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Abstract. Malvenuto and Reutenauer (C. Malvenuto and C. Reutenauer, Duality
between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177
(1995), 967–982) showed how the total symmetric group ring ⊕nZ�n could be made
into a Hopf algebra with a very nice structure which admitted the Solomon descent
algebra as a sub-Hopf algebra. To do this they replaced the group multiplication by a
convolution product, thus distancing their structure from the group structure of �n. In
this paper we examine what is possible if we keep to the group multiplication, and we
also consider the question for more general families of groups. We show that a Hopf
algebra structure is not possible, but cocommutative and non-cocommutative counital
bialgebras can be obtained, arising from certain diagrams of group homomorphisms.
In the case of the symmetric groups we note that all such structures are weak in the
sense that the dual algebras have many zero-divisors, but structures which respect
descent sums can be found.

2010 Mathematics Subject Classification. 16T05, 20B30, 16S34, 20C05.

1. Group bialgebras. Malvenuto and Reutenauer in [2] showed how a Hopf
algebra structure can be defined on the total symmetric group ring ⊕nZ�n in such
a way that the Solomon descent algebra is a sub-Hopf algebra. In that work, and
related papers such as [1], the product used in the Hopf algebra structure was the
convolution product, not the composition product arising directly from the group
operation in �n. In this paper we investigate how much can be done if we use the
composition product so that the multiplicative structure is as faithful as possible to
the group structure of �n. We start by considering bialgebra structures on arbitrary
families of finite groups before specializing to the symmetric groups.

Let G1, G2, . . . be any family of finite groups. Let G0 be the trivial group and define

ZG =
⊕

n

ZGn,

with the grading, where Gn has degree n. The product is given by defining g.h to be
the usual product in Gn if |g| = |h| = n, and 0 if |g| �= |h|. This product is associative,
non-commutative (unless every Gn is abelian) and non-unital. This latter fact means
there can be no antipode and, hence no Hopf algebra structure on ZG based on this
product. We can, however, make ZG a bialgebra. Of course, one way would be to make
each group element group-like; this gives the direct sum of the usual Hopf algebra
structures on each group ring ZGn, and forms a bialgebra which is coassociative but
not counital. We will take a different approach by constructing counital, coassociative
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bialgebras in which the coproduct � preserves the grading, i.e. � restricts, for each n,
to a function

�n : ZGn −→
n⊕

i=0

(ZGi ⊗ ZGn−i) .

This means that we can write

�n =
n∑

i=0

�n,i, where �n,i : ZGn → ZGi ⊗ ZGn−i ∼= Z(Gi × Gn−i).

Multiplicativity of � is equivalent to each �n,i being a ring homomorphism. An
obvious class of ring homomorphisms ZGn → Z(Gi × Gn−i) consists of those induced
by a group homomorphism Gn → Gi × Gn−i, i.e. a pair of group homomorphisms
Gn → Gi, Gn → Gn−i. Although not all ring homomorphisms arise in this way, it is a
rich enough class to be interesting and makes it easier to analyse the properties of �.
In particular, we have the following result.

THEOREM 1. Let � : ZG → ZG ⊗ ZG be a graded ring homomorphism such that
each �n : ZGn −→ ⊕n

i=0 (ZGi ⊗ ZGn−i) is induced from a pair of group homomorphisms
�L

n,i : Gn → Gi and �R
n,i : Gn → Gn−i. Then

(1) � is counital if and only if �L
n,n = �R

n,0 = 1Gn for each n.
(2) � is coassociative if and only if for all 0 ≤ i ≤ j ≤ n we have �L

j,i ◦ �L
n,j = �L

n,i,
�R

n−i,j−i ◦ �R
n,i = �R

n,j and �R
j,i ◦ �L

n,j = �L
n−i,j−i ◦ �R

n,i.
(3) � is cocommutative if and only if for all 0 ≤ i ≤ n, �L

n,i = �R
n,n−i.

