affect the
qualitative drying behaviour: the model is shown to exhibit a receding-front period only
if the relative permeability for the liquid phase decays sufficiently quickly relative to the
blow up in the capillary pressure as the liquid saturation decreases.

Key words: porous media, condensation/evaporation, capillary flows

1. Introduction

Drying of a liquid from within a porous medium is an important process to understand,
with applications in soil science and geoscience, and industrially in the production of
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paper, food and construction materials (Scherer 1990; Or et al. 2013; Wu & Prat 2022).
Aside from the numerous applications, drying porous media are also extremely interesting
from a fundamental fluid dynamics perspective, as a tightly coupled multi-phase and fluid—
structure interaction system, with the multi-phase fluid flow and mass-transfer dynamics
driven by the vaporisation and the transport mechanisms by which vapour is removed
to the surroundings. Drying processes are challenging to model accurately due to the
variety of relevant length scales and time scales over which processes occur: pore-
scale capillary forces compete with viscous drag to generate large-scale flows, while
macro-scale gradients in the vapour drive the evaporation.

In isothermal drying scenarios for which heat transfer may be neglected and when
capillary forces play an important role, two main stages in the drying of a porous medium
are typically observed. Firstly, during stage 1, liquid is drawn to the surface of the material
by capillary flow and the evaporation takes place at or near the surface at a near-constant
rate (stage 1 is often referred to as the ‘constant-rate period’ of the drying process). Stage 1
is seen to end abruptly when capillary forces are no longer sufficient to bring liquid to the
surface. Thereafter, in stage 2, the net evaporation rate reduces significantly and continues
to fall over time, as a drying front moves into the porous medium (stage 2 encompasses
the ‘falling-rate period’ and ‘receding-front period’ referred to in some studies (Wu & Prat
2022)). Key aspects of the drying process — including determination of the ‘constant’ dry-
ing rate in stage 1 and the falling drying rate in stage 2, as well as the time and mechanism
driving the transition to stage 2 — are not well understood and remain difficult to predict.

When capillary effects are important, drying porous media require an understanding
of the multi-phase flow in porous media, with both phases (air and liquid) co-existing
in the pore space. Many models for multi-phase flows in porous media focus on cases
where the two fluids each saturate different regions of porous media and the sharp interface
between these regions is sought as part of the model solution (e.g. Huppert & Woods 1995;
Nordbotten & Celia 2006; Liu, Zheng & Stone 2017). Unsaturated flows are often modelled
using the Richards equation (Richards 1931) and true multi-phase flows can be modelled
with a multi-phase Darcy model (Bear 2013).

Models of drying of porous media consisting of saturated wet and dry regions separated
by a sharp drying front are valid when capillary forces are negligible, and may also be
reasonable when the material is hydrophilic (Luckins ef al. 2023). When capillary forces
are important in the drying of porous media, so the flow is truly multi-phase at the pore-
scale, a range of different models have been used (Prat 2002; Vu & Tsotsas 2018; Li,
Vanderborght & Smits 2019; Perré et al. 2023). The simplest of these are single (nonlinear)
diffusion equations for the total moisture in the material, with the nonlinear diffusivity
encompassing both liquid and vapour transport processes, and which is typically fit to
experimental data (for instance, Pel & Landman 2004; Lockington, Parlange & Lenkopane
2007). Such simple models must be fit to specific drying scenarios and, even then, often
fail to accurately capture the drying behaviour accurately (Whitaker 1977; Li et al. 2019).
At the opposite extreme, the pore-scale multi-phase thermal Navier—Stokes equations
may be averaged or homogenised to derive an averaged continuum model. These are
multi-phase Darcy flow models, with mass transfer between phases, and often include an
averaged heat transfer equation. In the drying literature, the averaged model of Whitaker
(1977) is typically used. Due to the model complexity, it is typically solved numerically
with purpose-built solvers (Wei et al. 1985; Perré & Turner 1999; Nuske, Joekar-Niasar &
Helmig 2014; Li et al. 2019).

The benefit of averaged continuum models is their grounding in physical principles
and, thus, the accuracy and interpretability of the results. The major drawbacks are their
complexity and the large number of constitutive laws (or effective parameters) required to
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close the model, including the relative permeabilities of each phase, the capillary pressure,
the effective diffusivities and thermal conductivities, which typically vary with the local
volume fraction of each fluid phase. Homogenisation methods are widely used, with great
success, to provide closure problems for a variety of multi-scale systems, from which the
effective parameters can be computed. However, for multi-phase flows in porous media
(even when neglecting phase change), homogenisation methods are currently still unable
to provide these closure problems in general (Lasseux & Valdés-Parada 2022) due to the
significant dependence of the pore-scale problem on the pore geometry and flow history
(Blunt 2017). In practice, for simulating the drying of porous media, the constitutive laws
are often fixed by fitting to experimental data, or functional forms are posed based on their
expected characteristics.

In addition to these continuum models, discrete pore network models (PNMs),
describing the motion of liquid—gas interfaces through a network of pores representing
the porous medium, are popularly used to study drying porous media (Metzger & Tsotsas
2010; Prat 2011). While these are still too computationally expensive to simulate the drying
of an entire porous medium (Wu & Prat 2022), they are used to gain qualitative insight into
drying scenarios and often to fix the constitutive laws required for the averaged continuum
models (Ahmad er al. 2020).

Simplified or reduced versions of the averaged continuum models have been posed
and simulated numerically. However, working solely with these simpler models has lead
to significant confusion about their closure: topics of ongoing debate include how to
impose appropriate boundary conditions on the reduced models (Talbi & Prat 2021; Wu
& Prat 2022) and whether or not the assumption (often made) of local thermodynamic
equilibrium is valid (Ouedraogo et al. 2013; Li et al. 2019; Ahmad et al. 2020).

In this paper, we use dimensional and asymptotic analysis to systematically simplify an
isothermal, averaged continuum drying model (essentially that of Whitaker (1977)) in a
relevant parameter regime, to derive new reduced models (and accompanying boundary
conditions) for both stage 1 and stage 2 of the drying. We solve these reduced models
to predict the stage-1 and stage-2 drying dynamics, including the net drying rates and
receding front motion, as well as the time at which the transition between stages occurs.

There are several benefits to our asymptotic approach. Firstly, compared with simulating
the full model of Whitaker (1977) numerically, our new, simple drying models provide
powerful intuition, drawing out the fundamental force balances and fluid dynamics at play,
and enabling the straightforward prediction of the drying rates and fluid velocities.
Secondly, compared with the more ad hoc posing of reduced models in the existing drying
literature, it is clear from our derivations the parameter regimes for which the reduced
models are valid. Furthermore, our systematic analysis answers many questions about
appropriate boundary conditions and regions of local equilibrium and out-of-equilibrium
vaporisation kinetics currently debated in the drying literature. Importantly, much of our
analysis is for general constitutive laws; we are therefore able to highlight where properties
of the functional forms impact the qualitative drying behaviour, such as when (and even if)
the system transitions from stage 1 to stage 2. This generality also enables us to identify
the most important effective parameters to ascertain experimentally.

The remainder of the paper is structured as follows. In §2, we state the averaged
continuum drying model following Whitaker (1977), discuss the required properties
of appropriate constitutive laws and state physical boundary conditions. We then non-
dimensionalise the model in §3 and discuss the parameter regimes of interest, before
showing example numerical simulations of the model in § 4. Section 5 is then focussed
on one parameter regime of physical relevance, in which the vapour diffusion rate through
the porous medium is slow relative to the local evaporation rate. Using the method of
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matched asymptotic expansions, we derive and solve a reduced model for stage 1 (§5.1),
predict the transition time (§ 5.2), and find and solve a reduced model for stage 2 (§ 5.3).
We discuss and contextualise our results and provide concluding remarks in § 6.

2. Model statement
2.1. An averaged continuum multi-phase model for isothermal drying

We model the two-phase flow and phase change of the liquid and a mixture of vapour
and inert gas (e.g. air) through a uniform-porosity porous medium using an averaged
continuum model, as derived through volume averaging arguments by Whitaker (1977).
Our starting point is the volume-averaged equations summarised in section VI of Whitaker
(1977). The assumptions made in their derivation are also listed in that section. For our
setting, the most important of these assumptions are that the liquid phase density is
constant, the porous medium is homogeneous, the gas flow does not affect the liquid
momentum balance except via the capillary pressure relation and that this capillary
pressure is well defined. In particular, we emphasise that both the liquid and gas phases
are assumed to be continuous. We further simplify this model of Whitaker (1977) by
assuming that the porosity is constant, the drying process is isothermal (so that there is
no temperature variation), the vapour—gas mixture has a constant intrinsic average density,
and that the jump between the intrinsic averaged gas mixture and liquid pressures can
be described by a capillary pressure. Under these assumptions, the dependent variables
in our model are the liquid saturation, S (the volume fraction of liquid within the pore
space, so that 1 — S is the volume fraction of the vapour—gas mixture within the pore
space), the liquid and gas-mixture pressures, p’ and p¥, respectively, the liquid and gas-
mixture Darcy fluxes, U and U, respectively, and the vapour mass density, p?, within
the gas phase. Specifically, p,, p¢ and p’ are the intrinsic average vapour density and fluid
pressures (i.e. averaged only across the relevant phase). The model consists of Darcy’s
law and a conservation-of-mass constraint for each phase, incorporating the phase change
with rate M, an advection—diffusion equation for the transport of vapour and the assumed
capillary pressure relation. The model is

Ut = —k—(sz(S)(V pt+plge.), (2.1a)

"

k
U® = ——2k9(8)(Vp© + p9ge.), (2.1b)

"
¢p"Si 4+ ptV - UL =—M(p", S), (2.1¢)
—p° S+ p°V U =M(p", S). (2.1d)
¢(1—8)p! +U%-Vp' =DV - (DY (S)Vp*) + (1 = ﬁ—) M(p". )., (2le)

G

p"=p% = pe(S), Q.1f)

with subscript ¢ denoting the partial derivative with respect to time ¢. Here, ¢ is the
porosity, ko is the absolute permeability of the medium, p% and p© are the liquid and gas-
mixture densities, D is the diffusivity of vapour in air through the dry porous medium, and
w’ and @ are the liquid and gas-mixture dynamic viscosities, all of which we assume to
be constant. The liquid and gas-mixture phase pressures differ by the capillary pressure,
pc(S), which we assume to be a known function of S. The relative permeabilities, kL(S)
and k% (S), and the effective diffusivity through the gas-occupied pore space, D(S),
are also assumed to be known functions of § only, while the mass-transfer rate between
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the phases, M (p", §), is expected to depend on both the local vapour density and liquid
saturation. Of course, all of these constitutive laws, p., kL, kG, D and M, additionally
depend on the pore-scale geometry (sometimes encoded simply by a dependence on the
porosity ¢) and on the properties of the solid-liquid—gas combination, such as the contact
angle of the contact lines. We assume the porous material to be homogeneous and the
solid structure rigid and unchanging during the drying process, so that the dependence of
the constitutive laws on these properties does not change during the course of the drying
process. We explicitly include the constitutive laws’ dependence on S and p? since these
vary spatially and temporally during the drying, as discussed in the following section.

