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Tilings of Normed Spaces

Carlo Alberto De Bernardi and Libor Veselý

Abstract. By a tiling of a topological linear space X, wemean a covering of X by at least two closed
convex sets, called tiles, whose nonempty interiors are pairwise disjoint. Study of tilings of inûnite
dimensional spaceswas initiated in the 1980’swith pioneer papers byV. Klee. We prove some general
properties of tilings of locally convex spaces, and then apply these results to study the existence of
tilings of normed and Banach spaces by tiles possessing certain smoothness or rotundity properties.
For a Banach space X, our main results are the following.
(i) X admits no tiling by Fréchet smooth bounded tiles.
(ii) If X is locally uniformly rotund (LUR), it does not admit any tiling by balls.
(iii) On the other hand, some ℓ1(Γ) spaces, Γ uncountable, do admit a tiling by pairwise disjoint

LUR bounded tiles.

1 Introduction

Let X be a real topological vector space (TVS).A set B ⊂ X will be called a body if it is
closed, convex and has nonempty interior. A tiling of X is a covering of X by at least
two bodies whose interiors are pairwise disjoint. Members of a tiling are called tiles.

While there exists awide theory of tilings (and their analogueswith not necessarily
convex “tiles”) of ûnite dimensional spaces, especially the plane, the inûnite dimen-
sional theory is still much less developed, though the ûrst “inûnite dimensional” re-
sults appeared already in the 1980’s. _is paper is devoted to the question of existence
in inûnite dimensional normed or Banach spaces of tilings having some particular
properties. Let us brie�y recall themain known results.

It is easy to see that some tilings always exist in any locally convex TVS X. Indeed,
if f is a nonzero continuous linear functional on X and T is a tiling of R, then the
family B = { f −1(T) ∶ T ∈ T} is a tiling of X. Each tiling of this form will be called a
trivial tiling.

Notice that no countable tiling can be disjoint, i.e., consisting of pairwise disjoint
tiles, since otherwise a line in X would admit a disjoint covering by at most countably
many and at least two nonempty closed convex sets, which is known to be impossible
(see Fact 3.2 or [3,_eorem 6.1.27]). It follows that a separable normed space does not
admit any disjoint tiling. On the other hand, some (nonseparable) ℓ1(Γ) do admit a
disjoint tiling by balls of the same positive radius (see V. Klee [8]).

Tilings by bounded (convex) tiles always exist in normed spaces. In 1997,V.P .Fonf,
A. Pezzotta, and C. Zanco [6] proved that every normed space X admits a tiling by
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bounded bodies each of which contains a ball of a certain ûxed positive radius. Sub-
sequently, A. Marchese and C. Zanco [12] showed that each normed space X admits
a tiling by bounded bodies such that each point of X belongs to at most two of them.
Since this tiling is “point-ûnite”, a natural question arises: can such a tiling be always
taken locally ûnite, in the sense that each point of X has a neighborhood intersecting
only ûnitely many tiles? An answer is contained in a paper by Fonf [5] who showed
that a separable Banach space admits a locally ûnite tiling by bounded bodies if and
only if X is isomorphically polyhedral. For nonseparable Banach spaces X, it is only
known that if X contains an inûnite dimensional closed subspace non containing c0,
then X does not admit any locally ûnite tiling by bounded bodies; this follows from a
generalization due to Fonf and Zanco [7] of a theorem of Corson (1961).
A tilingB is said to be equi-bounded below and above if there exist two constants

0 < r < R <∞ such that eachmember ofB contains a ball of radius r and is contained
in a ball of radius R. Already in 1986, V. Klee [9] showed that some nonseparable
Hilbert spaces admit tilings that are equi-bounded below and above. _e case of the
separable (inûnite dimensional) Hilbert spacewas settled only in 2010 byD. Preiss [13]
in the positive: ℓ2 admits a tiling which is equi-bounded below and above. An inter-
esting open problem is: which Banach spaces admit such tilings?

Our interest is devoted to the question of existence of (nontrivial) tilings by bodies
that have a kind of smoothness or rotundity properties. _e ûrst such result, due to
Klee and Tricot [11], aõrms that a tiling of a Banach space by bounded tiles each of
which is either smooth or rotund has to be uncountable. In particular, a separable
Banach space admits no tiling by smooth or rotund bounded bodies. _e only related
known fact for nonseparable Banach spaces follows from results in [10] and says: if
X is a uniformly rotund or uniformly smooth Banach space then it does not admit
any tiling by balls which would be either disjoint or bounded below, i.e., having radii
bounded away from zero.

In the present paper, a�er proving some general results on tilings in locally con-
vex TVS (Section 3), we show that Banach spaces do not admit nontrivial tilings by
Fréchet smooth bodies, and normed spaces do not admit disjoint tilings by Fréchet
smooth bodies (see _eorem 4.2 and Corollary 4.3). Concerning the existence of
tilings by locally uniformly rotund (LUR) bodies, we show on the one hand that an
LUR Banach space does not admit any tiling by balls, and an LUR normed space does
not admit any disjoint tiling by balls; on the other hand, some nonseparable ℓ1(Γ)
admits a disjoint tiling by bounded centrally symmetric LUR bodies (see Section 5).
_is last construction is based on the above-mentioned Klee’s construction [8]. We
also show that some geometric conditions, concerning a singlepoint of theunit sphere
of a Banach space, implynonexistence of tilings by ballswhose radii are bounded away
from zero; see Subsection 4.3.

2 Notations and Preliminaries

_roughout this paper, all normed, Banach or topological vector spaces are real and
at least two-dimensional.
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Let X be a normed space with dual X∗. By BX and SX we denote the closed unit
ball and the unit sphere of X, respectively. _e polar set of a set A ⊂ X is the set
A○ = { f ∈ X∗ ∶ f (a) ≤ 1 for each a ∈ A}.

Let B ⊂ X be a body, that is, a closed convex set with nonempty interior. A point
x ∈ ∂B is a smooth point of B if the set DB(x) = { f ∈ SX∗ ∶ f (x) = sup f (B)} is a
singleton. If c ∈ intB, B0 = B− c, and x0 = x − c, it is standard to see (and well known
for balls) that x is a smooth point of B if and only if theMinkowski functional pB0 of
B0 is Gâteaux diòerentiable at x0. We say that x is a Fréchet smooth point of B if pB0 is
Fréchet diòerentiable at x0. (It is standard to see that this deûnition does not depend
on the choice of c.)

We say that x ∈ ∂B is an LUR (locally uniformly rotund) point of B if for each ε > 0
there exists δ > 0 such that if y ∈ ∂B and dist(∂B, (x + y)/2) < δ, then ∥x − y∥ < ε.
If B = BX , this deûnition coincides with the standard deûnition of local uniform
rotundity of the norm at x.

We say that a body B is smooth, Fréchet smooth, or LUR if each boundary point of
B is a smooth, Fréchet smooth, or LUR point of B, respectively.
For f ∈ SX∗ and α ∈ [0, 1), we consider the closed convex cone

C(α, f ) = {x ∈ X ∶ f (x) ≥ α∥x∥}.

Notice that C(α, f ) has nonempty interior.

Observation 2.1 Let B ⊂ X be a body, x ∈ ∂B. If x is a Fréchet smooth point of B,
then there exists f ∈ SX∗ with the following property: for each α > 0 there exists ε > 0
such that

(2.1) [x −C(α, f )] ∩ [x + εBX] ⊂ B .

(Also the converse is true, but we will need only the above implication.)