Proof. We prove (2), the proofs of (1) and (3) being similar. For an element
g ∈ Gn, �(g) is equal to the sum (over 0 ≤ j ≤ n) of the terms (�L

n,j(g),�R
n,j(g)) ∈

Z(Gj × Gn−j). Hence, (� ⊗ 1) ◦ �(g) is the sum (over 0 ≤ i ≤ j ≤ n) of the terms(
(�L

j,i ◦ �L
n,j)(g), (�R

j,i ◦ �L
n,j)(g),�R

n,j(g)
)

in Z(Gi × Gj−i × Gn−j). Writing out the

corresponding expression for (1 ⊗ �) ◦ �(g) leads to the stated result. �

Hence, a coassociative, counital coproduct � is built from commuting pairs of
group homomorphisms �L

n,n−1 : Gn → Gn−1, �R
n,1 : Gn → Gn−1. In conclusion, we have

the following.

THEOREM 2. For any family of group homomorphisms �L
n,n−1 : Gn → Gn−1, �R

n,1 :
Gn → Gn−1 that commute in the sense that

�L
n,n−1 ◦ �R

n+1,1 = �R
n,1 ◦ �L

n+1,n, (1)

there exists a degree-preserving, counital, coassociative coproduct � on
⊕

n ZGn given
by

�(g) =
n∑

i=0

(�L
i+1,i ◦ · · · ◦ �L

n,n−1)(g) ⊗ (�R
n−i+1,1 ◦ · · · ◦ �R

n,1)(g),

where n = |g|. With this coproduct and the composition product
⊕

n ZGn is a bialgebra.
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In other words, such a bialgebra arises whenever we have a commutative diagram

∗�G1��L
2,1G2�· · ·�Gn−1��L

n,n−1Gn�· · ·
��

�R
2,1

�

�R
3,1

�

�R
n,1

�

�R
n+1,1

G1��L
2,1G2��L

3,2G3�· · ·�Gn��L
n+1,nGn+1�· · ·

�

�R
2,1

�

�R
3,1

�

�R
4,1

�

�R
n+1,1

�

�R
n+2,1

G2��L
3,2G3��L

4,3G4�· · ·�Gn+1��L
n+2,n+1Gn+2�· · ·

�����

...
...

...
...

...

in which each horizontal arrow is some �L
k,k−1 for appropriate choice of k, and each

vertical arrow is some �R
k,1. In particular, each row is equal to a rightward shift of the

row beneath it, and each column is equal to a downward shift of the column to the
right of it.

If the coproduct is cocommutative, then condition (1) is automatic. Hence, we
have the following.

THEOREM 3. Any family of group homomorphisms �R
n,1 : Gn → Gn−1 gives rise to

a degree-preserving, counital, coassociative, cocommutative coproduct on
⊕

n ZGn given
by

�(g) =
n∑

i=0

(�R
i+1,1 ◦ · · · ◦ �R

n,1)(g) ⊗ (�R
n−i+1,1 ◦ · · · ◦ �R

n,1)(g),

where n = |g|, that makes
⊕

n ZGn with the composition product into a bialgebra.

This corresponds to the case where, in the above diagram, the vertical and horizontal
arrows coincide, so the diagram collapses to a chain

· · · −→ Gn −→ Gn−1 −→ · · · −→ G1 −→ ∗.

Hence, Theorem 3 tells us that to any such sequence of group homomorphisms, there
is associated a cocommutative bialgebra on

⊕
ZGn.

For example, if we take each Gn to be the trivial group (with, necessarily, each
homomorphism being trivial) then the resulting bialgebra is the dual of the polynomial
algebra Z[x] in which x is group-like.

For a less trivial example, we may take each Gn to be the cyclic group of order 2,
and each homomorphism to be the identity. In that case the bialgebra is the dual of
Z[x, y]/(xy) with x and y group-like.

For a general family of groups, we can always find a cocommutative coproduct
on

⊕
ZGn by taking each homomorphism Gn → Gn−1 to be trivial. Moreover, in all

but the most trivial cases, we may also construct non-cocommutative coproducts, for
example by taking all the �L

n,n−1 to be trivial, and (at least one of) the �R
n,1 to be

non-trivial.
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2. Permutation bialgebras. When we specialize to the family of symmetric groups,
Gn = �n for each n, we immediately hit restrictions. The simplicity of the alternating
group, An, for n �= 4 implies that each homomorphism �L

n,n−1, �R
n,1 has an image of

order at most 2. Such a small image implies the existence of many zero-divisors in the
dual algebra. For, suppose that x is a dual element which, for simplicity, we will assume
to be homogeneous of degree n, that is zero on the image of �L