2.2. Constitutive relations

As discussed previously, the form of the constitutive laws (or effective parameters) p.(S),
kL (S), kK9(S), DU (S) and M(pY, S) depend on the properties of the solid porous
matrix, as well as the liquid and inert-gas pair considered. Expressions for some of these
constitutive laws are given by Whitaker (1977), although these are difficult to evaluate
explicitly as they are given in terms of the (unknown) microscale flow and transport.
Others, such as p.(S) and D(S), do not follow from the volume averaging and must
be determined empirically. Alternatively, upscaling via homogenisation methods typically
results in more tractable methods by which the constitutive relations may be computed
for a given pore geometry, although, as discussed in § 1, this is still only likely to be
possible under strong restrictions on the pore geometry and phase distribution within the
pore space, as in Lasseux & Valdés-Parada (2022). In practice, constitutive relations are
often fit empirically or assumed based on heuristic arguments to solve models such as
(2.1) numerically. In our analysis in § 5, we will leave the constitutive relations unfixed
as far as is possible to maintain generality and investigate how the qualitative behaviour
of the drying system depends on the properties of their functional forms. Indeed, we will
later show that the choice of these functional forms can strongly affect the type of drying
behaviour observed. In this section, we discuss the typical properties of the constitutive
laws and some simple examples.

Generally, we require that p. is a monotonic decreasing function of S, with p. =0
at S=1 and p. — oo as § becomes small. The relative permeabilities of each phase
should be an increasing function of the volume fraction of that phase, so that k- (S) is
increasing and k9 (S) is decreasing, with k(1) =k%(0)=1 and k£(0) =k°(1)=0. In
reality, there may be significant hysteresis between wetting and drying regimes, due to the
history dependence of the pore-scale flow (Blunt 2017). Since we are interested only in
drying, we will assume a single relation for each of p.(S), KL (S), k9 (S). Commonly used
forms with these properties include

kE(S) =59, kS (S)y=(1 -8, pe(S)=8"°¢—59, (2.2)

for some powers a, b, ¢, d > 0 (Fowler 2011; Blunt 2017). The model of Van Genuchten
(1980) is also popular in simulating drying (Ouedraogo et al. 2013; Li et al. 2019). We
will keep the constitutive laws general as much as possible through our analysis, but
for examples and simulations, will use (2.2) witha =b =3 and c =d =1 (Fowler 2011)
unless otherwise stated.

The evaporation rate M is also assumed to be some known function of p¥ and S. From
the volume-averaging argument, we might expect to be able to decompose

M=A(S)E(p*, S), (2.3)

where A(S) is a measure of the surface area to volume ratio of the liquid—gas interface
on the microscale and E(p?, S) is the local evaporative flux rate on the microscale. This
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A(S) is sometimes referred to as the specific interfacial area of the surface in the drying
literature (Ahmad et al. 2020; Wu & Prat 2022). Ahmad et al. (2020) used simulations of
a pore-network model to approximate .A(S), and found for their simulations that A — 0
as § — 0 and A was non-monotone in S. The local evaporation rate is often taken to be
linear in the vapour density p (or equivalently, since we assume an isothermal system, in
the vapour partial pressure). An example of such a linear model for E is a Hertz—Knudsen
law (Hertz 1882)

E(p")=C(p; —p"), 2.4

for constant C (usually inversely proportional to the temperature), and where p? is the
saturation vapour density. As well as the local vapour density, the local rate E might also
depend on the liquid—gas interface curvature and, therefore, the pore-scale geometry of
the porous medium. It is for this reason that £ may also depend on the saturation S, as
a proxy for this pore-scale geometry dependence. In general, £ might depend on surface
adsorption or dual-porosity effects, which could also be modelled via a dependence on S.
We will assume throughout that the porous medium is simple and non-reactive with the
liquid — for instance, an array of glass beads — and therefore that E is independent of S.

The effective diffusivity D/(S) of vapour through the porous medium is expected
to decrease with S as the pore-volume occupied by the gas mixture is reduced. We
require D(1) =0 and D (0) = 1 (the effective diffusivity of vapour through the porous
medium with no liquid present has been incorporated into the dimensional constant D).
In general, the form of D/(S) will also depend on the pore-scale geometry (Bruna
& Chapman 2015) but for simplicity, we will take D/(S) = (1 — S)!/? in numerical
simulations, unless otherwise stated.

2.3. Problem of interest and appropriate boundary conditions

In this paper, we consider drying from an effectively one-dimensional porous medium with
an impermeable base at z = 0 and open to the surrounding air at the top, z = L, so that L is
the depth of the porous medium. (If there were no gravitational effect, this geometry also
captures the symmetric drying of a porous medium between z = (—L, L), with a line of
symmetry at z = 0.) While the porous medium is in reality three-dimensional, by imposing
initial and boundary conditions that are independent of x and y, we expect the dependent
variables to only depend on z spatially. Furthermore, the drying process, which we will
see is limited by diffusion of vapour out of the material, is expected to be stable, and thus
we do not anticipate higher dimensional effects becoming important.

By eliminating U, U (the z-directional scalar Darcy fluxes) and p’ using (2.1a),
(2.1b) and (2.1f), our model may be viewed as three, spatially second-order, (diffusive)
equations for S, p© and p®. We therefore require one boundary condition on each of S,
pG and p? at each edge of the domain, z =0 and z = L, as well as a consistent initial
condition for each of these three variables.

At the impermeable base, we impose no flux of liquid, gas or vapour, so that

Ut=U%=DD¥p! =0 atz=0. (2.5)

Here, we use subscript z to denote derivative with respect to z. These conditions (2.5) may
be interpreted as corresponding to one condition on each of S, p¢ and pV, respectively.

At the surface of the material, there can be no flux of liquid out of the material and the
gas pressure is atmospheric, so that

ult=0, p¢=pS atz=L. (2.6)
1017 A6-6
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These may be viewed as one boundary condition on each of S and p©. The final boundary
condition for p, on z = L depends on how vapour is transported through the surrounding
air. Most generally, we might couple the drying porous medium with a model for the
external vapour transport. For simplicity, we consider two simpler alternatives. First, we
might impose that the vapour density is at a constant value, an atmospheric humidity, at
the top of the porous medium, so that

P’ =ps atz=1L, 2.7)

which is valid if the vapour is very quickly removed from the surface of the porous
medium, for instance, if there is a fast flow of dry air across it. Alternatively, we might
impose a mass flux or Newton-cooling law, with a mass transfer coefficient m, so that the
flux of vapour out of the top of the porous medium is given by

p°US — DD p? = m(p® — p2) atz=1L. (2.8)

In the limit of fast mass transfer through the surrounding air, m — oo, this mass-flux
boundary condition (2.8) reduces to the Dirichlet condition (2.7). Either of (2.7) or (2.8)
completes the set of boundary conditions on the model.

Initially, we will assume known saturation, vapour density and gas pressure profiles.
Typically, we might assume these are uniform with S = Sg < 1, p© = pgm and p¥ = p%..

The correct boundary conditions to impose at the surface of a drying porous medium
are widely debated in the drying literature, especially in relation to simplified continuum
models for which the liquid and vapour are assumed to be in local equilibrium (so p" = p;
throughout), or the conservation of mass equations are combined into a single diffusive
equation for the saturation (Li et al. 2019; Talbi & Prat 2021; Wu & Prat 2022). The
conditions stated previously, (2.6) and either of (2.7) or (2.8), are physically motivated
and by systematically reducing our model in § 5, we derive the corresponding boundary
conditions for our simplified models. It will be clear what the correct boundary conditions
should be for our reduced models because they are the appropriate reduction of the
boundary conditions for the above mentioned full model.

3. Non-dimensionalisation

We now non-dimensionalise our model. We impose the length scale, L, of the porous
medium, the pore-length scale, d, (we assume throughout that e =d/L « 1) and the
evaporation rate scaling, [E], but otherwise choose the scalings that are due to the
evaporation process, since all flow and transport is driven by the evaporation.

Arguing geometrically, we expect the liquid—gas interface area to volume ratio to scale
like A(S) ~ 1/d. We suppose that from E, we know the characteristic saturation vapour
density p?; at p¥ = p?, E =0, and physically relevant solutions have p¥ < p?. We also
suppose we know the characteristic scaling [ £] for the evaporation rate E. For instance, if
E were the Hertz—Knudsen law (2.4), then we could take [E] = Cp}. Since we will later
focus on the situation where vapour diffusion limits the evaporation, it is in fact helpful to
scale

[E] J

MNUT’ wherev:p—G, 3.1)

and so account for the maximum humidity, v, within the scaling for the mass transfer term.
The capillary pressure scales with the surface tension y and interface curvature, and thus,
pe ~ y/d. This is also known as the pore-entry pressure.
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In summary, we make the rescalings

V[E] ~ . ~ v .
M= TE(p, $)A(S), pe(S) = Epc(S), (3.2a)
as well as
La . EIL - EIL -
_ o dy v _MEIEGL o _VEILGG (3.2b)
V[E] dpt dpG
pL:patm“‘gﬁLs pG:putm“‘gﬁGs pvzp:ﬁ, (3.2¢)

so that the time scale is that of the local evaporation rate, the gas and liquid flow velocities
are driven by the evaporation, and the pressures scale with the capillary pressure.

