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Tilings of Normed Spaces

Carlo Alberto De Bernardi and Libor Vesely

Abstract. By a tiling of a topological linear space X, we mean a covering of X by at least two closed

convex sets, called tiles, whose nonempty interiors are pairwise disjoint. Study of tilings of infinite

dimensional spaces was initiated in the 1980’s with pioneer papers by V. Klee. We prove some general

properties of tilings of locally convex spaces, and then apply these results to study the existence of

tilings of normed and Banach spaces by tiles possessing certain smoothness or rotundity properties.

For a Banach space X, our main results are the following.

(i) X admits no tiling by Fréchet smooth bounded tiles.

(ii) If X is locally uniformly rotund (LUR), it does not admit any tiling by balls.

(iii) On the other hand, some ¢;(T') spaces, I uncountable, do admit a tiling by pairwise disjoint
LUR bounded tiles.

1 Introduction

Let X be a real topological vector space (TVS). A set B ¢ X will be called a body if it is
closed, convex and has nonempty interior. A tiling of X is a covering of X by at least
two bodies whose interiors are pairwise disjoint. Members of a tiling are called tiles.

While there exists a wide theory of tilings (and their analogues with not necessarily
convex “tiles”) of finite dimensional spaces, especially the plane, the infinite dimen-
sional theory is still much less developed, though the first “infinite dimensional” re-
sults appeared already in the 1980’s. This paper is devoted to the question of existence
in infinite dimensional normed or Banach spaces of tilings having some particular
properties. Let us briefly recall the main known results.

It is easy to see that some tilings always exist in any locally convex TVS X. Indeed,
if f is a nonzero continuous linear functional on X and 7 is a tiling of R, then the
family B = {f!(T) : T € T} is a tiling of X. Each tiling of this form will be called a
trivial tiling.

Notice that no countable tiling can be disjoint, i.e., consisting of pairwise disjoint
tiles, since otherwise a line in X would admit a disjoint covering by at most countably
many and at least two nonempty closed convex sets, which is known to be impossible
(see Fact 3.2 or [3, Theorem 6.1.27]). It follows that a separable normed space does not
admit any disjoint tiling. On the other hand, some (nonseparable) ¢;(T') do admit a
disjoint tiling by balls of the same positive radius (see V. Klee [8]).

Tilings by bounded (convex) tiles always exist in normed spaces. In1997, V.P . Fonf,
A. Pezzotta, and C. Zanco [6] proved that every normed space X admits a tiling by
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bounded bodies each of which contains a ball of a certain fixed positive radius. Sub-
sequently, A. Marchese and C. Zanco [12] showed that each normed space X admits
a tiling by bounded bodies such that each point of X belongs to at most two of them.
Since this tiling is “point-finite”, a natural question arises: can such a tiling be always
taken locally finite, in the sense that each point of X has a neighborhood intersecting
only finitely many tiles? An answer is contained in a paper by Fonf [5] who showed
that a separable Banach space admits a locally finite tiling by bounded bodies if and
only if X is isomorphically polyhedral. For nonseparable Banach spaces X, it is only
known that if X contains an infinite dimensional closed subspace non containing ¢y,
then X does not admit any locally finite tiling by bounded bodies; this follows from a
generalization due to Fonf and Zanco [7] of a theorem of Corson (1961).

A tiling B is said to be equi-bounded below and above if there exist two constants
0 < r < R < oo such that each member of B contains a ball of radius r and is contained
in a ball of radius R. Already in 1986, V. Klee [9] showed that some nonseparable
Hilbert spaces admit tilings that are equi-bounded below and above. The case of the
separable (infinite dimensional) Hilbert space was settled only in 2010 by D. Preiss [13]
in the positive: ¢, admits a tiling which is equi-bounded below and above. An inter-
esting open problem is: which Banach spaces admit such tilings?

Our interest is devoted to the question of existence of (nontrivial) tilings by bodies
that have a kind of smoothness or rotundity properties. The first such result, due to
Klee and Tricot [11], affirms that a tiling of a Banach space by bounded tiles each of
which is either smooth or rotund has to be uncountable. In particular, a separable
Banach space admits no tiling by smooth or rotund bounded bodies. The only related
known fact for nonseparable Banach spaces follows from results in [10] and says: if
X is a uniformly rotund or uniformly smooth Banach space then it does not admit
any tiling by balls which would be either disjoint or bounded below, i.e., having radii
bounded away from zero.

In the present paper, after proving some general results on tilings in locally con-
vex TVS (Section 3), we show that Banach spaces do not admit nontrivial tilings by
Fréchet smooth bodies, and normed spaces do not admit disjoint tilings by Fréchet
smooth bodies (see Theorem 4.2 and Corollary 4.3). Concerning the existence of
tilings by locally uniformly rotund (LUR) bodies, we show on the one hand that an
LUR Banach space does not admit any tiling by balls, and an LUR normed space does
not admit any disjoint tiling by balls; on the other hand, some nonseparable ¢;(T)
admits a disjoint tiling by bounded centrally symmetric LUR bodies (see Section 5).
This last construction is based on the above-mentioned Klee’s construction [8]. We
also show that some geometric conditions, concerning a single point of the unit sphere
of a Banach space, imply nonexistence of tilings by balls whose radii are bounded away
from zero; see Subsection 4.3.