Proof Assume without any loss of generality that 0 ∈ int B. Let g be the Fréchet
derivative of pB at x, and f ∶= g

∥g∥ . _en pB(x) = 1 and

lim
∥h∥→0

pB(x + h) − pB(x) − g(h)
∥h∥

= 0.

Consequently, for each α > 0 there exists ε > 0 such that pB(x + h) − 1 − ∥g∥ f (h) ≤
α∥g∥∥h∥ whenever h ∈ εBX . _us, for h ∈ [−C(α, f )] ∩ εBX , we obtain pB(x + h) ≤
1 + ∥g∥ f (h) + α∥g∥∥h∥ ≤ 1, and hence x + h ∈ B. _is completes the proof.

Deûnition 2.2 Let B ⊂ X be a body, x ∈ ∂B and ε > 0. We say that x is an ε-cone
smooth point of B if there exists f ∈ SX∗ such that [x −C( 1

7 , f )]∩ [x + εBX] ⊂ B, that
is, (2.1) holds for α = 1/7. We denote by ε-CS(B) the set of all ε-cone smooth points
of B. We say that x ∈ ∂B is a cone smooth point of B if it is an ε-cone smooth point
of B for some ε > 0. Moreover, we say that B is cone smooth if each x ∈ ∂B is a cone
smooth point of B.

Lemma 2.3 Let f , g ∈ SX∗ , α, β, δ > 0, and y ∈ δβBX . Suppose that

α + β + αβ < 1
2 and inf g( y + [C(α, f ) ∩ δ(1 + β)BX]) ≥ 0 .
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_en ∥g − f ∥ ≤ 2(α + β + αβ).

Proof By homogeneity, we can (and do) suppose that δ = 1. Put γ = α + β + αβ. For
each x ∈ C(γ, f )∩SX ,we have ∥x−y∥ ≤ 1+β and f (x−y) ≥ γ−β = α(1+β) ≥ α∥x−y∥.
_is shows that C(γ, f ) ∩ SX is contained in y + [C(α, f ) ∩ (1 + β)BX]. Hence by
our assumption, inf g(C(γ, f ) ∩ SX) ≥ 0. Since C(γ, f ) is a cone, we obtain that
inf g(C(γ, f )) = 0. Now [2, Lemma 1.1] (based on the “Parallel Hyperplane Lemma”)
implies that ∥g − f ∥ ≤ 2γ, which completes the proof.

3 General Results on Tilings

In the present section, if not speciûed otherwise, X denotes a real topological vector
space (TVS, for short).

Given a body B ⊂ X, a point x ∈ ∂B is called a conical [resp. �at] point of B if the
set (in fact, a convex cone) ⋃t>0 t(B − x) is closed [resp. is a closed halfspace]. _e
body B is plump [resp. �at] if each of its conical [resp. boundary] points is �at.

Let us specify that the terms nonconical point and non�at point refer only to bound-
ary points of the body. By theway, these two notions are equivalent for plump bodies.

Recall that a hereditarily Baire space is a topological space whose all nonempty,
closed subspaces are Baire spaces.

Let x be a boundary point of a body B. _e following simple facts hold.

(α) x is a �at point of B if and only if there exists a (necessarily unique) supporting
hyperplane H to B at x such that x ∈ a-intH(B ∩ H), where a-intH(B ∩ H) is the
relative algebraic interior (or “core”) of B ∩H in H.

(β) If X is hereditarily Baire, then in (α) we can write intH(B ∩ H), the topological
relative interior of B ∩H in H, instead of a-intH(B ∩H).

(γ) Hence if x is a �at point of B, then x is a smooth point (Fréchet smooth point if
X is a Banach space) of B.

(δ) Each smooth conical point is a �at point (see also [11, 1.3]) and in normed spaces
each LUR point is a nonconical point. Hence if each boundary point of B is either
a smooth or an LUR point, then B is plump.

As usual, by “arbitrarily near to x” we mean “in any neighborhood of x”. _e fol-
lowing lemma is based on [11, 2.1].

Lemma 3.1 Let x be a common boundary point of two bodies B, B′ ⊂ X whose inte-
riors are disjoint.
(i) If x is a nonconical point of B, then arbitrarily near to x there exists a non�at point

of B that does not belong to B′.
(ii) If X is hereditarily Baire and x is a �at point of both B, B′, then x belongs to

A ∶= int(B ∪ B′) and all boundary points of B or B′ that belong to A are �at.

Proof (i) LetH be a closed hyperplane through x that separates B and B′. By [11, 2.1],
arbitrarily near to x there exist non�at points of B that do not belong to H. _is shows
(i). Part (ii) follows easily from the observation (β) above.
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A tiling of X is a covering of X by at least two bodies whose interiors are pairwise
disjoint. A disjoint tiling is a tiling whose members are pairwise disjoint. A point
x ∈ X is a singular point for a tilingB if each neighborhood of x meets inûnitelymany
members ofB. _e points of ⋃B∈B ∂B that are not singular are called regular points.
A tiling B is plump if each of its members is plump. Smooth tiling, Fréchet smooth

tiling, LUR tiling, etc. are deûned in an analogousway. We say thatB has no common
�at points if no point of X is a �at point of two distinct members ofB. A trivial tiling
has been deûned in Introduction.

_e following simple fact is well known; we sketch a proof of it for sake of com-
pleteness.

Fact 3.2 Each disjoint covering of R by at least two nonempty closed convex subsets
of R is uncountable. In particular, R admits no disjoint tiling.

Proof Suppose that B is such a covering and that B is countable. _en the set
S ∶= ⋃I∈B ∂I is a countable closed (nonempty) set. It is easy to see that S has no
isolated points. On the other hand, a direct application of the Baire category theo-
rem to the complete metric space S = ⋃s∈S{s} gives existence of an isolated point
of S. _is contradiction completes the proof of the ûrst part. _e second part holds
by separability.

Lemma 3.3 Let U ⊂ X be an open convex set, and B ⊂ X a body whose boundary
intersects U . Assume that each point of ∂B∩U is a �at point of B. _en each connected
component of ∂B ∩U is of the form H ∩U where H ⊂ X is a closed hyperplane.

Proof For x ∈ ∂B ∩ U , let Hx be the unique supporting hyperplane to B at x. We
claim that Hx ∩U ⊂ ∂B. Indeed, if this is not the case, there exists y ∈ (Hx ∩U) ∖ B;
then [x , y] ∩ B = [x , z] for some z ∈ (x , y) ⊂ Hx ∩ U , but this is impossible since
clearly z is a non-�at point of B.
Assume without any loss of generality that 0 ∈ int B, and let us consider the func-

tion θ∶ ∂B ∩ U → X∗ such that, for x ∈ ∂B ∩ U , θ(x) is the unique functional of X∗

such that [θ(x)](x) = 1 = sup[θ(x)](B). By the claim above, the map θ is locally
constant, and hence it is constant on each connected component of ∂B ∩U .

Lemma 3.4 Let U ⊂ X be an open convex set. Let En ⊂ X, n ∈ N, be closed halfspaces
intersectingU , such that En ∩U ⊂ En+1∩U for each n. _en either C ∶= ⋃n∈N(En ∩U)

contains U , or the set ∂C ∩U is of the form H ∩U where H ⊂ X is a closed hyperplane.

Proof Suppose thatU∖C /= ∅. By ourmonotonicity assumption, the setC is convex.
Notice that also the set U ∖C = ⋂n∈N(U ∖En) is convex. Since int(C ∩U) /= ∅, there
exists a closed hyperplane H ⊂ X that separates C ∩ U and U ∖ C. Since the union
of the latter two sets is U and they belong to opposite halfspaces determined by H,
either of the two setsmust contain the relative interior inU of one of the two opposite
halfspaces. _is easily implies the assertion.