Using the scalings (3.2) and dropping the tilde notation for dimensionless variables, we
find the dimensionless model,

Ut =—Ca 'kH(S)(Vpt +Boe,), (3.3a)
U% =—£Ca 'k (8)(Vp© +8Boe), (3.3b)
S+ V.Ul =—AS)E(p), (3.3¢)
—8S,+V.-U%=AS)E(p), (3.3d)
v8(1 = 8)p; +vU% - Vp=Pe 'V - (DU(S)Vp) + (1 —vp) AS)E(p),  (3.3¢)
Pl =1p% = pe(S). (3.3f)
where we have introduced the dimensionless parameters

a:f)—(:, v=£—£, g:ﬁfié, (3.4a)
Bo— P 8Ld. w:m, pe— LEIL® (3.4b)

% kopty DpYd

For the one-dimensional problem of interest stated in § 2.3, the dimensionless boundary
conditions are

Ul=U%=D%p,=0 onz=0, (3.5a)
Ul=p%=0 onz=1, (3.5b)
either vU%p —Pe 'DUp. =m(p — pss) O p=poo onz=1, (3.5¢)

(with m and p rescaled as appropriate) and initially, we prescribe uniform initial profiles
S =380, p=1, and zero fluxes and pressure gradients. The density ratio §, humidity v
and kinematic viscosity ratio, &, are all expected to be small. The Bond number Bo
quantifies the effect of gravity on the liquid relative to the capillary forces with Bo < 1
(true for sufficiently small length scales d or L) corresponding to minimal gravitational
effect, while Bo > 1 corresponds to gravity forces dominating. Since our focus is capillary
porous media, we will be interested primarily in the case Bo < 1. The capillary number
Ca is the ratio of viscous drag force in the pore space to the capillary forces, so that
Ca < 1 corresponds to strong capillary forces. The absolute permeability ko can vary
by several orders of magnitude for different porous media and is often taken to scale
approximately with d2. Finally, the Péclet number, Pe, may be thought of as the ratio
of the local evaporative flux rate to the rate of diffusive transport of the vapour through
the porous medium, so that Pe > 1 corresponds to the situation of drying limited by the
transport of vapour out of the porous medium, and we expect the liquid and vapour to be in
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Parameter Description Approximate value or range
¢ Gas density lkgm™3

ol Liquid density 103 kgm™3

o Saturation vapour density 2x 1072 kgm™3
uk Liquid viscosity 103 kgm~!s~!
u¢ Gas viscosity 2x 102 kgm™! 57!
y Surface tension 7.2 % 1072 kgs2
D Diffusivity of vapour in air 2.5%x 1079 m? 57!

d Pore length scale 105 m

L Porous medium length scale 5% 1072m

ko Absolute permeability 10~ m?

[E] Kinetic evaporation rate 25x 103 kgm=2 57!

Table 1. Approximate parameter values for the drying of water from a capillary porous medium, in air, at
room temperature.

Dimensionless parameter ~ Estimated value ~ Value used in numerical simulations

B 1073 1073
" 2% 1072 2% 107!
£ 5% 1072 5% 107!
Bo 6.8 x 1072 0
Ca 1.7 x 107! Various
Pe 2.5 x 10* Various

Table 2. Dimensionless parameter values using the data in table 1 for the estimates. We will use less extreme
values of several parameters in our numerical simulations to aid computational efficiency, while remaining in
the relevant limits.

thermodynamic equilibrium. We note that all of Bo, Ca and Pe increase with the material
thickness L and also vary with the pore-length scale d (scaling ko ~ d?).

In table 1, we list data values relevant for the drying of water at room temperature in
a capillary porous medium and the corresponding dimensionless parameters are listed in
table 2. Since § is small, the gas and vapour equations are likely to be stiff to simulate,
and we should expect quasi-steady gas and vapour dynamics on the evaporation time scale
(so long as the saturation is not too close to 1, in which case, the time derivative terms in
(3.3d)—(3.3¢) would become important (Murphy 2024). The parameters v and & are also
fairly small, although we will often be able to retain generality by treating them as O(1)
through much of our analysis.

Since Pe>> 1 and Ca < 1, we expect the drying to be limited by diffusion of vapour
through the porous medium and that the capillary forces will dominate over viscous drag.

With the data in table 1, the time scale that we have used is

pptd

_ ~ 103
= IE] 10° s, (3.6)

(7]

which is the time scale associated with the evaporation rate. We will later see that for
Pe > 1, vapour transport limits the drying process and the time scale for the constant rate
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Figure 1. Variation of the capillary, Péclet and Bond numbers with the pore-length scale d (curves in blue,
arrows show direction of increasing d) and the size of the porous medium L (similarly in red). Along blue
curves, d varies from 10~7 m to 10~3 m and we take ko= 0.1d% m?; along red curves, L varies from 1072 to
10 m. All parameters are as in table 1 unless otherwise stated.

drying during stage 1 is actually longer than this, on the order of
[11VPe~ 1.6 x 10*s~ 4.4, 3.7)

a reasonable drying time scale for the chosen length scales.

In figure 1, we show the variation of Pe, Ca and Bo with d and L, over reasonable sizes
that might be of interest. Whilst the Bond and capillary numbers might be large or small in
certain cases, the Péclet number is generally large. In § 5, we investigate this large Péclet
limit of interest.

4. Numerical method and typical solutions

To solve (3.3) numerically, in one spatial dimension (z € (0, 1)), we eliminate U Land UC
by substituting Darcy’s laws into the other equations, and eliminate p = p® — p.(S).
Thus, we have three coupled equations for S, p and p©, namely

S; — Ca™ (K (8)(p — pu(S)S: + Bo)), = —A(S)E(p), (4.1a)
—88, —&Ca™ (k9(S)(p? + 8Bo)), = A(S)E(p), (4.1b)

Sv(l = 8)p; — vECa™ 'k (8)(pE + 8Bo)p. = Pe™' (DU(S)p:), + (1 — vp) A(S)E(p).
(4.1¢)

We solve these subject to the boundary conditions (3.5), taking the Dirichlet condition
P = Poo atz=1. 4.2)

There are two time derivatives of the saturation, S;, in the system (4.1), and none of
the gas pressure p@. We therefore solve (4.1a) and (4.1¢) for S and p, while at every time
step, the gas pressure p¥ is related to S and p via the spatial ordinary differential equation
(ODE)

— Ca ' (8k"(S)(pS — p.(S)S: + Bo) + £k9 (S)(p€ + 8Bo)). = (1 — ) AS)E(p).
4.3)
which is derived by eliminating S; between (4.1a)—(4.1b).
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We solve (4.1a), (4.1¢) and (4.3), with the boundary conditions (3.5a), (3.5b) and (4.2)
using the method of lines, with finite-differences for the spatial derivatives. Specifically,
we use a second-order central difference scheme for diffusive terms and a first-order
upwind scheme where required for advective terms. The resulting system of temporal
ODEs is solved in MATLAB using the inbuilt multi-step solver odelS5s, which is
specialised to retain efficiency for stiff systems (Shampine & Reichelt 1997) to an absolute
and relative tolerance of 107° and 1073, respectively. Since § and v are small, we
expect significant stiffness in our system, especially from the vapour transport equation
(4.1¢) with a time-derivative multiplied by §v A 10~ for physical values in table 2.
For numerical efficiency, we will typically use v and & values an order of magnitude
larger than estimated, as stated in table 2. Similarly, for large Pe, a fine spatial mesh is
needed to accurately capture the behaviour in thin regions of the domain (of typical width
OPe~!/ 2), as we will see in § 5). For this reason, we use less extreme values of Pe than
that estimated in table 2 in our numerical simulations, which require a more moderate
mesh-size of around 250 mesh points.

A solution of (4.1a), (4.1¢) and (4.3), with the boundary conditions (3.5a), (3.5b) and
(4.2), computed numerically in this way, is shown in figure 2. Here, we have set Bo = 0 so
there is no gravitational effect, and chosen Ca = 1 and Pe = 1000. We use the constitutive
laws kL (S) = 83, k9 (S) =1 — 9)3, pe(S)=1/S— 8, A(S)=1/2, DH(S) = (1 — §)/?
and E(p) =1 — p. In figure 2(a), we show the net evaporation rate, defined to be

1
net evaporation rate = / A(S)E (p) dz, (4.4)
z=0

as a function of time 7. After a fast O(vd) initial transient (while the vapour density p
attains its quasi-steady profile from the initial condition), we observe two distinct regions,
separated by a red-dotted line at the critical time ¢ = t, & 20. First we see stage-1 drying,
where the evaporation rate is nearly constant. (In this case, we actually observe the net
evaporation rate increases slightly over time; in § 5.1, we show that this is due to the choice
of A(S) and D¥(S)). Near to t,, there is a sharp transition to stage-2 drying, where the
net evaporation rate is significantly lower and falls over time. The drying is complete in
this simulation by time r = 41.

In figure 2(b—f), we show the spatial profiles of S, p, pG, UL and U, respectively, at
equally spaced time-points through the drying process. Those in stage 1 (for # < t,) are
black, while those in stage 2 (¢ > t,) are shown in blue. We additionally show the profiles
att =t, inred. In figure 2(b), we see that during stage 1, the saturation is roughly uniform,
although S decreases slightly towards the top of the porous medium at z = 1. We clearly
see that the transition between stage-1 and stage-2 drying occurs at the point where S =0
at z =1; in stage 2, there is no longer liquid at the surface of the porous medium and
the drying front recedes into the material so that vaporisation occurs within the material.
During stage 1, we see in figure 2(c) that the vapour density is at its saturation point p = 1
and in figure 2(f), the gas velocity is zero through the majority of the material, only varying
within a thin layer at the surface z = 1. In stage 2, we see a roughly linear vapour density
profile and a constant gas velocity in the dry region of the domain. The liquid velocity
UL, shown in figure 2(e), is positive as liquid is drawn up to (in stage 1) and towards
(in stage 2) the surface of the porous medium. We note that the dimensionless liquid and
gas velocities, and the gas pressure are all fairly small. This is because the net evaporation
rate is small, as we will show in § 5.