2 Notations and Preliminaries

Throughout this paper, all normed, Banach or topological vector spaces are real and
at least two-dimensional.
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Let X be a normed space with dual X*. By Bx and Sx we denote the closed unit
ball and the unit sphere of X, respectively. The polar set of a set A c X is the set
A°={feX*: f(a)<1foreachac A}.

Let B c X be a body, that is, a closed convex set with nonempty interior. A point
x € 0B is a smooth point of B if the set Dg(x) = {f € Sx+ : f(x) = sup f(B)} isa
singleton. If ¢ € int B, By = B—¢, and x¢ = x — ¢, it is standard to see (and well known
for balls) that x is a smooth point of B if and only if the Minkowski functional pg, of
By is Gateaux differentiable at xo. We say that x is a Fréchet smooth point of B if pg, is
Fréchet differentiable at xy. (It is standard to see that this definition does not depend
on the choice of ¢.)

We say that x € 0B is an LUR (locally uniformly rotund) point of B if for each € > 0
there exists § > 0 such that if y € 9B and dist(dB, (x + y)/2) < §, then ||x - y| < e.
If B = By, this definition coincides with the standard definition of local uniform
rotundity of the norm at x.

We say that a body B is smooth, Fréchet smooth, or LUR if each boundary point of
B is a smooth, Fréchet smooth, or LUR point of B, respectively.

For f € Sx+ and a € [0,1), we consider the closed convex cone

Cla, f) = {x € X: f(x) 2 afx]}.

Notice that C(«, f) has nonempty interior.

Observation 2.1 Let B c X be a body, x € dB. If x is a Fréchet smooth point of B,
then there exists f € Sx» with the following property: for each a > 0 there exists € > 0
such that

(2.1) [x - C(a, f)] n[x +eBx] c B.

(Also the converse is true, but we will need only the above implication.)

Proof Assume without any loss of generality that 0 € int B. Let g be the Fréchet

derivative of pp at x, and f := H%H' Then pg(x) =1and

L Pl k)~ pa(x) ~g(h)
[#]}~0 I
Consequently, for each « > 0 there exists € > 0 such that pg(x + h) —1- | g||f(h) <

| g|| k| whenever h € eBx. Thus, for h € [-C(«a, f)] n eBx, we obtain pg(x + h) <
1+ |glf(h) + «|g|llk]l <1, and hence x + h € B. This completes the proof. |

0.

Definition 2.2 Let B c X be abody, x € B and ¢ > 0. We say that x is an e-cone
smooth point of B if there exists f € Sx- such that [x - C(%, )] n [x + eBx] c B, that
is, (2.1) holds for « = 1/7. We denote by ¢-CS(B) the set of all e-cone smooth points
of B. We say that x € dB is a cone smooth point of B if it is an e-cone smooth point
of B for some ¢ > 0. Moreover, we say that B is cone smooth if each x € 0B is a cone
smooth point of B.

Lemma 2.3 Let f,geSx+, a,f3,8 >0, and y € §3Bx. Suppose that
a+B+af<t and infg(y+[C(a f)nd(1+pB)Bx]) >0.
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Then |g - f|| < 2(a + B + af).

Proof Byhomogeneity, we can (and do) suppose that § = 1. Put y = « + 5 + af3. For
eachx € C(y, f)nSx, wehave |x—y| < 1+Band f(x-y) > y—B = a(1+f) > a|x-y|.
This shows that C(y, f) n Sx is contained in y + [C(a, f) n (1 + )Bx]. Hence by
our assumption, inf g(C(y, f) n Sx) > 0. Since C(y, f) is a cone, we obtain that
inf g(C(y, f)) = 0. Now [2, Lemma 1.1] (based on the “Parallel Hyperplane Lemma”)
implies that |g — f| < 2y, which completes the proof. [ |

3 General Results on Tilings

In the present section, if not specified otherwise, X denotes a real topological vector
space (TVS, for short).

Given a body B c X, a point x € 9B is called a conical [resp. flat] point of B if the
set (in fact, a convex cone) Uy t(B — x) is closed [resp. is a closed halfspace]. The
body B is plump [resp. flat] if each of its conical [resp. boundary] points is flat.

Let us specify that the terms nonconical point and nonflat point refer only to bound-
ary points of the body. By the way, these two notions are equivalent for plump bodies.

Recall that a hereditarily Baire space is a topological space whose all nonempty,
closed subspaces are Baire spaces.

Let x be a boundary point of a body B. The following simple facts hold.

(a) x is a flat point of B if and only if there exists a (necessarily unique) supporting
hyperplane H to B at x such that x € a-intg(B n H), where a-inty(B n H) is the
relative algebraic interior (or “core”) of Bn H in H.

(B) If X is hereditarily Baire, then in (&) we can write inty (B N H), the topological
relative interior of BN H in H, instead of a-inty (B N H).

(y) Hence if x is a flat point of B, then x is a smooth point (Fréchet smooth point if
X is a Banach space) of B.

(6) Each smooth conical point is a flat point (see also [11, 1.3]) and in normed spaces
each LUR point is a nonconical point. Hence if each boundary point of B is either
a smooth or an LUR point, then B is plump.