For simplicity of formulation, if E , F ,U are sets and E ∩ U = F ∩ U , we shall say
that E coincides with F in U .
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_eorem 3.5 Let B be a tiling of a locally convex metrizable TVS X, B amember of
B, and x ∈ ∂B a non-�at point of B. _en at least one of the following three conditions
is satisûed.
(i) x belongs to at least three diòerent members of B.
(ii) x belongs to two diòerent members B, B′ of B and, in some neighborhood of x,

B ∪ B′ coincides with a closed halfspace.
(iii) Arbitrarily near to x there exist non-�at boundary points of members of B non

containing x.

Proof Assume the contrary, that is, all (i), (ii), (iii) are false. In particular, Bx ∶=

{C ∈ B ∶ x ∈ C} contains at most two elements (one of which is B), and there exists
an open convex neighborhood U of x in which the only non-�at boundary points of
members ofB belong to some element ofBx .

We claim that arbitrarily near to x there are points ofmembers of B ∖Bx . _is is
clear ifBx = {B}. LetBx contain also some B′ /= B. If our claim is false, B∪B′ contains
a neighborhoodV of x. But this easily implies that, in such a neighborhoodV , the set
B (and B′, too) coincides with a closed halfspace, contradicting the assumption that
x is a non-�at point of B.

Now, observe that if C ∈ B ∖Bx then, by Lemma 3.3, each component of ∂C ∩U
coincides in U with a closed hyperplane.
Fix a sequence {Cn} ⊂ B∖Bx such that the distances d(x ,Cn) tend decreasingly

to 0. By the above observation, for each n ∈ N, there exists a closed hyperplane Hn
such that Hn ∩ U ⊂ ∂Cn , and Hn separates Cn ∩ U and Cn+1 ∩ U , as well as Cn ∩ U
and (⋃Bx)∩U . Let En be the closed halfspace such that ∂En = Hn and Cn ∩U ⊂ En .
Since the sets En∩U form an increasing sequencewhich does not coverU , Lemma 3.4
implies that the relative boundary of⋃n∈N(En∩U) inU is of the form H∩U whereH
is a closed hyperplane. Clearly,H is a supporting hyperplane to B at x, and (⋃Bx)∩U
is contained in one of the two closed halfspaces, say G, determined by H.

If Bx = {B} then in any neighborhood of x, B does not coincide with G, since x
is a non-�at point. If Bx = {B, B′} (with B′ /= B), then in any neighborhood of x,
B∪ B′ does not coincide with G, since (ii) is false. _is means that, arbitrarily near to
x, there exists a boundary point y of some D ∈ B∖Bx such that y ∈ intG. Notice that
for each such D, D∩U is contained in G since it is disjoint from each Cn ∩U (n ∈ N).

Proceeding as above,we can ûnd a sequence {Dn} ⊂ B∖Bx and closed halfspaces
Fn , n ∈ N, such that the following hold:
● ∂Fn ∩U ⊂ ∂Dn ;
● ∂Fn separates Dn ∩U and Dn+1 ∩U , as well as Dn ∩U and (⋃Bx) ∩U ;
● Dn ∩U ⊂ Fn ;
● the sequence {Fn ∩U} is increasing and contained in G.
Now Lemma 3.4 again implies that the relative boundary of ⋃n∈N(Fn ∩U) in U is of
the form H′ ∩U where H′ is a closed hyperplane through x. Moreover, H′ ∩U ⊂ G.
But x ∈ ∂G ∩H′ ∩U easily implies that H′ = ∂G (= H). So we obtain that B ∩U ⊂ G
and also B ∩ U ⊂ ⋂n∈N(U ∖ Fn) ⊂ X ∖G, and consequently B ∩ U ⊂ H, which is
impossible since B is convex and has nonempty interior. _is contradiction completes
the proof.
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Deûnition 3.6 ([1]) Let B be a body in a TVS X. We say that x is a QP-point of
B if and only if there exists a neighborhood V of x such that [x , y] ⊂ ∂B whenever
y ∈ V ∩ ∂B.

Wewill need the following simple lemma. (By theway, it is strictly connectedwith
[11,_eorem 5.1] andwith the easy implication in the following result ofV. P. Fonf [5]:
a separable Banach space admits a locally ûnite tiling by bounded bodies if and only if
it is isomorphically polyhedral.)

Lemma 3.7 Let B be a tiling of a TVS X, and let x ∈ ⋃B∈B ∂B be a regular (i.e.,
non-singular) point for B. _en x is a QP-point of each member of B that contains x.
In particular, if x is contained in only two members of B, then x is a �at QP-point for
both of them.

Proof Assume that x = 0 and denote B0 = {B ∈ B ∶ 0 ∈ B}. Since B0 is ûnite, it is
easy to see that 0 ∈ int(⋃B0) (see also [9,_eorem1.1]). LetV ⊂ X be a balanced (i.e.,
starshaped w.r.t. 0) open neighborhood of 0 such that V ⊂ int(⋃B0). Notice that the
sets B∩V (B ∈ B0) form a ûnite “tiling” ofV . Now, ûx arbitrary B ∈ B and y ∈ ∂B∩V .
_en necessarily y ∈ B′ for some B′ ∈ B0 ∖ {B}, and hence [0, y] ⊂ B ∩ B′ ⊂ ∂B. _is
shows that 0 is aQP-point of B. Finally, ifB0 = {B, B′}, letV be as above and let H be
a closed hyperplane through x that separates B and B′. Notice that then necessarily
∂B ∩ V = ∂B′ ∩ V = H ∩ V . _e proof is complete.

_e following theorem is themain result of the present section. Given a set E ⊂ X
and a neighborhood V of the origin, we write diam(E) ≺ V to say that x − y ∈ V
whenever x , y ∈ E. _us if X is a normed space, then diam(E) ≺ εBX is the same as
diam(E) ≤ ε.

_eorem 3.8 LetB be a tiling of a locally convex TVS X. Assume that at least one of
the following conditions is satisûed:
(i) B is disjoint;
(ii) X is completely metrizable, B is plump and nontrivial;
(iii) X is completely metrizable, B has no common �at points.
_en B is uncountable. Moreover, if P ∶= {(x , B) ∶ B ∈ B, x ∈ ∂B} = ⋃n∈NPn where
P1 ⊂ P2 ⊂ . . ., then there exists m ∈ N with the following property:
(∗) for each neighborhood V of 0 there exist three couples (x i , B i) ∈ Pm , i = 1, 2, 3,

such that the bodies B i are pairwise distinct and diam{x1 , x2 , x3} ≺ V .

Proof (i) Let B be a disjoint tiling of X. Let Y ⊂ X be a straight line intersecting at
least twomembers ofB, and letB′ = {B∩Y ∶ B ∈ B, B∩Y /= ∅}. SinceB′ is a disjoint
cover of Y by nonempty closed convex sets,B′ (and hence alsoB) is uncountable by
Fact 3.2. Since Y is separable, the family B′′ = {B ∈ B′ ∶ intY B /= ∅} is at most
countable. Hence C ∶= {B ∈ B ∶ #(B ∩ Y) = 1} is uncountable. For n ∈ N, let Cn be
the collection of all B ∈ C such that B ∩ Y = {x} and (x , B) ∈ Pn . Since C = ⋃n Cn ,
there exists m ∈ N such that Cm is uncountable. _e set M ∶= ⋃B∈Cm(B ∩ Y) is
uncountable, and hence it has an accumulation point w ∈ Y . _en arbitrarily near to
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w we can ûnd three distinct points x1 , x2 , x3 ∈ M. Let B1 , B2 , B3 ∈ Cm be such that
x i ∈ ∂B i (i = 1, 2, 3). _en B1 , B2 , B3 are pairwise distinct, (x i , B i) ∈ Pm for i = 1, 2, 3,
and diam{x1 , x2 , x3} “can be taken arbitrarily small”. _us (i) is proved.