The solution shown in figure 2 bears strong qualitative resemblance to experimental
results (e.g. Pel, Brocken & Kopinga 1996; Gupta et al. 2014) and is characteristic of the
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Figure 2. Numerical solution of (3.3), with Pe = 1000, Ca = 1, Bo =0, ps =0 and all other parameters as in
table 2. Initially, S = 0.5, p = 1. Profiles in panels (b—d) are at equally spaced times t = [2.67, 5.34, 8.02, 10.7,
13.4, 16.0, 18.7, 21.4, 24.0, 26.7, 29.4, 32.1, 34.5, 37.4, 40.1], with black curves during stage 1 (r < t, ~ 19.9)
and blue curves during stage 2 (¢t > t.), with the addition of a red curve at the transition time #, = 19.9.

large-Pe drying scenarios we will investigate further in this paper. It exhibits many of the
features we aim to understand and be able to predict, including the net evaporation rate,
and the transition time between stages 1 and 2. Our model (3.3) and numerical method are
valid for a much wider parameter regime than the case shown (with Pe > 1, Bo < 1 and
moderate Ca), although exploration of these alternative regimes is beyond the scope of the
present study.
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Figure 3. Schematic illustrating the solution structure during stage 1.

5. The large-Pe limit

For the remainder of the paper, we consider in detail the limit of large Péclet number
Pe > 1. This means that the (diffusive) transport of vapour out of the material is slow
relative to the rate of evaporation and so vapour transport limits the drying.

We also assume for the analysis in this section that § <1, Bo <1 so that gravity
has little effect, and that the capillary number is not too large in the specific sense that
Ca < max(& Pe, ~/Pe). This ensures that capillary forces are dominant in the fluid flows
and is not too restrictive since we are assuming that Pe > 1. Recalling the discussion of
§ 3, this set of assumptions is valid for sufficiently small d and L.

5.1. Stage 1: the ‘constant rate period’

Since Pe > 1, we see from (3.3¢) that the evaporation rate is zero and the vapour density
must take its saturation value p = 1 everywhere except in a thin boundary layer, of width
1/+/Pe < 1, at the surface z =1 of the porous medium (this boundary-layer width is
determined by a balance in (3.3¢)). Since evaporation only occurs in this thin boundary-
layer region, we see from (3.3¢)—(3.3d) that there can be at most an O(1 /«/}Te) flow
generated in either fluid. The time scale of the drying is determined by the time scale of
changing saturation over the entire domain. Balancing the two terms on the left of (3.3¢)
over the O(1) length scale, we see that the time scale is longer, O (+/Pe), since the flux
of liquid is smaller. This is intuitive, since evaporation only takes place in a thin layer, so
the time taken to evaporate all of the liquid must be proportionately longer. A schematic
diagram illustrating the structure of the solution in stage 1 is shown in figure 3.
Motivated by these scaling choices, to study stage 1, we make the change of variables
1 1

t=+/Per, UG=\/—ITVG, UL=FVL. (5.1)
e e

5.1.1. Outer region
On an O(1) length scale and with the rescalings (5.1), the model (3.3) then becomes

1017 A6-13


https://doi.org/10.1017/jfm.2025.10432

https://doi.org/10.1017/jfm.2025.10432 Published online by Cambridge University Press

E.K. Luckins

CaPe™"?VE = —k™(8)(pL + Bo), (5.2a)
£71CaPe™?VE = —k9 () (pE + 8Bo), (5.2b)
Pe™'2(S. + V) =—ASE(p), (5.2¢)

Pe™!2( =88 + V) = A(S)E(p), (5.2d)

Pe™'2(3v(1 = $)pr + vV ) = P (DH(S)p2) + (1 = vp)ASHE(p).  (5.2¢)
We see from (5.2¢) that
O(Pe™'2) = (1 —vp) A(S)E(p). (5.3)

Thus, since p < 1, v < 1 and § > 0, we must have that the vapour density is at its saturation
value p =1, so that E =0 to leading order in Pe~1/2, Indeed, looking for an O(Pe_l/ 2)
correction to p in (5.2¢) results in that correction being zero (since the leading-order p = 1
has no derivatives) and, arguing inductively in this way, over an order 1 length scale, we
see that

o =1 — exponentially small correction. 5.4

Since the evaporation rate is therefore exponentially small, from (5.2d), along with the
assumption that § < 1, we must have a uniform gas flux VZG =0 and so, using the

boundary condition VY =0atz=0, we see that
vl =0, (5.5)
while from (5.2c¢), we find that

S. +VE=o. (5.6)

Since V¢ =0, so long as 6Bo < 1, then from (5.2b), we must have a uniform gas pressure
pZG = 0 through the outer region.

Furthermore, if Ca < Pe'/? and Bo <« 1, then from the liquid Darcy law (5.2a), we see
that, since the liquid flow is slow, the liquid pressure pX = p% — p.(S) is also uniform
to leading order. Thus, we must have the expected uniform (although time-varying)
saturation, S, throughout this outer region.

This uniform saturation profile simplifies the problem greatly. By integrating (5.6) over
the outer region, we see that the rate of change of saturation,

Se=—[VF]y=-VEEL, (5.7)

is precisely the flow of liquid V£ 8L into the boundary layer at the surface. Furthermore,
since S; is independent of z, the liquid flux,

vi=_§;=vLBL, (5.8)

is linear in z.

In summary, at leading order through the outer region, there is no evaporation and no
gas flow, the saturation, vapour density and gas pressure are all uniform (with the vapour
density at its saturation point 1), and the liquid flux is linear in z, determined by the rate at
which liquid is drawn into the boundary layer. To understand the flow rate V2L into the
boundary layer, we must examine the boundary-layer processes in more detail.
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5.1.2. Boundary layer at z =1
In addition to the scalings (5.1), within the boundary layer at z = 1, we set

1
z=14+—X, 5.9
~/ Pe

noting that the top of the porous medium at z =1 is at X =0, and as X — —oo, we leave
the boundary layer and enter the outer region. In the boundary layer, (3.3) become

CaPe™'VE = —kE(S) (p)L( n Pe_l/zBo) , (5.10a)
£-1CaPe VO = —k5(S) (pg + 8Pe_l/zBo> : (5.10b)
P25, 4 VE=—AS)E(p), (5.10¢)

—8Pe 128, + VG = A(S)E(p), (5.10d)

§vPe™12(1 = 8)pr + vV px = (DU (S)px) y + (1 —vp) AS)E(p). (5.10¢)

We see that (5.10¢)—(5.10¢) are all quasi-steady to leading order in Pe~'/2 « 1, with no
time derivatives.

Furthermore, since we assume that both Ca <« £ Pe and Ca < VPe <« Pe, we see from
(5.10a)—(5.10b) that both p)L( =0and pg = 0 to leading order. Thus, the capillary pressure
pe(S) = p% — pl is spatially uniform and so the saturation S is spatially uniform to
leading order (although of course it varies with time t). Since we also found § to be
independent of z in the outer region, the saturation is spatially uniform throughout the
porous medium and evolves according to the temporal ODE (5.7).

Within the boundary layer, the model reduces at leading order to the ODE system

VE=—A(S)E(p), (5.11a)
VS = A(S)E(p), (5.11b)
vV9px = (D(S)px) y + (1= vp) AS)E(p), (5.11c)

which must be solved at each time t or, equivalently, for each saturation value S(7). We
note that (5.1156)—(5.11¢) form a closed system for p and Ve, upon solution of which yL
is given by (5.11a).

By combining (5.11a)—(5.11b) to obtain an expression of total conservation of mass, we
see that VX + VC is independent of X and, by both matching with the outer region as
X — —oo and applying the boundary conditions at X =0, we find that

VL + VG — VL,BL — VG,OMZ’ (512)

where V@9 is the gas flux out of the top of the porous medium, at X =0 or z = 1. The
ODE (5.7) for S may therefore equivalently be written as

S, =—yGou, (5.13)
Similarly, we note from (5.115) that the net evaporation rate (4.4) is
1 0 G,out
net evaporation rate = / AS)E(p)dz = L V)? dX = v . (5.14)
z=0 \/ITe X=—00 «/ﬁ

To solve (5.115)—(5.11¢) for p and V¢ (and so find V ¢-“), we must specify a functional
form for E(p). In the following subsection, we use a linear dependence and find an explicit
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» PG

Figure 4. Sketched phase plane portrait for the autonomous system (5.18) in the boundary layer during stage 1.
For the required matching with the outer region, the solution trajectory must originate at the critical point
p=1, VG =0, shown in red.

solution in that case. For general E(p), we may combine (5.115)—(5.11¢) to find a first
integral
Ve —vp)+ D% py =0, (5.15)

where we have fixed the integration constant to be zero by matching with the outer region,
in which V¢ and px are both zero. Thus, our third-order problem (5.115)—(5.11¢) reduces
to the autonomous, first-order system

DUpy=—(1—-vp)VC, — VI=AE(p), (5.16a)
with
p—>1, VG-, as X — —oo. (5.16b)

Furthermore, with the change of variables

| Deff .
X = b (S)Y VG =JAS)DH(S)VO, (5.17)

TV A®
the S dependence is removed from (5.16), leaving the system
oy =— (1 —vp) VO, (5.18a)
Ve =E(p), (5.18b)
with
p—1, V9o, as ¥ — —o0. (5.18¢)

We can understand (5.18) to some extent for generic £ with a phase-plane analysis.
The phase plane is sketched in figure 4. In particular, the critical point of the system is at

p=1, VG =0, which we classify as a saddle, so long as E(p) is decreasing in p at the
saturation point p = 1. Physical solutions must satisfy p € [0, 1] and VG > 0. In this range,
we see from (5.18a) that p is monotone decreasing, while VG is monotone increasing,
since E(p) = 0. In particular, at p = 0, we must have py non-zero for VG > 0, and so we

expect solution trajectories to intersect the p = 0 axis at finite ¥ and finite VG > 0. For the
matching conditions (5.18¢) as Y — —oo, the solution trajectory of interest is the unique
trajectory that approaches the critical point as ¥ — —oo, marked in red in figure 4.
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Over time, we expect S to decrease. The effective vapour diffusivity D/ is likely to be
decreasing in S. The interfacial area fraction .A might have non-montone variation with S,
but it is reasonable to assume this is increasing with S, especially as S becomes small.
Thus, over time, we might expect variation in the width \/ D¢/ A of the boundary layer
(from (5.17)) and, especially as S begins to become small, we expect the boundary-layer
width to increase.