As usual, by “arbitrarily near to x” we mean “in any neighborhood of x”. The fol-
lowing lemma is based on [11, 2.1].

Lemma 3.1 Let x be a common boundary point of two bodies B, B’ c X whose inte-
riors are disjoint.

(i)  Ifxisanonconical point of B, then arbitrarily near to x there exists a nonflat point
of B that does not belong to B’

(ii) If X is hereditarily Baire and x is a flat point of both B, B/, then x belongs to
A :=int(B U B') and all boundary points of B or B’ that belong to A are flat.

Proof (i) Let H be a closed hyperplane through x that separates Band B'. By [11, 2.1],
arbitrarily near to x there exist nonflat points of B that do not belong to H. This shows
(i). Part (ii) follows easily from the observation (f3) above. [ |
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A tiling of X is a covering of X by at least two bodies whose interiors are pairwise
disjoint. A disjoint tiling is a tiling whose members are pairwise disjoint. A point
x € X is a singular point for a tiling B if each neighborhood of x meets infinitely many
members of B. The points of Upcs 9B that are not singular are called regular points.

A tiling B is plump if each of its members is plump. Smooth tiling, Fréchet smooth
tiling, LUR tiling, etc. are defined in an analogous way. We say that B has no common
flat points if no point of X is a flat point of two distinct members of B. A trivial tiling
has been defined in Introduction.

The following simple fact is well known; we sketch a proof of it for sake of com-
pleteness.

Fact 3.2  Each disjoint covering of R by at least two nonempty closed convex subsets
of R is uncountable. In particular, R admits no disjoint tiling.

Proof Suppose that B is such a covering and that B is countable. Then the set
S = Ujep 01 is a countable closed (nonempty) set. It is easy to see that S has no
isolated points. On the other hand, a direct application of the Baire category theo-
rem to the complete metric space S = Uses{s} gives existence of an isolated point
of S. This contradiction completes the proof of the first part. The second part holds
by separability. ]

Lemma 3.3 Let U c X be an open convex set, and B ¢ X a body whose boundary
intersects U. Assume that each point of 0B U is a flat point of B. Then each connected
component of 0B N U is of the form H n U where H c X is a closed hyperplane.

Proof For x € 0Bn U, let H, be the unique supporting hyperplane to B at x. We
claim that H, n U c dB. Indeed, if this is not the case, there exists y € (H, n U) \ B;
then [x, y] n B = [x,z] for some z € (x, y) ¢ H, n U, but this is impossible since
clearly z is a non-flat point of B.

Assume without any loss of generality that 0 € int B, and let us consider the func-
tion : 90BN U — X* such that, for x € dBn U, 0(x) is the unique functional of X*
such that [6(x)](x) = 1 = sup[8(x)](B). By the claim above, the map 6 is locally
constant, and hence it is constant on each connected component of 0B n U. ]

Lemma 3.4 Let U c X be an open convex set. Let E,, ¢ X, n € N, be closed halfspaces
intersecting U, such that E,nU c E,1NU for each n. Then either C := U en(E,NU)
contains U, or the set 9C N U is of the form Hn U where H c X is a closed hyperplane.

Proof Suppose that U\ C # @. By our monotonicity assumption, the set C is convex.
Notice that also the set U \ C = ,,en(U N E,) is convex. Since int(Cn U) # @, there
exists a closed hyperplane H c X that separates Cn U and U \ C. Since the union
of the latter two sets is U and they belong to opposite halfspaces determined by H,
either of the two sets must contain the relative interior in U of one of the two opposite
halfspaces. This easily implies the assertion. ]

For simplicity of formulation, if E, F, U are sets and E n U = F n U, we shall say
that E coincides with F in U.
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Theorem 3.5 Let B be a tiling of a locally convex metrizable TVS X, B a member of
B, and x € dB a non-flat point of B. Then at least one of the following three conditions
is satisfied.

(i)  x belongs to at least three different members of B.

(i) x belongs to two different members B, B’ of B and, in some neighborhood of x,
BuU B’ coincides with a closed halfspace.

(iii) Arbitrarily near to x there exist non-flat boundary points of members of B non
containing x.

Proof Assume the contrary, that is, all (i), (ii), (iii) are false. In particular, B, :=
{C € B : x € C} contains at most two elements (one of which is B), and there exists
an open convex neighborhood U of x in which the only non-flat boundary points of
members of B belong to some element of B,.

We claim that arbitrarily near to x there are points of members of B \ B,. This is
clearif B, = {B}. Let B, contain also some B’ # B. If our claim is false, BUB’ contains
aneighborhood V of x. But this easily implies that, in such a neighborhood V, the set
B (and B’, too) coincides with a closed halfspace, contradicting the assumption that
x is a non-flat point of B.

Now, observe that if C € B \ B, then, by Lemma 3.3, each component of 0C n U
coincides in U with a closed hyperplane.