(ii) Let X be completelymetrizable and letB be a nontrivial plump tiling of X. Let
us use the following notations.

(3.1)

Bx ∶= {B ∈ B ∶ x ∈ B} (x ∈ X),
ηB ∶= {x ∈ ∂B ∶ x is a non�at point of B} (B ∈ B),
ηB ∶= ⋃

B∈B
ηB, S ∶= ⋃

B∈B
∂B.

Notice that S is closed in X. If ηB = ∅, then each element of B is �at; in this case,
Lemma 3.3 (with U = X) easily implies that B is a trivial tiling. Hence we have that
ηB /= ∅, and the closure ηB is a Baire space.

Suppose that B is countable. _en ηB = ⋃B∈B(ηB ∩ ∂B), and hence there exist
B0 ∈ B, x ∈ ηB∩∂B0 and a convex openneighborhoodU of x such that ηB∩U ⊂ ∂B0.
Clearly, x cannot be a �at point of B0; indeed, otherwisewe can suppose that inU the
body B0 coincideswith a closed halfspace, and then ηB∩U = ∅,which is impossible.
_us x ∈ ηB0. In this case, one of the conditions (i) or (ii) in _eorem 3.5must hold.
It is easy to see that this implies existence of some B1 ∈ B such that x ∈ ηB1. Notice
that x is a nonconical point of B1 since B1 is plump. By Lemma 3.1 (i), there exists a
non�at point of B1 contained in U ∖B0. But this contradicts the choice of x. We have
proved that B is uncountable.

Now let us show the second part of (ii). If some x ∈ S belongs to three distinct
B1 , B2 , B3 ∈ B, there exists m ∈ N such that (x , B i) ∈ Pm for all i ∈ {1, 2, 3}, and then
(∗) trivially holds with x1 = x2 = x3 = x.

So let us suppose that each x ∈ S belongs to at most two members of B. _en
ηB = ⋃n∈N An where An = {x ∈ ηB ∶ (x , B) ∈ Pn whenever B ∈ Bx}. Since ηB is a
Baire space, there is m ∈ N such that Am has nonempty relative interior in ηB. _at is,
there exist x1 ∈ Am and a convex open neighborhoodU of x1 such that U ∩ ηB ⊂ Am .
By Lemma 3.1 (ii), x1 cannot be a common �at point of two distinct elements of Bx1 .
_us either x1 is a non�at point of some B1 ∈ Bx1 , or Bx1 = {B1} and x1 is a �at point
of B1.
Case 1: x1 ∈ ηB1. Since we must have either (ii) or (iii) in _eorem 3.5, arbitrarily

near to x1 there exists a non�at point x of some B ∈ B ∖ {B1}. If x ∈ B1, we can
apply Lemma 3.1 (i) to ûnd a point x′ ∈ ηB ∖ B1 arbitrarily near to x. So we can
always suppose that x ∈ U ∖ B1, and hence x ∈ Am . Arbitrarily near to x there exists
x2 ∈ Am ∩ (U ∖ B1).
Case 2: Bx1 = {B1} and x1 ∉ ηB1. Since x1 ∈ ηB and all points suõciently near to x1

are �at for B1, arbitrarily near to x1 we can ûnd a non�at point x of some B ∈ B∖{B1}.
Proceeding as inCase 1,we get that arbitrarilynear to x there exists x2 ∈ Am∩(U∖B1).

In both Cases 1 and 2, ûx B2 ∈ Bx2 . Now considering an open convex neighbor-
hoodU ′ of x2 such that U ′ ⊂ U ∖B1, we can proceed as above to ûnd, arbitrarily near
to x2, a point x3 ∈ Am ∩ (U ′ ∖ B2). Fix B3 ∈ Bx3 and notice that the bodies B1 , B2 , B3
are pairwise distinct, (x i , B i) ∈ Pm for i = 1, 2, 3, and diam{x1 , x2 , x3} “can be taken
arbitrarily small”. _is completes the proof of part (ii).
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(iii) Let X be completely metrizable and let B be a tiling that has no common
�at points. We will use the above notations (3.1). Assume that B is countable. _en
S = ⋃B∈B ∂B is a Baire space (since it is closed), and hence there exists B0 ∈ B for
which ∂B0 has nonempty relative interior in S. _at is, there exist x ∈ ∂B0 and a
convex openneighborhoodU of x such thatU∩S ⊂ ∂B0. We can suppose thatU∩∂B0
is connected, and so U ∖ ∂B0 has two components. Hence there exists B1 ∈ B∖ {B0}
such that U ⊂ B0 ∪ B1. It follows that U ∩ ∂B0 = U ∩ ∂B1 is contained in a closed
hyperplane and hence x is a common �at point of B0 and B1. _is contradiction
shows that B must be uncountable.

Now as in (ii), if some x ∈ S belongs to three distinct members of B, we are im-
mediately done. So, let us assume that #Bx ≤ 2 for each x ∈ S. For n ∈ N, denote
An = {x ∈ S ∶ (x , B) ∈ Pn whenever B ∈ Bx}, and notice that S = ⋃n∈N An . Hence,
for some m ∈ N, Am has nonempty relative interior in S, that is, there exist x1 ∈ Am
and a convex open neighborhood U of x1 such that U ∩ S ⊂ Am . We claim that x1 is
necessarily a singular point of B. Indeed, if not, we can apply Lemma 3.7 to obtain
that Bx1 = {B0 , B1} with B0 /= B1, and x1 is a common �at point of B0 , B1, which is
impossible.

_us x1 is a singular point ofB. Fix B1 ∈ Bx1 . _en arbitrarily near to x1 there exists
x ∈ ∂B ∩ U with B ∈ B ∖ {B1}; and arbitrarily near to x there exists x2 ∈ Am ∖ B1.
Fix B2 ∈ Bx2 and notice that B2 /= B1. Now, arbitrarily near to x1 ûnd x′ ∈ ∂B′ with
x′ ∈ B ∖ {B1 , B2}; and arbitrarily near to x′ ûnd x3 ∈ Am ∖ (B1 ∪ B2). Fix B3 ∈ Bx3 .
_en B1 , B2 , B3 are pairwise distinct, (x i , B i) ∈ Pm for i = 1, 2, 3, and diam{x1 , x2 , x3}

“can be taken arbitrarily small”. _is proves (iii), and we are done.

Corollary 3.9 (cf. [11]) Let B be a countable plump tiling of a locally convex com-
pletely metrizable TVS. _en B is trivial.

4 Applications to Normed and Banach Spaces

In what follows, X is a normed space.

4.1 Smoothness-type Prohibitive Conditions

For the deûnition of ε-CS(B) see Section 2.

Lemma 4.1 _ere exists a constant H ∈ (0, 1) such that if ε > 0, B1 , B2 , B3 are
convex bodies in X with pairwise disjoint interiors and x i ∈ ε-CS(B i) (i = 1, 2, 3), then
diam({x1 , x2 , x3}) > Hε.