5.1.3. Solution when E is linear in p

As discussed in § 2.2, many models for the evaporation rate E are linear in the vapour
density p. In this section, we specify the Hertz—Knudsen relation (2.4) so that, in our
dimensionless variables,

E(p)=1-p. (5.19)

With this (commonly used) form for £, we can make analytical progress in solving for
boundary-layer processes and, thus, for the evolution of the saturation, S, via (5.13).
With the linear form (5.19), the system (5.18) becomes

py =—(1—vp) VO, (5.20a)
vei=1-p. (5.20b)

Combining these, we find the single, separable equation

1~
do__ by e (5.21)

e Ve 1-p

<AGz 2 1 1—v
() e

where we have applied the matching conditions with the outer problem to fix the
integration constant, specifying that o — 1 and VG > 0asY — —oo.

We can now use this relation (5.22) between VG and p to find a single, first-order ODE
for p, by eliminating VG in (5.20a), say. Indeed, doing so results in the implicit solution
for p

with solution

/p . _ ! . dﬁ:—\/éY, (5.23)
peo (1= vp)y/1—p+ (1/v—1)log (1 —v)/(1 —vp)) v

if we impose the boundary condition p = pso at ¥ =0.

However, we already gain significant information from this first integral (5.22).
Applying the boundary condition for p at the top of the porous medium (z =1 or Y =0)
in (5.22) gives us precisely the value yGout —yG |y o=+ ADU 1% |ly=0 needed to
understand the overall evaporation rate S; = — VG-out 45 in (5.13). We can do this for either
choice of boundary condition discussed in § 2.3, and now look at each in turn.

Firstly, if we impose the Dirichlet condition for the vapour density p = poo at the top
Y =0, then immediately from (5.22), we see that

eff _
5, = _yGou _ _|2ASDIS) Jl_poﬁ (1_ 1) log (1_) (524
v v 1 —vos0

Although we have worked with v throughout as an order 1 parameter, it is helpful to note
at this point that v = 0(1072) is actually fairly small. In this case, (5.24) becomes the
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simpler expression

Sy =—VGou = _ JAS)DN(S) (1 — poo + O(v)) ifv 1. (5.25)

In the case where v < 1, we may also integrate (5.23) to find an explicit solution
for p and, therefore, VC = v/ ADVY via (5.22) in the boundary layer, which is simply
VG =V ADY (1 — p) + O(/v) in this limit. We find

A | A
,0=1—(1_Poo)exp< WX>’ Vsz(l—Poo)eXp< WX>’

(5.26a)

VE = VAD (1 — poo) (1 —exp (,/Dieﬁx)) , (5.26b)

where we have used (5.12) to fix V% and returned to spatial variable X = /(D%//A) Y.

We saw in § 5.1.1 that VL is linear in z in the outer region, while p =1 and VG =0 are
constant. We form the leading-order composite solution expansions, valid over the entire
domain (outer and boundary layer):

APe
p=1—(1— poo)exp (— D_eff(l — z)) , (5.27a)

G_ |ADY APe

U~ = 7o (1= pso) exp | — W(l—z) , (5.27b)
L ADf APe

u —\/ 7o (1-px) [z—exp|— W(l—z) ) (5.27¢)

This completes our analysis of stage-1 drying with the Dirichlet boundary condition;
we will consider the flux condition shortly. First, however, we note from (5.24) that if
the product A(S YD (S) is constant (independent of S), then the net evaporation rate is
constant, as expected in this ‘constant rate period’ of the drying. Various experimental
measurements show that the net evaporation rate is usually not strictly constant during
stage 1, but could either rise or fall (Wu & Prat 2022). We would expect DY (S) to be
a decreasing function of S: with less liquid in the pore space, the effective rate of the
diffusion of vapour is increased. The dependence of the liquid—gas surface area A(S) will
depend heavily on the pore geometry, but we might expect that A is an increasing function
of S, at least for fairly small S. Our analysis suggests that it is the interplay between these
effects that determine whether the evaporation rate, given by (5.24) and proportional to
v AD®, rises or falls over stage 1.

In figure 5, we show the time variation of the net evaporation rate for three different
pairs of A and D%, showing a rising, falling and truly constant rate. The drying rate
during stage 1 is very well predicted by (5.24) (dashed green curves) for all cases. The
time at which stage 1 ends is not very well captured by (5.24), although this improves for
larger Pe and smaller Ca (this is discussed further in § 5.2).

In figure 5(b—d), we compare the numerically computed profiles of S, p, UL and U®
against the solution of the asymptotic reduction (5.24) and the corresponding composites
(5.27). We take A and D constant, so that the approximate p, UL and U profiles (5.27)
are independent of S, and so of time. The vapour density p and gas velocity U are very

1017 A6-18



https://doi.org/10.1017/jfm.2025.10432

https://doi.org/10.1017/jfm.2025.10432 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) 0.06 T (b) 050
S 0.45
o 005 ] 0.40 F
s
= o004 035
2 030
IS L —
5 0.03f S 025}
§ 020
8 002+ ADeﬁ: 0.6 0.15
5]  Apefi= §2/3 i )
Z go1| [ APT=S | 0.10
— ADY'=0.4(1 - 5)!/2 T~ 0.05 e
0 2 4 6 8 10 12 14 16 18 0 01 02 03 04 05 0.6 07 08 09 1.0
t z
(¢) 1.0 (d) 0.045
09 0.040 |
0.8 0.035 -
07y 0.030 |
g'i’ 0.025 |
p 05
020
ol 0.0
03l 0.015|
02l 0.010}
01" 0.005
0 0.1 02 03 04 05 0.6 0.7 08 09 1.0 0 01 02 03 04 05 06 07 08 09 1.0

Z Z

Figure 5. Stage-1 drying. Numerical solutions (solid curves) of (3.3) compared with the large-Pe
approximation (dashed green) where S is the solution of the ODE (5.24), and the analytical expressions
for p, UL and U G are (5.27). (a) Comparison of numerical (solid colour) and asymptotic (green dashed) net
evaporation rates (4.4) for various A and D (with Ca = 1). Crosses mark the point where S computed from
(5.24) reaches CaPe™'/2. (b—d) Numerical and approximate profiles of S, p, UL and U at uniform time steps
through stage 1, with 4 =0.5, D% =1 constant (with Ca =0.1). In panel (d), the arrow shows direction of
increasing time for the numerical U” profile. Throughout, we take Pe =250, v=0.2, £ =0.5 and all other
parameters as in table 2.

well approximated by (5.27), as are S and U’ for the majority of stage 1. However, as
the saturation S becomes smaller, it is no longer spatially uniform and the liquid flux U
is reduced. This is due to the viscous drag force, neglected in our stage-1 approximation,
becoming important and hindering the capillary flow. We discuss this further in § 5.2.

The above mentioned analysis is for the case of a Dirichlet boundary condition for p
at the surface. In the alternative case, the boundary condition for p at the surface of the
porous medium is the Newton-cooling mass flux condition

wUCp —Pe "D p, =m(p — poo) atz=1. (5.28)
In our boundary-layer variables, this becomes
WO —DWpy =M(p — poo) at X =0, (5.29)

where M = m~/Pe. If M > 1, then we regain the Dirichlet condition p = pso. The case
where M < 1 corresponds to vapour transport through the air being much slower than
vapour diffusion through the porous medium, and thus mass transfer external to the
material directly sets the evaporation rate (we do not consider this case further here).
If M = O(1), then we note from the first integral (5.15) that this boundary condition (5.29)
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Figure 6. Net evaporation rate V%" during stage 1 as a function of the mass-transfer rate through the
surrounding air, M. Solid curves are the solution of (5.31) and dotted curves are in the large-M limit where we
regain (5.24), the case of a Dirichlet boundary condition. We use p = 0.1, AD¥ =1.

may be written as
Ve =M(p— poo) at X =0. (5.30)

Evaluating (5.22) at X =Y =0 and applying (5.30), we obtain an algebraic equation
satisfied by V&0 = / ADEIV G|y _g, namely

(VG,out)Z 1 VG,out 1 1—v
L S S . (531
2AD v ( Poc M + (V ) o8 (1 — VPoo — VVG’OW/M>> ( )

In the case where v < 1, we can solve for the leading-order V- finding that

1 —
VG,out = AD (%) + O(v) ifvkl. (5.32)

As in the case of the Dirichlet boundary condition, the solution yG-out(§) of (5.31) then
gives the net rate of evaporation, according to (5.14). We plot solutions V-4 of (5.31)
in figure 6 and, in particular, see that for the physical value v =0.02, there is excellent
agreement with the v <« 1 approximation (5.32).

5.2. Transition from stage 1 to stage 2

Consistent with experimental and numerical results in the literature (e.g. Pel et al. 1996),
all our numerical simulations of the full model (3.3) shown so far exhibit a sudden end to
stage 1 and a rapid transition to stage 2 (analysed in § 5.3). Stage 1 is generally understood
to end when the capillary forces are no longer sufficiently strong relative to the viscous
drag to draw liquid to the surface of the porous medium. We saw in figure 2 that the
transition occurs when first S =0 at z = 1. In the literature, the transition is observed to
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occur when the average saturation dips below a critical value (Gupta et al. 2014; Hall &
Hoff 2021), often seen to be around 0.1-0.3, but strongly dependent on the properties of
the porous medium and varying with the evaporation rate (Gupta et al. 2014).