Fix a sequence {C, } ¢ B \ B, such that the distances d(x, C,,) tend decreasingly
to 0. By the above observation, for each n € N, there exists a closed hyperplane H,,
such that H, n U c dC,, and H,, separates C, N U and C,;; n U, as wellas C, n U
and (U B,)nU. Let E, be the closed halfspace such that 0E,, = H, and C,nU c E,,.
Since the sets E,,n U form an increasing sequence which does not cover U, Lemma 3.4
implies that the relative boundary of U,y (E,nU) in U is of the form HNU where H
isa closed hyperplane. Clearly, H is a supporting hyperplane to Bat x, and (U B, )nU
is contained in one of the two closed halfspaces, say G, determined by H.

If B, = {B} then in any neighborhood of x, B does not coincide with G, since x
is a non-flat point. If B, = {B, B’} (with B’ # B), then in any neighborhood of x,
B U B’ does not coincide with G, since (ii) is false. This means that, arbitrarily near to
x, there exists a boundary point y of some D € B\ B, such that y € int G. Notice that
for each such D, DN U is contained in G since it is disjoint from each C, n U (n € N).

Proceeding as above, we can find a sequence {D,, } ¢ B\ B, and closed halfspaces
F,, n € N, such that the following hold:

e 0F,NnU coD,;

* OF, separates D, N U and D,4; n U, as wellas D, n U and (UB,) n U;
e D,nUcF,;

o the sequence {F, n U} is increasing and contained in G.

Now Lemma 3.4 again implies that the relative boundary of U,y (F, N U) in U is of
the form H' n U where H' is a closed hyperplane through x. Moreover, H' n U c G.
But x € 0G n H' n U easily implies that H' = 0G (= H). So we obtain that BnU c G
and also BN U c N,en(U N E,) ©¢ X\ G, and consequently Bn U c H, which is
impossible since B is convex and has nonempty interior. This contradiction completes
the proof. ]
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Definition 3.6 ([1]) Let B be a body in a TVS X. We say that x is a QP-point of
B if and only if there exists a neighborhood V of x such that [x, y] ¢ 0B whenever
yeVnoB.

We will need the following simple lemma. (By the way, it is strictly connected with
[11, Theorem 5.1] and with the easy implication in the following result of V. P. Fonf [5]:
a separable Banach space admits a locally finite tiling by bounded bodies if and only if
it is isomorphically polyhedral.)

Lemma 3.7 Let B be a tiling of a TVS X, and let x € Upes 0B be a regular (i.e.,
non-singular) point for B. Then x is a QP-point of each member of B that contains x.
In particular, if x is contained in only two members of B, then x is a flat QP-point for

both of them.

Proof Assume that x = 0 and denote By = {B € B : 0 € B}. Since By is finite, it is
easy to see that 0 € int(lU By) (see also [9, Theorem 1.1]). Let V c X be abalanced (i.e.,
starshaped w.r.t. 0) open neighborhood of 0 such that V c int(U By ). Notice that the
sets BNV (B € By) form a finite “tiling” of V.. Now, fix arbitrary B e Band y € dBnV.
Then necessarily y € B’ for some B’ € By \ {B}, and hence [0, y] ¢ Bn B’ c dB. This
shows that 0 is a QP-point of B. Finally, if By = {B, B}, let V be as above and let H be
a closed hyperplane through x that separates B and B’. Notice that then necessarily
0BNV =0B' 'nV =Hn V. The proof is complete. [ |

The following theorem is the main result of the present section. Given a set E ¢ X
and a neighborhood V of the origin, we write diam(E) < V to say thatx — y € V
whenever x, y € E. Thus if X is a normed space, then diam(E) < ¢By is the same as
diam(E) <e.

Theorem 3.8 Let B be a tiling of a locally convex TVS X. Assume that at least one of

the following conditions is satisfied:

(i) B isdisjoint;

(ii) X is completely metrizable, B is plump and nontrivial;

(iii) X is completely metrizable, B has no common flat points.

Then B is uncountable. Moreover, if P := {(x,B) : B € B,x € 9B} = U,en P where

P1c P, ..., then there exists m € N with the following property:

(*)  for each neighborhood V of 0 there exist three couples (x;,B;) € P, i = 1,2,3,
such that the bodies B; are pairwise distinct and diam{x;, x5, x3} < V.

Proof (i) Let B be a disjoint tiling of X. Let Y c X be a straight line intersecting at
least two members of B, andlet B’ = {BnY : Be B,BnY # @}. Since B’ is a disjoint
cover of Y by nonempty closed convex sets, B’ (and hence also B) is uncountable by
Fact 3.2. Since Y is separable, the family B” = {B € B’ : inty B # @} is at most
countable. Hence C := {B € B : #(BN Y) = 1} is uncountable. For n € N, let C,, be
the collection of all B € € such that BNn'Y = {x} and (x, B) € P,,. Since € = U, C,,
there exists m € N such that €,, is uncountable. The set M := Ugpce, (BN Y) is
uncountable, and hence it has an accumulation point w € Y. Then arbitrarily near to
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w we can find three distinct points x;, x2, x3 € M. Let By, By, B3 € C,, be such that
x; € 9B; (i = 1,2,3). Then By, B,, B are pairwise distinct, (x;, B;) € P,, fori =1,2,3,
and diam{x;, x2, x3 } “can be taken arbitrarily small”. Thus (i) is proved.

(ii) Let X be completely metrizable and let B be a nontrivial plump tiling of X. Let
us use the following notations.