Proof We claim that our lemma holds with H = 1/51. Put α = 1/7 and β = 1/50, and
notice that γ ∶= α + β + αβ = 29

175 <
1
6 . By homogeneity, we can (and do) suppose that

ε = 1 + β = 51/50. _en Hε = 1/50.
Now assume that the assertion is false, i.e., diam({x1 , x2 , x3}) ≤ Hε = β. Let

f i ∈ SX∗ (i = 1, 2, 3) be such that K i ∶= x i − [C(α, f i) ∩ (1 + β)BX] ⊂ B i . Since the
bodies K1 ,K2 ,K3 have pairwise disjoint interiors, for each i , j ∈ {1, 2, 3}, i < j, there
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exists g i j ∈ SX∗ such that sup g i j(−K j) ≤ inf g i j(−K i), that is,

inf g i j((x j − x i) + [C(α, f i) ∩ (1 + β)BX]) ≥ sup g i j([C(α, f j) ∩ (1 + β)BX]) ≥ 0.

By Lemma 2.3, ∥g i j − f i∥ ≤ 2γ. In a similar way we obtain ∥g i j + f j∥ ≤ 2γ. But now
since 2 f1 = ( f1 − g12)+ ( f2 + g12)− ( f2 − g23)− ( f3 + g23)+ ( f3 + g13)+ ( f1 − g13), we
obtain 2 = ∥2 f1∥ ≤ 6 ⋅ 2γ < 2, a contradiction.

_eorem 4.2 Let B be a tiling of a normed space X. Assume that at least one of the
following conditions is satisûed:
(i) B is disjoint;
(ii) X is complete, B is plump and nontrivial;
(iii) X is complete, B has no common �at points.
_en B is not cone smooth.

Proof Let us suppose on the contrary that B is cone smooth. Let P be as in _eo-
rem 3.8 and for each n ∈ N let Pn ∶= {(x , B) ∶ B ∈ B, x ∈ (1/n)-CS(B)}. _en
P1 ⊂ P2 ⊂ ⋅ ⋅ ⋅moreover, sinceB is cone smooth, P = ⋃n Pn .

Now let H be the constant from Lemma 4.1. By_eorem 3.8, there exist m ∈ N and
three couples (x i , B i) ∈ Pm , i = 1, 2, 3, such that the bodies B i are pairwise distinct
and diam{x1 , x2 , x3} < H/m. But this contradicts Lemma 4.1.

Now since Fréchet smooth bodies are cone smooth (see Section 2) and plump (see
(δ) in Section 3), we immediately obtain the following.

Corollary 4.3 LetB be a Fréchet smooth tiling of a Banach space X. _enB is trivial.
In particular, X does not admit any Fréchet smooth tiling by bounded bodies.

4.2 Rotundity-type Prohibitive Conditions for Ball Tilings

We will need the following elementary observation. As usual, if c, y ∈ X are two
distinct points then (c, y) denotes the relatively open line segment with endpoints
c, y, that is, (c, y) = {(1 − t)c + ty ∶ 0 < t < 1}.

Observation 4.4 Given B = B(c, r), y ∈ ∂B, and 0 < ρ < r, there exists B′ = B(c′ , ρ)
such that c′ ∈ (c, y), B′ ⊂ B and y ∈ ∂B′.

Lemma 4.5 Let X be a normed space, α > 0, ε ≥ 0, and B0 , B1 , B2 ⊂ X three balls of
radius at least α, whose interiors are pairwise disjoint. Consider three points y i ∈ ∂B i ,
i = 0, 1, 2, and denote x0 = y0−c0

∥y0−c0∥
where c0 is the center of B0. If diam{y0 , y1 , y2} ≤ αε,

then

(4.1) diam{ y ∈ SX ∶ ∥x0 + y∥ ≥ 2 − ε} ≥ 2 − 2ε .

Proof By homogeneity and by Observation 4.4, we can assume that α = 1 and the
three balls have unit radius and that diam{y0 , y1 , y2} ≤ ε . We can also assume that
c0 = 0, so that x0 = y0. For i = 1, 2, let c i be the center of B i , and denote z i = c i − x0
and z̄ i =

z i
∥z i∥

. Since z i = (c i − y i) + (y i − y0) and ∥c i − y i∥ = 1, we have 1 − ε ≤
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∥z i∥ ≤ 1 + ε, and hence ∥z̄ i − z i∥ ≤ ε. Since x0 + z̄ i = (c i − c0) + (z̄ i − z i) and
∥c i − c0∥ ≥ 2, we have ∥ x0+z̄ i

2 ∥ ≥ 1 − ε
2 , and hence the points z̄1 , z̄2 belong to the set

from (4.1). Finally, since z̄1 − z̄2 = (c1 − c2) + (z̄1 − z1) + (z2 − z̄2), we obtain that
∥z̄1 − z̄2∥ ≥ ∥c1 − c2∥ + ∥z̄1 − z1∥ + ∥z2 − z̄2∥ ≥ 2 − 2ε, completing the proof.

Deûnition 4.6 We shall say that x ∈ SX is a locally non-D2 (or LND2) point of BX
if there exists δ > 0 such that diam{ y ∈ SX ∶ ∥

x+y
2 ∥ ≥ 1 − δ} < 2.

In the above deûnition, “D2” stands for “diameter 2”. Notice that each LUR point
of BX is clearly an LND2 point.

_eorem 4.7 LetB be a tiling by balls of a normed space X. Assume that at least one
of the following conditions is satisûed:
(i) B is disjoint;
(ii) X is a Banach space and B is plump;
(iii) X is a Banach space and B has no common �at points.
_en there exists x ∈ SX such that x is neither a cone smooth point nor an LND2 point
of BX .

_e proof is similar to the proof of_eorem 4.2.

Proof Let us suppose on the contrary that this is not the case, that is, each x ∈ SX
is either a cone smooth point or a LND2 point of BX . If B ∈ B, let us denote by rB
and cB the radius and the center of B, respectively. Let P be as in _eorem 3.8 and for
each n ∈ N, let Pn ⊂ P be the set of all couples (x , B) such that rB ≥ 1/n and at least
one of the following two conditions holds:

(a) diam{ y ∈ SX ∶ ∥ x−cB
∥x−cB∥

+ y∥ ≥ 2 − 1
n} < 2 − 2

n ;
(b) x ∈ 1

n -CS(B).
Clearly, P1 ⊂ P2 ⊂ ⋅ ⋅ ⋅ and P = ⋃n Pn .

Let H be the constant from Lemma 4.1. By _eorem 3.8, there exists m ∈ N and
three couples (x i , B i) ∈ Pm , i = 1, 2, 3, such that diam{x1 , x2 , x3} < H/m2 and the
balls B i (i = 1, 2, 3) are pairwise distinct and with radii at least 1/m. Now, it suõces to
consider the following two cases.

Case 1: x i ∈
1
m -CS(B i) for each i = 1, 2, 3. _is case is impossible by Lemma 4.1 since

diam{x1 , x2 , x3} < H/m2 ≤ H/m.

Case 2: diam{ y ∈ SX ∶ ∥
x1−cB1
∥x1−cB1 ∥

+ y∥ ≥ 2 − 1
m} < 2 − 2

m . Since

diam{x1 , x2 , x3} < H/m2
< 1/m2 ,

Lemma 4.5 (with α = 1
m ) gives that diam{ y ∈ SX ∶ ∥

x1−cB1
∥x1−cB1 ∥

+ y∥ ≥ 2 − 1
m} ≥ 2 − 2

m ,
which is a contradiction.