From our asymptotic analysis, we are in a position to quantify the scaling for this critical
saturation, and its dependence on the system parameters and constitutive laws. We note that
the reduced model for stage 1 given in § 5.1 does not directly capture the transition, as the
solution S is spatially uniform. However, we see that our reduced stage-1 model must break
down if k©(S) p.(S) approaches zero. Specifically, if at some saturation S we have a small
kL (S) pe(S) = O(CaPe~'/?) « 1, then the viscous drag becomes large enough to balance
the capillary forces in (3.3a). Capillary forces then no longer dominate over the order-
one domain and so we no longer expect a uniform saturation profile through the porous
medium. This slowing of the liquid flux by viscous drag is what eventually leads to a
zero liquid saturation at the surface. The balance of capillary and viscous forces in (3.3a),
with the stage-1 scaling UL = O(Pe~!/?), gives an estimate for the critical saturation:
viscous forces will become non-negligible, heralding the end of stage 1, when S = O (S,i;)
defined by

k™ (Scrit) pe(Serit) = CaPe™ /2, (5.33)

If, for instance, kX (S)p.(S) ~ 8" as S — 0 for some n > 0, then the critical saturation
is estimated as Sgyi; & Ca'/"Pe=1/ 2" Furthermore, a lower bound on the transition time
between stage 1 and stage 2, f,, is given by the time at which the (spatially uniform)
solution of the reduced model (5.24) satisfies kX (S) p.(S) = CaPe /2, or § = §°rit, By
integrating (5.24), we find this (under) estimate for the transition time #, to be

tiowerz\/Fe v ds.
2 (1 — oo+ (1 _ 1) log (—1 v )) S v/A(S) DI (S)
Vv

(5.34a)
This lower bound (5.34a) on ¢, is marked with a cross in figure 5(a), for each of the
different functional forms for A(S) and D (S).
Conversely, as observed in figure 5(a), allowing our stage-1 reduced model (5.24) to run
until S =0 may be used to find an upper bound on the time #, of the transition to stage 2.
Specifically, by integrating (5.24), this upper bound is

So 1

upper v 5o 1
17" =/ Pe ; - — ds.
— / 4
v 1 —vos0
(5.34b)
The true transition time found in the full numerical solution appears to lie fairly centrally

in the interval [ti"we’ , 1:7P7°"] for each case shown in figure 5.

Physically, we expect k% (S) to become small for sufficiently small S, while we expect
that p. should grow as S becomes small. It is very interesting that we require the product
kL (S) pe(S) to become small for stage 1 to end, as this is not true in general: for instance,
if we choose kX =S and p.~ 1/S as S — 0, which seem to have the correct behaviour
described in § 2.2, then the product kLp.— 1 as § — 0. As shown in figure 7, there is
no stage 2 in this drying scenario: S remains uniform at all times and stage 1 lasts until
the drying is complete, so that our stage-1 reduced model (5.24) remains valid for the
entire drying process. Similar behaviour to this was seen experimentally by Gupta et al.
(2014). They observed that the crystallisation of salt within the pore space of building
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Figure 7. Drying with no stage 2 when k~(S) =S, p.(S) =1/S — S, so that kZp. ~ 1 as § — 0. Numerical
solutions of the full model (3.3) (solid curves) compared with the stage-1 model (5.24) (green dashed). Here,
we take A = 0.5 and D =1 constant, Pe = 100, Ca = 0.1, and all other parameters as in table 2.

materials during drying impeded the onset of stage 2, so that constant-rate-period drying,
with uniform saturation profiles, was seen to last throughout the entire drying process.
Using a simplified continuum model, Gupta et al. (2014) gave a qualitatively similar
(although less general) method to compute the critical saturation. In light of our analysis,
we might interpret the results of Gupta er al. (2014) to mean that the presence of salt
crystals increased the permeability and/or capillary pressure of the material to the extent
that kLp, did not become sufficiently small to trigger stage 2.

Since the qualitative drying behaviour (the existence of a stage 2) depends on the
behaviour of these constitutive laws kX (S) and p.(S) for small S, it is critical that these
are chosen appropriately for the porous medium and drying scenario at hand, if we hope
to capture the real drying behaviour.

5.3. Stage 2: the ‘receding front period’

We now consider the behaviour during stage 2 of the drying, for ¢ > t,, when we expect
the evaporation rate to drop and a drying front to recede into the porous medium.

We look for a receding drying front at z = A(¢), with a wet region (S > 0)forO <z < h
and a dry region (S =0) for 7 <z < 1. A schematic diagram for stage 2 is shown in
figure 8. Since Pe > 1, following the same argument as in § 5.1 for stage 1, the evaporation
term dominates the vapour density equation (3.3e) in the wet region z < k, so that p =1
with exponentially small error in that region. We therefore expect that the evaporation will
take place only in a thin transition layer at the front z = /h. Throughout this section, we
take the local evaporation rate E(p) =1 — p to be linear in p.

During stage 2, the saturation § is small, since, as we have seen in § 5.2, the viscous
drag must be too strong for the capillary forces to pull liquid fully to the surface of the
porous medium (so that stage-1 drying stops). We will actually find that it is appropriate
to take different scalings for S in the wet region z < A and in the transition layer near to
z = h. We use the saturation scalings

S = n.§, inz<h, S= ﬁg, in the transition layer, (5.35)

where 77 < 1< 1 which we specify later. We suppose that A~ ™ and klp.~ S" as
S — 0 (with both powers n, m > 0). Given this behaviour, we see that in the transition
layer,
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Figure 8. Schematic diagram showing the solution structure during stage 2, with a receding drying
front at z = h(t).

AS) =" A©S),  kE(S)pe(S) = 7"kH(S) pe(S), (5.36)
while in the wet region, z < A,
KE(S) pe(S) = 1" kE(8) pe(S). (5.37)

We will assume in the subsequent analysis that n > m, so that the capillary flow rate kZp,.
approaches zero at a faster rate as the saturation decreases than the liquid—gas interfacial
area A.

To investigate the moving front behaviour, we rescale into a thin transition layer at z = h,
by making the change of variables

t =ty +nPeT, z=h(T) + BX, p=1-pp, E=pp, (5.38a)
1 1 Cap
Uve=—w°  uvt=—wh Y =p%nh)+—pC. 5.38b
P P p’=p (h)+ Pet ” ( )
Here, the thickness of the transition layer is
B=n"P 1«1, (5.39)

so that there is a balance of evaporation in the transition layer and (largely diffusive)
transport of vapour out of the porous medium through the dry region. If m > 0, this
transition layer is wider than the O (Pe~!/?) boundary layer during stage 1, since 7 < 1.
The variation of the vapour density from its saturation value 1, in (5.38), must be of order
B in the transition layer to match the vapour flux leaving the transition layer with that
through dry outer region z € (k, 1). A balance in the liquid Darcy’s law (3.3a) in the
transition layer requires that

7 = BCa

Pe

The two constraints (5.39) and (5.40) fix the transition-layer width and saturation scaling
to be

(5.40)

n—m)

m (
B=Ca wimpe~mwisn,  §j=CamimPe mim (5.41)
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although we will retain the 8 and 7 notation for simplicity. In particular, since Pe > 1,
we have 1 < 1 and the transition-layer thickness g is small so long as m < n, which we
require to be the case for the transition-layer structure to be valid.

The time scale stated in (5.38) of the stage-2 drying is nPe, which is determined by a
balance in the liquid mass conservation equation (3.3¢) in the wet region. The velocity
scales in (5.38) (which we note are smaller than stage 1) are determined by the liquid and
gas mass equations, and the gas pressure scale comes from the gas Darcy law (3.3b) (with
7% (h) independent of X and set by the gas transport in the outer region, as we will see
later). We note that with these scalings, the net evaporation rate (4.4) is

o0

net evaporation rate = P! / A,ﬁ dX, (5.42)

X——00

of order Pe~!, and so slower than during stage 1 (where the net evaporation rate was
O(Pe*I/Z)), as we expect.

Since the liquid velocity scale in the wet region z < £ must be the same as that in the
transition layer (i.e. of order Pe 1), a distinguished limit of the model is when the viscous
and capillary forces in Darcy’s law balance in the wet region, so that the saturation scaling

here is given by
Ca 1/n
=|— . 5.43
n ( Pe) (5.43)

At the end of stage 1, we saw in § 5.2 that the saturation scaled with Ca'/"Pe=1/2"  which
is larger than 7 defined in (5.43). Thus, we might actually expect saturations larger than
O(n) (defined in (5.43)) at the start of stage 2. However, we will see that the large—S'
case is contained within the distinguished limit and thus may use the distinguished-limit
saturation scaling (5.43) for stage 2. We also note that ij = 8!/, so that the transition-
layer saturation is smaller than the wet-region saturation, as expected.

With these changes of variable (5.38), we find that to leading order in the transition
layer, the model (3.3) becomes

Wt =kfpex, (5.44q)
WO = k5§, (5.44b)
wh=—Ap, (5.44¢)
w¢ = Ap, (5.44d)

0=—(D px) 4 + (1 —v).Ap, (5.44¢)

where Dgﬂ = D (0). These transition-layer equations (5.44) are closed by matching with
the surrounding O (1)-length scale regions.