B,:={BeB:x¢eB} (x € X),

(3.1) 7B := {x € 9B : x is a nonflat point of B} (BeB),
nB:= U 5B, S:= U 0B.
BeB BeB

Notice that S is closed in X. If #B = &, then each element of B is flat; in this case,
Lemma 3.3 (with U = X) easily implies that B is a trivial tiling. Hence we have that
nB # @, and the closure 5B is a Baire space.

Suppose that B is countable. Then #B = Upes (7B N 9B), and hence there exist
By € B, x € #BnaB, and a convex open neighborhood U of x such that yBNU c 9B,.
Clearly, x cannot be a flat point of By; indeed, otherwise we can suppose that in U the
body By coincides with a closed halfspace, and then #B N U = &, which is impossible.
Thus x € #By. In this case, one of the conditions (i) or (ii) in Theorem 3.5 must hold.
It is easy to see that this implies existence of some B; € B such that x € #B;. Notice
that x is a nonconical point of By since B, is plump. By Lemma 3.1 (i), there exists a
nonflat point of By contained in U \ By. But this contradicts the choice of x. We have
proved that B is uncountable.

Now let us show the second part of (ii). If some x € S belongs to three distinct
B1, B,, B3 € B, there exists m € N such that (x, B;) € P, forall i € {1,2,3}, and then
() trivially holds with x; = x5 = x3 = x.

So let us suppose that each x € S belongs to at most two members of B. Then
1B = Upen Ap where A, = {x € nB : (x,B) € P, whenever B e B, }. Since B is a
Baire space, there is m € N such that A, has nonempty relative interior in #B. That is,
there exist x; € A,, and a convex open neighborhood U of x; such that Un ;778 cA,.
By Lemma 3.1 (ii), x; cannot be a common flat point of two distinct elements of B, .
Thus either x; is a nonflat point of some B € B,,, or B,, = {B;} and x; is a flat point
of Bl.

Case I: x1 € nB;. Since we must have either (ii) or (iii) in Theorem 3.5, arbitrarily
near to x; there exists a nonflat point x of some B € B \ {B;}. If x € B;, we can
apply Lemma 3.1 (i) to find a point x’ € #B \ By arbitrarily near to x. So we can
always suppose that x € U \ By, and hence x € A,,. Arbitrarily near to x there exists
X3 € Ap n (U N By).

Case 2: By, = {B,} and x; ¢ #B,. Since x; € 1B and all points sufficiently near to x;
are flat for By, arbitrarily near to x; we can find a nonflat point x of some B € B~ {B; }.
Proceeding as in Case 1, we get that arbitrarily near to x there exists x, € A,,n(U\By).

In both Cases 1 and 2, fix B, € B,,. Now considering an open convex neighbor-
hood U’ of x, such that U’ c U \ By, we can proceed as above to find, arbitrarily near
to x,, a point x3 € A,, N (U’ \ B,). Fix B3 € B, and notice that the bodies Bj, B;, B;
are pairwise distinct, (x;, B;) € P,, for i = 1,2, 3, and diam{x;, x2, x3} “can be taken
arbitrarily small”. This completes the proof of part (ii).
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(iii) Let X be completely metrizable and let B be a tiling that has no common
flat points. We will use the above notations (3.1). Assume that B is countable. Then
S = Upes 9B is a Baire space (since it is closed), and hence there exists By € B for
which 0By has nonempty relative interior in S. That is, there exist x € dBy and a
convex open neighborhood U of x such that UnS c 0B,. We can suppose that UndB,
is connected, and so U \ 9By has two components. Hence there exists B; € B~ {Bg}
such that U c By u By. It follows that U n 0By = U n 9B is contained in a closed
hyperplane and hence x is a common flat point of By and B;. This contradiction
shows that B must be uncountable.

Now as in (ii), if some x € S belongs to three distinct members of B, we are im-
mediately done. So, let us assume that #B, < 2 for each x € S. For n € N, denote
A, ={x¢€S: (x,B) € P, whenever B € B, }, and notice that S = U,y A,. Hence,
for some m € N, A, has nonempty relative interior in S, that is, there exist x; € A,
and a convex open neighborhood U of x; such that Un S c A,,. We claim that x; is
necessarily a singular point of B. Indeed, if not, we can apply Lemma 3.7 to obtain
that B,, = {Bo, B} with By # By, and x; is a common flat point of By, By, which is
impossible.

Thus x; is a singular point of B. Fix B; € By, . Then arbitrarily near to x; there exists
x € 0Bn U with B € B \ {B;}; and arbitrarily near to x there exists x, € A,, \ Bj.
Fix B, € B,, and notice that B, # B;. Now, arbitrarily near to x; find x” € dB" with
x" € B\ {By, B, }; and arbitrarily near to x" find x3 € A, \ (B; U By). Fix B; € B,,.
Then By, B,, Bj are pairwise distinct, (x;, B;) € P, fori =1,2,3,and diam{x;, x5, x3 }
“can be taken arbitrarily small”. This proves (iii), and we are done. [ |

Corollary 3.9 (cf. [11]) Let B be a countable plump tiling of a locally convex com-
pletely metrizable TVS. Then B is trivial.

4 Applications to Normed and Banach Spaces
In what follows, X is a normed space.
4.1 Smoothness-type Prohibitive Conditions

For the definition of e-CS(B) see Section 2.