Since each LUR point is a LND2 point, and each Fréchet smooth point is a cone
smooth point, we obtain the following corollary.
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Corollary 4.8 Let B be a tiling by balls of a normed space X. Assume that either B
is disjoint or X is complete. _en there exists x ∈ SX such that x is neither a Fréchet
smooth point nor an LUR point of BX . In particular, an LUR Banach space admits no
tiling by balls, and a normed LUR space admits no disjoint tiling by balls.

4.3 One-point Prohibitive Conditions for Large-ball Tilings

Now we are going to consider tilings by balls whose radii are bounded away from 0.
Let us recall two well known geometrical notions. Given a norm-one functional f ∈
X∗, a slice of BX , determined by f , is any set of the form

S( f , δ) = {y ∈ BX ∶ f (y) > 1 − δ} where δ ∈ (0, 1).

A point x ∈ SX is said to be a strongly exposed point of BX if there exists a norm-one
f ∈ X∗ such that f (x) = 1 and diam(S( f , δ))→ 0 as δ → 0+.

_eorem 4.9 Let X be a normed space. Suppose that at least one of the following
conditions holds:
(i) there exists x ∈ SX such that X is LND2 at x and x is not a QP-point for BX ;
(ii) there exists an LUR point in SX ;
(iii) there exists a Fréchet smooth point x ∈ SX , which is not a QP-point for BX , and

the unique norm-one functional fx ∈ X∗ that supports BX at x determines a slice
Σ of BX with diam(Σ) < 2;

(iv) there exists a Fréchet smooth point x ∈ SX which is a strongly exposed point of BX .
_en X admits no tiling by balls with radii bounded away from 0.

Proof Let B be a tiling of X by balls with radii bounded away from 0. We can sup-
pose that BX ∈ B.
First assume (i). Let x ∈ SX be such that X is LND2 at x and such that x is not

a QP-point for BX . By Lemma 3.7, x is a singular point for B. _us there exist a
sequence {Bn} of pairwise distinct elements of B ∖ {BX}, and points yn ∈ ∂Bn such
that yn → x. Fix an arbitrary δ > 0. Since diam{x , yn , yn+1} → 0, we can apply
Lemma 4.5 to deduce that for each ε ∈ (0, 2δ) we have

diam{y ∈ SX ∶ ∥x + y∥ ≥ 2 − 2δ} ≥ diam{y ∈ SX ∶ ∥x + y∥ ≥ 2 − ε} ≥ 2 − 2ε.

It follows that diam{y ∈ SX ∶ ∥
x+y
2 ∥ ≥ 1 − δ} = 2 for each δ > 0. But this contradicts

the fact that x is a LND2 point for BX , and part (i) is proved. Moreover, since each
LUR point x ∈ SX satisûes (i), part (ii) immediately follows.

Now assume (iii). By the ûrst part of the proof of part (i), diam{y ∈ SX ∶ ∥ x+y
2 ∥ ≥

1 − δ} = 2 for each δ > 0. _is easily implies existence of a sequence {yn} ⊂ SX such
that ∥ x+yn

2 ∥→ 1, and diam({yn}n≥n0) = 2 for each n0 ∈ N. By convexity of the norm,
for each n ∈ N there exists zn ∈ (x , yn) such that ∥zn∥ = min{∥z∥ ∶ z ∈ [x , yn]}.
It is not diõcult to see that ∥zn∥ ≥ ∥x + yn∥ − 1 (indeed, if z′n ∈ (x , yn) is such that
zn+z′n

2 =
x+yn

2 , then ∥x + yn∥ = ∥zn + z′n∥ ≤ ∥zn∥ + 1). For each n ∈ N, let fn ∈ X∗ be a
norm-one functional that separates ∥zn∥BX and [x , yn]. Clearly,

fn(zn) = ∥zn∥ = fn(x) = fn(yn).
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Notice that ∥zn∥ → 1, that is, fn(x) → 1. Since x is a Fréchet smooth point of BX ,
we have that fn → fx in the norm topology (see, e.g., [4, Corollary 7.22]). It follows
that fx(yn)→ 1. In particular, yn belongs to Σ for each suõciently large n, and hence
diam(Σ) ≥ 2. _is contradiction proves (iii). Finally, part (iv) follows easily from part
(iii). Our theorem is proved.

5 An LUR Disjoint Tiling of ℓ1(Γ)
In this section we show that for some suitable uncountable set Γ the Banach space
ℓ1(Γ) admits a disjoint tiling by bounded LUR bodies. Our construction is based on
a construction by V. Klee [8] of a disjoint tiling of ℓ1(Γ) by translates of the unit ball.
Let us start with some preliminary work.

Let Γ be a nonempty set and let us denote by ∥ ⋅ ∥i the canonical norm of ℓ i(Γ)
(i = 1, 2). For x ∈ ℓ1(Γ), let us deûne ∥x∥ = (∥x∥2

1 + ∥x∥2
2)

1/2. It is known that ∥ ⋅ ∥ is
an equivalent LUR norm on ℓ1(Γ) [4, Lemma 13.26].

In what follows, let M > 4
√

2 be a ûxed constant. For γ ∈ Γ and x ∈ ℓ1(Γ), let us
deûne

∥x∥γ
1 = ∑

β∈Γ∖{γ}
∣x(β)∣ + 1

M
∣x(γ)∣,

∥x∥γ
2 = ( ∑

β∈Γ∖{γ}
∣x(β)∣2 + 1

M2 ∣x(γ)∣
2
)

1/2
,

∥x∥γ
= [(∥x∥γ

1 )
2
+ (∥x∥γ

2)
2
]
1/2

.

It is easy to see that (ℓ1(Γ), ∥ ⋅ ∥γ) and (ℓ1(Γ), ∥ ⋅ ∥) are linearly isometric, and hence
∥ ⋅ ∥γ is an equivalent LUR norm on ℓ1(Γ).
As usual, B∥ ⋅ ∥ and S∥ ⋅ ∥ denote the closed unit ball and the unit sphere of a norm

∥ ⋅ ∥. Notice that the polar set (B∥ ⋅ ∥)○ is the corresponding dual unit ball. We will
need the following fact, the easy proof of which is le� to the reader.

Fact 5.1 Let x ∈ S∥ ⋅ ∥γ , and f ∈ ℓ∞(Γ). Assume that f = a1 f1 + a2 f2, where f i ∈
(B
∥ ⋅ ∥γi

)○ (i = 1, 2), and a1 , a2 ∈ R are such that a2
1 + a2

2 ≤ 1. _en
(i) f ∈ (B∥⋅∥γ)○;
(ii) if a i = f i(x) = ∥x∥γ

i (i = 1, 2), then f (x) = 1 = sup f (B∥ ⋅ ∥γ).

Let {eβ}β∈Γ denote the canonical basis of ℓ1(Γ). Let us deûne

zγ ∶= (M/
√

2 ) eγ (γ ∈ Γ).

It is elementary to see that

∥zγ∥γ
1 = ∥zγ∥γ

2 = 1/
√

2 and ∥zγ∥γ
= 1 (γ ∈ Γ).