With the same time and velocity scales, and scaling pY =CaPe 7150 we see that
to leading order in the dry region A(T) <z < 1,
wé=0, wé=—5¢  wwCp,=DTp,.. (5.45)

Z

At the surface z = 1, we impose the Dirichlet condition p = po, noting that, at the slower
evaporation rates during stage 2 than in stage 1, we expect that the alternative mass flux
condition (3.5¢) (left) reduces to this Dirichlet form at leading order.
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In the wet region 0 < z < h(T), since E =0, we must have no gas flow WY =0 and
constant gas pressure p¢ = p©(h). The liquid equations are

Sr+wk=o, Wk =kLp,., (5.46)
which combine to a single diffusion equation for S, namely

St + (K- ($)pu(5)8:), =o0. (5.47)

5.3.1. Gas and vapour flow

We first study the gas and vapour flow through the dry region & < z < 1 and the transition
layer. In this dry region, from (5.45), we see that W¢ = Wgy(T) is spatially uniform. By
combining the transition-layer equations (5.44d)—(5.44¢), we see that the quantity

A=W - D5y =0 (5.48)

is conserved over the transition layer, and equal to zero by matching with the wet region
z < h where there is no gas flow or vapour flux. Matching also with the dry region z > h,
we find that

(1 -nW§, =D px = D p, (5.49)

z=h'

Solving the vapour equation (5.45) (right) subject to the matching conditions (5.49) and
p =1 at z = h, and the boundary condition p = ps, at z = 1, we obtain the solution in the
dry region z € (h, 1):

1 1 = Dgfflog(ll‘ﬂ)

— —h —
Ul AT e . (5.50
’ ”( ( vp‘”)(l—vpo) ) o v(l =) -0

Then, solving (5.45) (centre), with 5 = 0 at the surface z = 1, we see that the gas pressure
through the dry region is

PO =wg (1-2). (5.50b)

The constant gas pressure in the wet region is therefore

1_‘)/000
p" P
e (20)

POy =Wg (1 —h)= - : (5.51)

independent of both space and time (as observed numerically in figure 2d). As an aside,
for small v < 1, we note that (5.50) reduce to

-2 G D(e)ff

/O=,Ooo+(1—,ooo)m+0(v), Wdryzm(l—poo)-i-O(v) asv — 0.
(5.52)
We have thus found the vapour and gas solutions in the order-1 wet and dry regions, in
terms of the (as yet unknown) position, %, of the drying front. Additionally, by integrating
the transition-layer equation (5.44d) over the entire transition layer and matching with the
behaviour in the wet and dry regions on either side, we see that the net evaporation rate
(5.42) over the transition layer — and so over the entire material since the transition layer
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is the only region with non-negligible evaporation — is

x
(net evaporation rate) Pe = / ApdX = WdG =
X——00 " v(l —h)
Thus, given the position i(T') of the receding front, the vapour transport through the dry
region determines the net evaporation rate. However, i(7) is still to be determined: to
understand how the receding front moves, we must consider the liquid problem in the wet
region and transition layer.

1 —vpoo
DM og [ —F=
0 g( 1—v

) . (5.53)

5.3.2. Liquid flow and the receding front

In the wet region z € (0, h(T)), the saturation S satisfies (5.47), with Wt = kLﬁCZ =0 at
z =0, while in the transition layer, combining (5.44a) and (5.44c), we find

(K" ($)pe(8)Sx) y = —Ap, (5.54)

with § — 0 and WX = k% p.x — 0 as X — oo. The matching conditions between the wet
and transition-layer regions are

lim(§) =0 and lim (léLﬁQS*Z)=XErEOO (k" p..Sx), (5.55)

z—h

equivalent to imposing continuity of saturation and liquid flux WZ.
Integrating (5.54) in X over the entire transition layer, using (5.53) and the fact that
S — 0and WX — 0 as X — oo, we find that

o0
Wd(iy = / ApdX = (kL(S)ﬁé(S)SX)|X_)_OO. (5.56)
X——00
Matching with the wet region using (5.55) (right), this gives
(“($)pu($)S:) |, = Wi, (5.57)

which we can view as a boundary condition on the problem (5.47) in the wet region.
Using the expression (5.50a) for W&, we therefore obtain a free-boundary problem on
the wet region, namely

Sr+ (K p.8:), =0 for 0 <z <h(T), (5.58a)
S.=0 onz=0, (5.58b)

kEpLS, = S on z = h(T), (5.58¢)

§=0 onz=h(T). (5.584)

This system (5.58) is a closed problem for S (z, T) and h(T). We note that S — 0 and so
kL p.— 0 as z — h. The flux remains bounded, but the gradient S. must blow up here.
The initialisation of the system (5.58) is not trivial, since the flux in (5.58¢) blows up
as h — 1. We note that if / is close to 1 and S is large, then the capillary flow term
IQL D! 3‘ dominates and liquid may easily be drawn to the evaporation front at the rate
glven by (5. 58c) In practice, we may therefore initialise (5.58) at some /4 close to 1 and
with a large S: over a fast initial transient, S reduces to be of order 1 and h(T) will not
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begin to vary appreciably until this point. Thus, the system (5.58) is independent of the
initialisation, up to the translation in time to account for the initial transient.

Given the solution of (5.58), we have the saturation, fluid velocity and pressure, and
vapour density profiles throughout the order-1 length scale wet and dry regions, as well as
the evolution of the receding drying front 4 (T) and the net drying rate via (5.53).

Similarly to our analysis in stage 1, by integrating over the thin evaporating layer (here
the transition layer moving with the receding front, rather than the stationary boundary
layer at the surface as in stage 1), we have derived a reduced problem which gives
the leading-order evaporation rate. We note that the dependence of the flux boundary
condition (5.58¢) on 1 — & precludes the possibility of a similarity solution and, therefore,
expect that the reduced model (5.58) must be solved numerically. We will find numerical
solutions for an example form of kL D in §5.3.3.

Given the solution of (5.58) and thus the leading-order drying behaviour, we might then
solve the transition-layer problem (5.44) to find the behaviour within the transition layer.
We note that several of the equations (5.44) decouple, so that we need only solve the
coupled diffusion equations for S and p, namely

(k" p.Sx) y = —AS)p, (5.59a)
D" pxx = (1= v)AS)p, (5.59b)

closed by matching to the leading-order solution on either side as X — +o0o. Given the
solution of this transition-layer problem (5.59), we may then straightforwardly compute
WL, WG and p@ in the transition layer from (5.44). The solution of this transition-layer
problem (5.59) will also motivate an O(8) correction to the position 4 of the receding
front. We explore this for the example drying scenario in § 5.3.3.

In this section, we have derived a reduced model describing the motion of a drying front
into the porous medium during stage-2 drying, in the case of Pe > 1. The model is valid
so long as S remains of order 1. It breaks if the wet-region saturation S = 0(B"/") shrinks
to the same size as the saturation (S, remaining order 1) in the transition layer. The model
also ceases to be valid when the receding front /2 approaches within an O(8) length scale
of the end of the domain at z =0.

5.3.3. Example and comparison with numerical solution
To illustrate the analysis of the previous section, we consider the example constitutive laws

1 constant for S > 0,

kE(S) = 82, S)=—-—S8, = 5.60
) pe(8) =g 4=10 for § = 0. (5-60)
Thus, for this example, we have m =0 and n = 2, so that
B=Pe /2, 7 =Ca'/*Pe3/4, n=Ca'/*pPe1/2, (5.61)
From (5.60), we have kLpé. =—S— 83~ —§ since S is small. The wet-region reduced
model (5.58) is therefore
Sr—(88:),=0  for0<z<h(T), (5.62a)
S.=0 onz=0, (5.62b)
1—
Dgﬁlog ( : vpoo)
P —v
—-8S, = =h(T), 5.62
z S onz="h(T) (5.62¢)
S=0, on z = h(T). (5.62d)
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To solve (5.62) numerically for S and &, we make a change of variables z = h(T)y so that
the model (5.62) holds on the fixed domain y € (0, 1). We discretise using the method
of lines, upwinding the spatial derivatives in the artificial advection terms introduced by
the change of variables and with central differences otherwise. The discretised system is
solved in MATLAB using the same solver ode15s as for the full system. As discussed for
(5.58), the reduced model (5.62) is difficult to initialise numerically since (5.62c¢) becomes
unbounded as & — 1. We initialised close to & = 1, but found that up to a shift in 7, the
solution obtained was independent of the choice of initialisation.

A solution computed in this way is shown in figure 9 (dashed magenta lines) and com-
pared with solutions of the full model (3.3) (solid lines). We find excellent agreement up to
the expected error, the width of the transition layer, which is of order g = Pe~'/2 ~0.03
in this example. From figure 9(a), we see that the shapes of the S(z) profiles are well
captured through the wet region, until we reach the transition region where S approaches
zero. Since the reduced model (5.62) prescribes S = 0 at the edge of the wet region, the
position, &, of the drying front is therefore under-predicted, as seen in figure 9(b), although
still within the expected O(B) error. Although the position, 4, is under-predicted by the
reduced model, the net evaporation rate in figure 9(d) is captured very precisely (except for
the very start and end of stage 2, when we do not expect our reduced model to be valid).

From figure 9(b), we observe (for both the full numerical solution and the reduced model
solution) that the drying front velocity increases over time. This is because the saturation
S decreases over time, meaning both that the capillary flow rate decreases (so less liquid
can be transported to the drying front) and also that there is simply less liquid at the front
to vaporise. To meet the required vaporisation flux, WGry, (which depends only on 4, not
on S), the front must move faster. We emphasise that this increasing-speed drying front
is contrary to the decreasing t~!/2 front velocity we would find if there was no liquid
capillary flow and the front motion was purely determined by the diffusion of vapour out
of the material (as in e.g. Luckins et al. 2023).

The liquid flux Wt = -8 S’Z in the wet region captures the magnitude and gradient of the
numerical velocity field well in figure 9(c), until the transition layer is reached. Similarly
in figures 9(e)— 9(f), we see that the dry-region vapour density p and gas-flux W are well
captured by (5.50a), up to the expected O (f) error.

Due to the simple, piecewise-constant form (5.60) of A in this example, we may easily
solve the transition-layer equation (5.59b) for p to find

for X <0, (5.63)

having used the matching conditions p — 0 as X — —oo0 and (5.49) at X =0, and where
Wgy(h(T)) is given by (5.50a). From (5.44c) and (5.44d), we then find that the Darcy

velocities in the transition layer are, for X <0,

(5.64)

and by integrating (5.59a) and imposing that § = 0 at X =0, we find the saturation is
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Figure 9. Stage-2 drying. Numerical solutions of (3.3) (solid curves, colour indicates stage 1 versus stage 2,
with parameters as in figure 2), are compared with the solutions of the leading-order Stage-2 reduced model
(5.58) (magenta dashed curves). (a—b) Direct solutions S and 4 of (5.58); (c) liquid velocity, U L for the wet
region; (d—f) the evaporation rate, (5.53), the dry-region vapour density, and gas velocity (5.50), all computed
using the solution / from panel (b). We additionally show the composite solutions (5.69) (magenta dotted lines)
in each of panels (a—c,e—f).