Lemma 4.1 There exists a constant H € (0,1) such that if ¢ > 0, By, By, B; are
convex bodies in X with pairwise disjoint interiors and x; € e-CS(B;) (i = 1,2,3), then
diam({x;, x2,x3}) > He.

Proof We claim that our lemma holds with H = 1/51. Put & = 1/7 and 8 = 1/50, and
notice that y := a +  + aff = 2% < ¢. By homogeneity, we can (and do) suppose that
e =1+ f =51/50. Then He = 1/50.

Now assume that the assertion is false, i.e., diam({xj,x,,x3}) < He = B. Let
fi € Sx+ (i = 1,2,3) be such that K; := x; - [C(a, f;) n (1+ B)Bx] c B;. Since the
bodies Kj, K3, K3 have pairwise disjoint interiors, for each i, j € {1,2,3}, i < j, there
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exists g;j € Sx» such that sup g;;(-K;) < inf g;;(-K;), that s,
inf gi;( (xj - x;) + [C(a, fi) n (1+ B)Bx]) > sup gi;([C(a, fj) n (1+B)Bx]) > 0.

By Lemma 2.3, | gij — fi| < 2y. In a similar way we obtain | g;; + f;| < 2y. But now

since 21 = (fi—gu2) + (fa+ g12) — (2= 823) — (f5+ 823) + (f5 + g13) + (fr — g13), we
obtain 2 = ||2f;| < 6 -2y < 2, a contradiction. [ |

Theorem 4.2  Let B be a tiling of a normed space X. Assume that at least one of the
following conditions is satisfied:

(i) B isdisjoint;

(ii) X is complete, B is plump and nontrivial;

(iii) X is complete, B has no common flat points.

Then B is not cone smooth.

Proof Let us suppose on the contrary that B is cone smooth. Let P be as in Theo-
rem 3.8 and for each n € Nlet P, := {(x,B) : Be B, x € (1/n)-CS(B)}. Then
P1 ¢ P, c --- moreover, since B is cone smooth, P = U, P,,.

Now let H be the constant from Lemma 4.1. By Theorem 3.8, there exist m € Nand
three couples (x;, B;) € Py, i = 1,2,3, such that the bodies B; are pairwise distinct
and diam{x;, x5, x3} < H/m. But this contradicts Lemma 4.1. [ |

Now since Fréchet smooth bodies are cone smooth (see Section 2) and plump (see
(8) in Section 3), we immediately obtain the following.

Corollary 4.3  Let B be a Fréchet smooth tiling of a Banach space X. Then B is trivial.
In particular, X does not admit any Fréchet smooth tiling by bounded bodies.

4.2 Rotundity-type Prohibitive Conditions for Ball Tilings

We will need the following elementary observation. As usual, if ¢,y € X are two
distinct points then (¢, y) denotes the relatively open line segment with endpoints
¢,y thatis, (c,y) ={(1-t)c+ty:0<t<1}.

Observation 4.4 Given B = B(c,r), y € 0B, and 0 < p < r, there exists B’ = B(c', p)
such that ¢’ € (¢, y), B ' c Band y € B’

Lemma 4.5 Let X be a normed space, & > 0, € > 0, and By, By, B, c X three balls of
radius at least o, whose interiors are pairwise disjoint. Consider three points y; € 0B;,

i =0,1,2, and denote x = ﬁ where ¢ is the center of By. If diam{ yo, y1, y2} < ae,
then
(4.1) diam{y € Sx: |xo + y| 22—} >2- 2.

Proof By homogeneity and by Observation 4.4, we can assume that & = 1 and the
three balls have unit radius and that diam{yg, y1, y2} < €. We can also assume that
co = 0, so that xo = yo. For i = 1,2, let ¢; be the center of B;, and denote z; = ¢; — X

and z; = ﬁ Since z; = (¢; — yi) + (yi — yo) and ||c; — yi| = 1, we have 1 — ¢ <
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lzi| <1+ ¢ and hence |z; — z;| < & Since xo +2Z; = (¢; — co) + (2; — z;) and
lei = col| > 2, we have |22 | > 1- £, and hence the points Z;, Z; belong to the set
from (4.1). Finally, since z; — 2, = (c1 —¢) +(Z1 - z1) + (22 — Z3), we obtain that
|21 — 22| 2 |e1 — e2| + |21 — 21| + |22 — 22| = 2 - 2¢, completing the proof. [ |

Definition 4.6 We shall say that x € Sx is a locally non-D2 (or LND2) point of Bx
if there exists § > 0 such that diam{ y € Sx : |22 >1- 6} <2.

In the above definition, “D2” stands for “diameter 2”. Notice that each LUR point
of By is clearly an LND2 point.

Theorem 4.7  Let B be a tiling by balls of a normed space X. Assume that at least one
of the following conditions is satisfied:

(i) B isdisjoint;

(ii) X is a Banach space and B is plump;

(iii) X is a Banach space and B has no common flat points.

Then there exists x € Sx such that x is neither a cone smooth point nor an LND2 point
Ofo.

The proof is similar to the proof of Theorem 4.2.