Lemma 5.2 Let γ0 and γ1 be two distinct elements of Γ. Let x ∈ S∥ ⋅ ∥γ0 be such that
x(γ1) = 0. _en there exists f ∈ ℓ∞(Γ) ∖ {0} such that f (x) = sup f (B∥ ⋅ ∥γ0 ) and
f (zγ1) = sup f (B∥ ⋅ ∥γ1 ).
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Proof Let us deûne f1 , f2 , f ∈ ℓ∞(Γ) as follows.

f1(γ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sign[x(γ)]/M if γ = γ0,
1 if γ = γ1,
sign[x(γ)] if γ /= γ0 , γ1;

f2(γ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(γ)/[M2∥x∥γ0
2 ] if γ = γ0,

0 if γ = γ1,
x(γ)/∥x∥γ0

2 if γ /= γ0 , γ1;

f = ∥x∥γ0
1 f1 + ∥x∥γ0

2 f2 .

An easy calculation shows that
● f1 ∈ (B

∥ ⋅ ∥γ01
)○ and f1(x) = ∥x∥γ0

1 ;
● f2 ∈ (B

∥ ⋅ ∥γ02
)○ and f2(x) = ∥x∥γ0

2 ;
● f (x) = 1 = sup f (B∥ ⋅ ∥γ0 ) by Fact 5.1.
It remains to show that sup f (B∥ ⋅ ∥γ1 ) = f (zγ1). Let us deûne g1 , g2 , g ∈ ℓ∞(Γ) as
follows.

g1(γ) =
⎧⎪⎪
⎨
⎪⎪⎩

1/M if γ = γ1,
2 f (γ)/[∥x∥γ0

1 M] if γ /= γ1;

g2(γ) =
⎧⎪⎪
⎨
⎪⎪⎩

1/M if γ = γ1,
0 if γ /= γ1;

g = ∥zγ1∥
γ1
1 g1 + ∥zγ1∥

γ1
2 g2 = ( 1/

√
2 )(g1 + g2).

Since ∥ ⋅ ∥γ0
1 ≥ ∥ ⋅ ∥

γ0
2 ,we easily obtain ∥ ⋅ ∥

γ0
1 ≥ ∥ ⋅ ∥γ0/

√
2. Moreover, since ∣ f (γ)∣ ≤ 2

(γ ∈ Γ),we have 2∣ f (γ)∣
∥x∥γ01 M

≤ 2
√

2
M ∣ f (γ)∣ ≤ 4

√

2
M ≤ 1. _is easily implies that g1 ∈ (B

∥ ⋅ ∥γ11
)○.

It is also easy to verify that g2 ∈ (B
∥ ⋅ ∥γ12

)○ and g i(zγ1) = 1/
√

2 = ∥zγ1∥
γ1
i (i = 1, 2).

Using Fact 5.1, we obtain g(zγ1) = 1 = sup g(B∥ ⋅ ∥γ1 ). To ûnish the proof, notice that
f (γ1) = ∥x∥γ0

1 and g(γ1) =
√

2
M . Now it is easy to verify that f = M

√

2
∥x∥γ0

1 g, and hence
f (zγ1) = sup f (B∥ ⋅ ∥γ1 ).

Lemma 5.3 Let γ0 and γ1 be two distinct elements of Γ. Let xγ1 be an element of
ℓ1(Γ) ∖ B∥ ⋅ ∥γ0 such that xγ1(γ1) = 0. _en the sets B0 ∶= B∥ ⋅ ∥γ0 and B1 ∶= xγ1 + zγ1 +

B∥ ⋅ ∥γ1 are disjoint.

Proof Since xγ1(γ1) = 0, by Lemma 5.2 there exists f ∈ ℓ∞(Γ) ∖ {0} such that

f (zγ1) = sup f (B∥ ⋅ ∥γ1 ) = − inf f (B∥ ⋅ ∥γ1 ) and sup f (B0) = f (
xγ1

∥xγ1∥
γ0

).

Since ∥xγ1∥
γ0 > 1 and clearly f (xγ1) > 0, we obtain

sup f (B0) = inf f (
xγ1

∥xγ1∥
γ0
+ zγ1 + B∥ ⋅ ∥γ1 ) < inf f (B1),

which proves that B0 and B1 are disjoint.
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Let us recall that Γ is a regular cardinal if Γ is a cardinal such that each coûnal subset
of Γ has the same cardinality as Γ. (A set A ⊂ Γ is called coûnal with Γ if each element
of Γ is less than or equal to some element of A.) It is known that there exist arbitrarily
large inûnite regular cardinals Γ such that Γℵ0 = Γ (see [8]); such cardinals are clearly
uncountable. Given a set M, we denote by ∣M∣ its cardinality.

_eorem 5.4 Let I be a cardinal such that Iℵ0 = I. _en ℓ1(I) admits a disjoint tiling
C by centrally symmetric bounded LUR bodies.

Proof Let us proceed in two steps.

Step 1: Let Γ be a regular cardinal such that Γℵ0 = Γ. Put X ∶= ℓ1(Γ). We shall show
that X admits a disjoint tiling B by centrally symmetric bounded LUR bodies.

Proceeding as in the proof of [8,_eorem 1.2], it is not diõcult to show that if K is
an inûnite cardinal, then ∣ℓ1(K)∣ = Kℵ0 . _en ∣X∣ = Γ and hence wemay assume that
X is well ordered by an antire�exive relation ≺ as to be order-isomorphic with Γ.
For β ∈ Γ, denote Xβ = {x ∈ X ∶ x(γ) = 0 ∀γ ≥ β}. Let us inductively construct

familiesBβ (β ∈ Γ). For α = min Γ,we deûne xα = 0, yα = zα , andBα ∶= {yα +B∥ ⋅ ∥α}
(recall that zα = Meα/

√
2 ).

Now let β ∈ Γ ∖ {α}, and assume that the families Bγ have been already deûned
for all γ < β. Put Yβ = ⋃γ<β(⋃Bγ).
(i) If Xβ ⊂ Yβ , deûneBβ = ⋃γ<β Bγ .
(ii) Otherwise, let xβ be the ûrst point of Xβ ∖ Yβ , and deûne

Bβ = ( ⋃
γ<β

Bγ) ∪ {yβ + B∥ ⋅ ∥β} where yβ = xβ + zβ .

We shall show that the familyB = ⋃β∈Γ Bβ has the desired properties.
First of all, let us show that the elements of B are pairwise disjoint. Indeed, let

B0 = yβ0 +B∥ ⋅ ∥β0 and B1 = yβ1 +B∥ ⋅ ∥β1 be two distinct elements ofB (with β0 , β1 ∈ Γ).
By our construction,wemay suppose that β0 < β1, xβ1 ∉ yβ0 +B∥ ⋅ ∥β0 and xβ1(β1) = 0.
Since xβ1(β1) = xβ0(β1) = zβ0(β1) = 0 and xβ1 − xβ0 − zβ0 ∉ B

∥ ⋅ ∥β0 , we can apply
Lemma 5.3 to conclude that B

∥ ⋅ ∥β0 and (xβ1 − xβ0 − zβ0) + B∥ ⋅ ∥β1 are disjoint. It
follows that B1 and B2 are disjoint.

It remains to show that B covers X. Suppose that this is not the case and let w be
the ûrst element of X ∖⋃B. Put L = {x ∈ X ∶ x ≺ w}. Since L is covered by B, for
each v ∈ L there exists βv ∈ Γ such that v ∈ yβv + B∥⋅∥βv . Let us consider the set A ⊂ Γ
deûned by

A ∶= supp(w) ∪ ⋃
v∈L

[supp(v) ∪ supp(yβv )]

(here supp(u) denotes the support of u ∈ X). Notice that

∣A∣ ≤ (2∣L∣ + 1) ⋅ ℵ0 = max{∣L∣,ℵ0} < Γ.