_ p¥ A1 —v)
_ G | _v_ 0 _ 7
S= 2Wdry X T 1 —exp Dgﬂ X for X <0. (5.65)
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Figure 10. Schematic showing the matching between the outer (wet) and transition-layer regions. While
VB S(X) and K (z) from (5.66) and (5.67) match at leading order, the constant translation of 4 in X improves
the agreement. (This is not a formal O () correction, which would require higher order terms in the expansions
of § and § in each region).

In particular, we see that the gradient Sx > 0 at X =0 is finite at the drying front, unlike

the outer (wet) problem solution S.
We note that

B} DY
VBS~ B [2W —X—,/A(l—o_v) as X — —o0, (5.66)

while from the boundary condition (5.62¢) on the wet problem,

S~ \2Wg (h—2) asz—h. (5.67)

While (by construction, since z =h + SX) these clearly match to leading order, there is
a discrepancy arising from the constant term in (5.66). This is illustrated schematically
in figure 10. This discrepancy therefore motivates a shift of the transition-layer variable,

replacing X by X — h1, where
eff
hy =,/ D—O (5.68)
A(l —v)

may be viewed as a (constant) O () correction to the drying front position £, and is chosen
so that the limiting behaviours (5.66) and (5.67) fully agree (as shown in figure 10). We
note that this is not a formal O(B) correction to the interface position z, which would
require going to higher order in both the wet and transition-layer regions, and a more
careful matching. Nevertheless, using this shift in X, we may define composite solutions
(by summing the inner (transition layer) and outer (wet region) solutions, and subtracting
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Size of § Drying stage  Time scale ~ Net evaporation Reduced Composite
rate scale model solution

S>> Pe~1/2ncgl/n Stage 1 Pel/? Pe~1/2 (5.24) (5.27)

S=0(Pe~1/21Cal/m) Transition — — (5.3%) —

s0 klp. = O(Ca Pe™1/?) point

S=0PeV"cal/m Stage2  Pe!~l/ncql/n Pe! (5.58) (5.69)

Table 3. Summary of our Pe 3> 1 analysis for the different stages of the drying process. Here,
KL (S)pe(S) ~ S™ as § — 0.

the common limit), valid throughout the domain z € (0, 1),

h"P(T) = h(T) + Bhi, (5.69a)

3 z—h z—h
n(S(z, T) + ﬁ\/zwgy <_T +hy exp ( - 1>>
1
Scomp(z, T) = G .
- 2Wdry(h _Z) for z < h€o"P
0 for z > heomP,
(5.69b)
WG, —h
1-8 AZF) exp (Zﬁh > for 7 < heomp,
PP (2, T) = ] ! ] | 1= (5.69¢)
—_— U —
S =0 =voe)  7—— for z > he"”,
' 1 - VPoo
Pe~! —S'S’ — WG ex i—h -1 for z < heomp
yLcomp — S e ) L (5.69d)
0 for z > heo"P
Pe WG exp i—h —1 for z < heomp
yeeomr = a0 By ’ (5.69¢)
Pe! Wgy for z > heomp.

Here, S (z, T) and h(T) are the solution of the wet-region problem (5.62), Wgy is as given
by (5.50a) (evaluated at #(T')), and we have used the definition (5.68) of A1 to simplify
the notation. (We have not applied the shift of & for p“™ in (5.69¢) for the composite
solution to remain continuous.)

These composite solutions are plotted as magenta dotted curves in figure 9. We see in
figure 9(b) that our ad hoc correction h; is good early in stage 2, but does not capture
the correction fully at later times. Nevertheless, the composite solutions S"?, U L.comp
0" and U G-¢omP capture the profiles very well in figure 9(a,c,e.f), respectively, with the
best agreement at earlier times (carrying through from the fact that 2°°"7 is most accurate
at earlier times).

5.4. Summary of the drying stages

In table 3, we summarise our analysis of the limit Pe > 1. During stage 1, the saturation
is uniform since capillary forces dominate, drawing liquid to the surface of the porous
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medium, with evaporation only occurring in a thin O(+/Pe) layer at the surface.
The transition to stage 2 is reached when viscous drag limits the capillary flow of
liquid; our (under) estimate is defined as the time where S becomes small enough for
capillary and viscous forces to balance. This occurs at the critical saturation scaling of
S = O(Pe~'/?"Ca'/™). Subsequently, in stage 2, we found a receding drying front at z = A,
with evaporation only taking place within a thin layer at this front. The net evaporation rate
is determined by the vapour transport from the front to the surface, and capillary forces
pull liquid to the front, slowing its retreat. Since capillary forces are reduced over time as
S becomes smaller, the receding front velocity increases over time.

6. Discussion and conclusions

Starting from an averaged continuum model of drying porous media, we have
systematically derived a simpler reduced model for each of the two distinct stages of
drying, in the limit of Pe > 1. Solutions of our reduced models were seen to accurately
capture the behaviour of the full model, and give excellent qualitative agreement
with experimental results in the literature. Important future work will be to compare
quantitatively between our reduced models and experimental measurements. The main
difficulty with such a comparison will be in quantifying the appropriate constitutive laws
required. During stage 1, we showed that the crucial constitutive laws are the liquid—gas
interfacial area and the effective vapour diffusivity. To predict the transition time and
stage-2 behaviour, we also require accurate constitutive laws for the capillary pressure
and liquid relative permeability.

In this limit of Pe >> 1, for which the removal of vapour by diffusion is much slower than
local vaporisation, we showed that the majority of the porous medium is at local equilib-
rium, with the vapour at its saturation point if there is liquid present locally. However, we
found thin non-equilibrium regions (boundary or transition layers) in which the vapour
density necessarily deviated from its saturation value for evaporation to occur there.

The reduced models that we have derived are much simpler and less expensive to simu-
late than the full model of Whitaker (1977) and, as a single ordinary or partial differential
equation, are of a similar level of computational complexity to many phenomenological
or simplified models used in the drying literature. Similarly to our stage-1 reduced model,
Huinink, Pel & Michels (2002) proposed a stage-1 solution with a uniform saturation
profile and a corresponding liquid flux linear in the spatial variable z (this model was
also used by Guglielmini et al. (2008)). We have found the same structure through our
systematic asymptotic analysis and, furthermore, quantified the net evaporation rate, flow
rates and behaviour at the surface of the porous medium through matching with our
boundary-layer region. Moreover, by carefully analysing the break-down of our stage-1
model as the saturation becomes small, we have predicted the time of the transition to
stage 2. Our stage-2 reduced model for the saturation in the wet region is reminiscent
of the phenomenological moisture-transport models used in the drying literature (Vu &
Tsotsas 2018), with a similar nonlinear diffusion equation. However, our stage-2 model is
defined on the shrinking wet domain as the drying front recedes into the porous medium,
and our saturation-dependent diffusivity here is due to the capillary forces on the liquid.
Furthermore, by coupling our stage-2 liquid-transport model to the vaporisation through
the transition layer at the drying front and the vapour transport out of the porous medium,
we predict the evolution of the receding front and the falling net evaporation rate.

One key finding from our analysis is that the choice of constitutive laws are critical
to accurate modelling of the drying system via both our reduced models and with

1017 A6-32


https://doi.org/10.1017/jfm.2025.10432

https://doi.org/10.1017/jfm.2025.10432 Published online by Cambridge University Press

Journal of Fluid Mechanics

averaged continuum models more generally. Specifically, we saw that for certain seemingly
reasonable forms of the relative permeability, k., and capillary pressure, p., the model
does not predict a transition to stage-2 drying, since, for those constitutive relations,
the viscous drag does not dominate over the capillary forces as the saturation decreases.
Additionally, we saw that the net drying rate during stage 1 was proportional to the square
root of the product of the liquid—gas interfacial surface area and the effective diffusivity of

vapour through the drying material, v . AD¢/. The variation of these constitutive relations
with the saturation therefore determines whether the net evaporation rate rises, falls or is
truly constant during stage 1. In practice, it is often difficult to accurately quantify the
constitutive laws for realistic porous materials. Investigating the sensitivity of any drying
model solution to the choice of constitutive laws is therefore important to build confidence
in the model predictions. We emphasise that the solution is not sensitive to all constitutive

laws, primarily only the two groups v AD¢, which determines the stage-1 drying rate,
and kch, which determines when (or if) stage 1 transitions to stage 2.

We have presented a rigorous modelling framework through which to understand the
drying of porous media. In addition to the parameter regime considered in this paper, our
full dimensionless drying model of § 2 could be used to study other relevant parameter
regimes. For instance, we might consider the case of higher capillary numbers, for which
capillary forces do not dominate and we would expect a different receding-drying-front
behaviour. Another highly relevant case is that of non-zero Bond number, where capillary
forces must compete with gravity as well as viscous drag to draw liquid to the surface.
In such cases, the stage 1-2 transition is observed to occur when the unsaturated region
reaches some critical depth below the surface of the medium (Lehmann, Assouline & Or
2008; Shokri & Or 2011). We anticipate that similar asymptotic analyses to the present
Pe > 1 case may provide valuable insight into these alternative drying regimes, and
reduced models might be derived.

An important application of this work is to the transport and accumulation of impurities
in the drying liquid, such as salt wicking, and weathering of rock and conservation of
building materials (Oguchi & Yu 2021), as well as the accumulation of dirt within drying
filters and textiles (Ji & Sanaei 2023; Luckins er al. 2024). We expect large Pe in these
applications: for a filter membrane with L~ 1073 m and d ~ 10~ °m (and the data in
table 1), we compute Pe = 102, while for a few centimetres of brick with L ~ 10~2 m and
d ~ 107% m, we have Pe = 10*. Capillary flows during drying draw impurities towards the
surface of the porous medium and the accumulation of these impurities is also expected to
impact on the drying behaviour (Gupta et al. 2014). The reduced models we have derived in
the large-Pe limit are therefore a powerful tool with which to study the impurity transport
problem, and our analysis could furthermore be extended to investigate the effect of
accumulating impurities or salt crystals on the drying process, within the broad modelling
framework presented in this paper.
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