Proof Let us suppose on the contrary that this is not the case, that is, each x € Sx
is either a cone smooth point or a LND2 point of Bx. If B € B, let us denote by rg
and cp the radius and the center of B, respectively. Let P be as in Theorem 3.8 and for
each n € N, let P, c P be the set of all couples (x, B) such that rz > 1/n and at least
one of the following two conditions holds:

(a) dlam{yesx I+ ol 22~ 11 <a-2,
(b) x e L-CS(B).
Clearly, P, c Py c---andP=U, P

Let H be the constant from Lemma 4.1. By Theorem 3.8, there exists m € N and
three couples (x;, B;) € P, i = 1,2,3, such that diam{xy, x5, x3} < H/m? and the
balls B; (i = 1,2, 3) are pairwise distinct and with radii at least 1/m. Now, it suffices to
consider the following two cases.

Case I: x; € ---CS(B;) for each i = 1,2, 3. This case is impossible by Lemma 4.1 since
diam{x;, x5, x3} < H/m? < H/m.

X1— CBI
xX1—CB, I

Case 2: dlam{yESX || 1 +yH22—$}<2—%.Since

diam{x;, x5, x3} < H/m?* <1/m?,

CB]
[x1—cg, |
which is a contradiction. |

Lemma 4.5 (with & = 1)g1vesthatd1am{yeSX ” +yH >2- -+ 22—%,

Since each LUR point is a LND2 point, and each Fréchet smooth point is a cone
smooth point, we obtain the following corollary.
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Corollary 4.8 Let B be a tiling by balls of a normed space X. Assume that either B
is disjoint or X is complete. Then there exists x € Sx such that x is neither a Fréchet
smooth point nor an LUR point of Bx. In particular, an LUR Banach space admits no
tiling by balls, and a normed LUR space admits no disjoint tiling by balls.

4.3 One-point Prohibitive Conditions for Large-ball Tilings

Now we are going to consider tilings by balls whose radii are bounded away from 0.
Let us recall two well known geometrical notions. Given a norm-one functional f ¢
X*, aslice of Bx, determined by f, is any set of the form

S(f,8)={yeBx:f(y)>1-08} wherede(0,1).

A point x € Sx is said to be a strongly exposed point of By if there exists a norm-one
f € X* such that f(x) =1and diam(S(f,8)) -~ 0as§ — 0*.

Theorem 4.9 Let X be a normed space. Suppose that at least one of the following
conditions holds:

(i)  there exists x € Sx such that X is LND2 at x and x is not a QP-point for Bx;

(ii) there exists an LUR point in Sx;

(iii) there exists a Fréchet smooth point x € Sx, which is not a QP-point for Bx, and
the unique norm-one functional f, € X* that supports Bx at x determines a slice
¥ of Bx with diam(X) < 2;

(iv) there exists a Fréchet smooth point x € Sx which is a strongly exposed point of Bx.

Then X admits no tiling by balls with radii bounded away from 0.

Proof Let B be a tiling of X by balls with radii bounded away from 0. We can sup-
pose that Bx € B.

First assume (i). Let x € Sy be such that X is LND2 at x and such that x is not
a QP-point for Bx. By Lemma 3.7, x is a singular point for B. Thus there exist a
sequence {B, } of pairwise distinct elements of B \ {Bx}, and points y, € dB,, such
that y, — x. Fix an arbitrary § > 0. Since diam{x, y,, .11} — 0, we can apply
Lemma 4.5 to deduce that for each ¢ € (0, 28) we have

diam{y e Sx: [x + y| >2-28} >diam{y e Sx: |[x+ y| 22-¢} >2-2¢.

It follows that diam{y € Sx : |55%|| > 1 - 8} = 2 for each § > 0. But this contradicts
the fact that x is a LND2 point for By, and part (i) is proved. Moreover, since each
LUR point x € Sy satisfies (i), part (ii) immediately follows.

Now assume (iii). By the first part of the proof of part (i), diam{y € Sy : | 52| >
1— 8} = 2 for each & > 0. This easily implies existence of a sequence {y, } c Sx such
that |*2*| — 1, and diam({y» }n>n,) = 2 for each ny € N. By convexity of the norm,
for each n € N there exists z, € (x, y,) such that |z,| = min{|z| : z € [x, ya]}.
It is not difficult to see that |z,| > ||x + y,| — 1 (indeed, if 2, € (x, y,,) is such that
Z";Z:‘ = 22 then || x + yu| = |za + 2| < |za| +1). For each n € N, let f, € X* bea
norm-one functional that separates |z, |Bx and [x, y,]. Clearly,

fu(zn) = l|znl = fu(x) = fu(yn)-
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Notice that |z,|| - 1, thatis, f,(x) — 1. Since x is a Fréchet smooth point of By,
we have that f, — f, in the norm topology (see, e.g., [4, Corollary 7.22]). It follows
that f,(y,) — L In particular, y, belongs to X for each sufficiently large n, and hence
diam(X) > 2. This contradiction proves (iii). Finally, part (iv) follows easily from part
(iii). Our theorem is proved. [ |

5 An LUR Disjoint Tiling of ¢,(T)

In this section we show that for some suitable uncountable set I' the Banach space
£1(T') admits a disjoint tiling by bounded LUR bodies. Our construction is based on
a construction by V. Klee [8] of a disjoint tiling of £;(T') by translates of the unit ball.
Let us start with some preliminary work.