Since Γ is regular and ∣A∣ < Γ, A is not coûnal in Γ. _us there exists δ ∈ Γ such that
β < δ for each β ∈ A. Clearly, w ∈ Xδ ∖ (⋃B) ⊂ Xδ ∖ Yδ .

We claim that w is the ûrst element of Xδ ∖ Yδ . Indeed, if v ∈ L, then βv ∈ A and
βv < δ, which implies that v ∈ yβv + B∥ ⋅ ∥βv ⊂ ⋃Bβv ⊂ Yδ .
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But this means that w = xδ ∈ (yδ + B∥⋅∥δ) ∈ B, which is a contradiction that
concludes the proof of the ûrst step.

Step 2: To prove the general case,weproceed as in theproof of [9,_eorem 3.2]. Given
our cardinal I, consider Γ ∶= (2I)+, the successor of the cardinal 2I. By [8, Remark 1.1]
Γ is regular and Γℵ0 = Γ. By Step 1, ℓ1(Γ) admits a disjoint tiling B by centrally
symmetric bounded LUR bodies. For each B ∈ B let cB be its center of symmetry.

Let I0 = I ⊂ Γ and C0 = ∅. Let us inductively construct Iβ ⊂ Γ and Cβ ⊂ B for
β < ω1. Assume that Iγ and Cγ have been already deûned for all γ < β. If β is a limit
ordinal, deûne Cβ = ⋃γ<β Cγ and Iβ = ⋃γ<β Iγ . If β = α + 1, deûne

Cβ = {B ∈ B;B ∩ ℓ1(Iα) /= ∅}, Iβ = Iα ∪ ⋃
B∈Cβ

supp(cB).

We claim that ∣Iβ ∣ = I and ∣Cβ ∣ ≤ I for each β < ω1. Let us prove our claim by induction.
Clearly it holds for β = 0. Now assume that ∣Iα ∣ = I = Iℵ0 and ∣Cα ∣ ≤ I hold for each
α < β. If β is a limit ordinal, then we have I ≤ ∣Iβ ∣ ≤ ℵ0I = I and ∣Cβ ∣ ≤ ℵ0I = I. For
β = α + 1, we have ∣Cβ ∣ ≤ ∣ℓ1(Iα)∣ = ∣Iα ∣ℵ0 = I, and hence also ∣Iβ ∖ Iα ∣ ≤ ℵ0∣Cβ ∣ ≤ I
which implies that ∣Iβ ∣ = I. _e claim is proved.

Now deûne J = ⋃β<ω1 Iβ . Clearly, ∣J∣ ≤ ℵ1I = I and hence ∣J∣ = I. Let C′ = ⋃β<ω1 Cβ
and C = {B∩ ℓ1(J) ∶ B ∈ C′}. _en C is a disjoint tiling of ℓ1(J) by centrally symmetric
bounded LUR bodies. We are done since ℓ1(J) and ℓ1(I) are isometrically isomorphic.

Remark 5.5 Let us remark that under the generalized continuum hypothesis our
assumption Iℵ0 = I holds for every uncountable cardinal I. To see this, ûrst suppose
that I = K+ (the successor of a cardinal K). _en I = 2K and hence Iℵ0 = 2K⋅ℵ0 = 2K = I.
Now assume that I is not a successor cardinal; hence 2K < Iwhenever K < I. As usual,
we can identify any ordinal K with the smallest ordinal of cardinality K, and hence
also with the interval [0,K) of ordinals. Since I is uncountable, every sequence in
[0, I) is contained in [0,K) for some inûnite cardinal K < I. Hence

I ≤ Iℵ0 ≤ ∑
ω0≤K<I

Kℵ0 ≤ ∑
ω0≤K<I

(2K
)
ℵ0 = ∑

ω0≤K<I
2K

≤ I ⋅ I = I,

and we are done.
On the other hand, it follows by [8, Proposition 3.5] that if ℓ1(ℵ1) admits a disjoint

tiling, then we have ℵ1 = 2ℵ0 , the continuum hypothesis.

References

[1] D. Amir and F. Deutsch, Suns,moons, and quasi-polyhedra. J. Approx. _eory 6(1972),
176–201. http://dx.doi.org/10.1016/0021-9045(72)90073-1

[2] C. A. De Bernardi and L. Veselý, On support points and support functionals of convex sets.
Israel J. Math. 171(2009), 15–27. http://dx.doi.org/10.1007/s11856-009-0037-6

[3] R. Engelking, General topology. Second edition. Sigma Series in PureMathematic, 6,
Heldermann Verlag, Berlin, 1989.

[4] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space theory. _e basis for
linear and nonlinear analysis, CMS Books in Mathematics/Ouvrages deMathématiques de la
SMC, Springer, New York, 2011.

https://doi.org/10.4153/CJM-2015-057-3 Published online by Cambridge University Press

http://dx.doi.org/10.1016/0021-9045(72)90073-1
http://dx.doi.org/10.1007/s11856-009-0037-6
https://doi.org/10.4153/CJM-2015-057-3


Tilings of Normed Spaces 337

[5] V. P. Fonf,_ree characterizations of polyhedral Banach spaces. (Russian) Ukrain. Mat. Zh. 42
(1990), 1286–1290; translation in Ukrainian Math. J. 42 (1990), 1145–1148 (1991).
http://dx.doi.org/=10.1007/BF01056615

[6] V. P. Fonf, A. Pezzotta, and C. Zanco, Tiling inûnite-dimensional normed spaces, Bull. London
Math. Soc. 29(1997), 713–719. http://dx.doi.org/10.1112/S0024609397003196

[7] V. P. Fonf and C. Zanco, Covering a Banach space. Proc. Amer. Math. Soc. 134(2006),
2607–2611. http://dx.doi.org/10.1090/S0002-9939-06-08254-2

[8] V. L. Klee, Dispersed Chebyshev sets and coverings by balls. Math. Ann. 257(1981), 251–260.
http://dx.doi.org/10.1007/BF01458288

[9] , Do inûnite-dimensional Banach spaces admit nice tilings? Studia Sci. Math. Hungar.
21(1986), 415–427.

[10] V. L. Klee, E. Maluta, and C. Zanco, Tiling with smooth and rotund tiles, Fund. Math. 126
(1986), 269–290.

[11] V. L. Klee and C. Tricot, Locally countable plump tilings are �at. Math. Ann. 277(1987),
315–325. http://dx.doi.org/10.1007/BF01457365

[12] A. Marchese and C. Zanco, On a question by Corson about point-ûnite coverings. Israel J. Math.
189(2012), 55–63. http://dx.doi.org/10.1007/s11856-011-0126-1

[13] D. Preiss, Tilings of Hilbert spaces. Mathematika 56(2010), 217–230.
http://dx.doi.org/10.1112/S0025579310000562

Dipartimento di Matematica, Università degli Studi, Via C. Saldini 50, 20133 Milano, Italy
e-mail: carloalberto.debernardi@gmail.com libor.vesely@unimi.it

https://doi.org/10.4153/CJM-2015-057-3 Published online by Cambridge University Press

http://dx.doi.org/=
http://dx.doi.org/10.1112/S0024609397003196
http://dx.doi.org/10.1090/S0002-9939-06-08254-2
http://dx.doi.org/10.1007/BF01458288
http://dx.doi.org/10.1007/BF01457365
http://dx.doi.org/10.1007/s11856-011-0126-1
http://dx.doi.org/10.1112/S0025579310000562
mailto:carloalberto.debernardi@gmail.com
mailto:libor.vesely@unimi.it
https://doi.org/10.4153/CJM-2015-057-3