n+1,n. In other words,
x is a linear function Z�n → Z such that x ◦ �L

n+1,n = 0. Then in the dual algebra
⊕nHom(Z�n, Z), any product x.y will be 0 if y has positive degree. This is because if y
is a homogeneous element of degree m, then x.y is the linear function given by g �→ (x ◦
�L

m+n,n)(g).(y ◦ �R
m+n,n)(g) for all g ∈ �m+n. Since �L

m+n,n = �L
n+1,n ◦ · · · ◦ �L

m+n,m+n−1,
it follows that (x ◦ �L

m+n,n)(g) = 0 for all g and, hence, x.y = 0. Similarly, if x ◦ �R
n,1 = 0

then all products y.x will be zero if |y| > 0. Since the image of each of these maps has
at most two elements, there will be many dual elements that are zero on either one or
both images, and thus many zero-divisors.

Nevertheless, the desired structure is possible.

THEOREM 4. There are graded, counital, coassociative, cocommutative coproducts
on ⊕Z�n which make this into a bialgebra.

There are graded, counital, coassociative, non-cocommutative coproducts on ⊕Z�n

which make this into a bialgebra.

Proof. One cocommutative coproduct is given by defining both �L
n,n−1 and �R

n,1 to
be the homomorphism that maps all even permutations to the identity and all odd ones
to a given transposition in �n−1. Clearly, there are many other choices for �L

n,n−1, and
the choice in defining �n,i in terms of �L

n,i and �R
n,i gives rise to further possibilities.

One non-cocommutative coproduct is given by defining �L
n,n−1 as above and setting

�R
n,1 to be the trivial homomorphism for all n. Again, there are clearly many other

choices. �

Following Malvenuto–Reutenauer [2] we would also like a coproduct which
respects the Solomon descent algebra [4]. This is also possible.

THEOREM 5. There are graded, counital, coassociative, cocommutative coproducts
on ⊕Z�n which respect descent sums, making this into a bialgebra which admits the
Solomon descent algebra as a sub-bialgebra.

There are graded, counital, coassociative, non-cocommutative coproducts on ⊕Z�n

which respect descent sums, making this into a bialgebra which admits the Solomon
descent algebra as a sub-bialgebra.

To clarify these statements, we are not making any claims about any pre-existing
coproduct on the Solomon descent algebra, since none of the coproducts hitherto
described in the literature for the Solomon descent algebra are compatible with our
product (that is to say, with the original product on that algebra) to give a bialgebra
structure. We are merely claiming that with the original algebra structure it is possible
to find a coproduct on ⊕Z�n that preserves the sub-algebra spanned by descent sums
and thus gives a bialgebra structure on the Solomon descent algebra that is a sub-
bialgebra of ⊕Z�n. We also draw the reader’s attention to the fact that the issues
highlighted in [3], about the difficulties in putting a bialgebra structure on a sub-object
of a bialgebra, are circumvented by the very explicit nature of our constructions.
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Proof. To respect descent sums, each homomorphism �L
n,n−1, �R

n,1 must respect
descent sums. For n �= 4, this requires that the image of each homomorphism �L

n,n−1,
�R

n,1 consists of group elements which are themselves descent sums. The only such
elements in Z�n are the identity and the permutation dn = (n, n − 1, . . . , 1). Thus, for
a cocommutative coproduct we may define �L

n,n−1 = �R
n,1 to be the homomorphism that

takes even permutations to the identity and odd permutations to dn−1. Further choices
arise since for any given n we may set �L

n,n−1 = �R
n,1 to be the trivial homomorphism,

and again we have choices about defining each �n,i.
For n = 4 there is one further possibility: We may define �L

4,3 = �R
4,1 to be the

epimorphism Z�4 → Z�3 given by

2134 �→ 213, 1324 �→ 132, 1243 �→ 213

since this also respects descent sums.
For a non-cocommutative coproduct we may proceed as before: taking any of these

cocommutative coproducts and replacing all the �R
n,1 by the trivial homomorphism,

or by similarly trivializing all of the �L
n,n−1. �

If �L
4,3 = �R

4,1 are epimorphisms, then more of the products in the dual algebra will
be non-trivial. However, even in this case the descent-preservation forces a high level
of triviality. Since dn ∈ An if n ≡ 0 or 1 mod 4, it follows that any four-fold composite
�L

n,n−4 or �R
n,4 will be trivial. Hence, in the dual algebra, any product x.y where |x| ≥ 4

will be zero unless y is the unit, or x is the identity element in �|x|.
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