Let T be a nonempty set and let us denote by | -||; the canonical norm of ¢;(T)
(i =1,2). For x € £,(T), let us define |x| = (|x|? + |x|2)"/2. It is known that || - | is
an equivalent LUR norm on #;(T') [4, Lemma 13.26].

In what follows, let M > 41/2 be a fixed constant. For y € T and x € £,(T), let us
define

1
IxI} = lx(B)+—|x()],
/361;{)'} M !

1/2
%]} = KB+ —x(F)
A= ( Z FOF 300

1l = [+ (1))

It is easy to see that (¢1(T), |- |*) and (€6,(T), | - |) are linearly isometric, and hence
| -]” is an equivalent LUR norm on ¢;(T).

Asusual, B.| and S; .| denote the closed unit ball and the unit sphere of a norm
| -|l. Notice that the polar set (B|.|)° is the corresponding dual unit ball. We will
need the following fact, the easy proof of which is left to the reader.

Fact 51 Letx € Sj.|y, and f € €o(T). Assume that f = a\fi + a, fo, where f; €
(BH . Hy)" (i =1,2), and ay, a, € R are such that a? + a3 < 1. Then
M) feBp)
(i) ifa; = fi(x) = |x||} (i =1,2), then f(x) =1=sup f(By. ).
Let {ep } ger denote the canonical basis of £,(T'). Let us define

zZy 1= (M/\/E)ey (yel).
It is elementary to see that

Iz} = 2,15 =1/v2 and |[z,]" =1 (yeD).

Lemma 5.2 Let yo and y, be two distinct elements of T. Let x € . o be such that
x(y1) = 0. Then there exists f € £oo(T) \ {0} such that f(x) = sup f(By. ) and
f(zy,) =sup f(By-n).
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Proof Let usdefine fi, f5, f € o (T) as follows.

sign[x(y)]/M ify = yo,

fily) =41 ify =y
sign[x(y)]  ify #yoy
x(P)/IM*|x[3]ify = yo,

ify =y,

x(y)/ =[5’ ify # yo, y15
= %[ A+ 13 fo-

An easy calculation shows that

* fie(By. ufO)O and fi(x) = x[}";

* f2€(By. ”;0)0 and f(x) = [x[}°

* f(x)=1=sup f(Bj.|») by Fact 5.1.

It remains to show that sup f(Bj.n) = f(2y,). Let us define g1, g2, € € (T) as
follows.

o

fy) =

Y ify =y,
- {zfm/uxmm ify #
UM ify =y,
&(y) ={O ifi%;;
=zl + 2,05 82 = (1/V2) (&1 + ).
Since || [7° > [ - |2°, we easilyobtain |-17° > |- |”°/+/2. Moreover, since | f ()| < 2
(y € T), we have Hz‘ﬂsg'l)vl[ < = \f(y)| 4\[ < 1. This easily implies that g € (By. ”yl)

It is also easy to verify that g, € (B. Hgl) and g;(zy,) = 1/V/2 = |z, |} (i = 1,2).
Using Fact 5.1, we obtain g(z,,) = 1= sup g(B.n ). To finish the proof, notice that
f(y) = x| and g(y1) = f . Now it is easy to verify that f = 7 M || x]7°g, and hence
f(zy,) =sup f(Bj-n). u

Lemma 5.3  Let yy and y, be two distinct elements of I'. Let x,, be an element of
€ (T) \ By »o such that x,, (y1) = 0. Then the sets By := B|. |y and By := Xy, + 2y, +
Bj.n are disjoint.

Proof Since x,, (y1) = 0, by Lemma 5.2 there exists f € £o,(T') \ {0} such that

f(zy,) =sup f(Bj.n) =—inf f(Bj.n) and sup f(Bo) = f( )-

%y HV"

Since |x,,|"* >1and clearly f (xyl) > 0, we obtain

supf(BO) 1nff( + Zy, + BH “yl) < inff(Bl),

which proves that By and B, are dls)01nt. [ |
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Letusrecall that IT' is a regular cardinal if T is a cardinal such that each cofinal subset
of T has the same cardinality as I'. (A set A c T'is called cofinal with T' if each element
of T' is less than or equal to some element of A.) It is known that there exist arbitrarily
large infinite regular cardinals T such that T™ =T (see [8]); such cardinals are clearly
uncountable. Given a set M, we denote by | M| its cardinality.

Theorem 5.4  Let1be a cardinal such that I = 1. Then ¢,(1) admits a disjoint tiling
C by centrally symmetric bounded LUR bodies.

Proof Let us proceed in two steps.

Step 1: Let T be a regular cardinal such that I = T. Put X := £;(T). We shall show
that X admits a disjoint tiling B by centrally symmetric bounded LUR bodies.

Proceeding as in the proof of [8, Theorem 1.2], it is not difficult to show that if K is
an infinite cardinal, then |¢,(K)| = K*. Then | X| = T and hence we may assume that
X is well ordered by an antireflexive relation < as to be order-isomorphic with I'.

For B € T, denote X = {x € X : x(y) = 0 Vy > f}. Let us inductively construct
families Bg (B € I'). For & = minT, we define x4 = 0, yo = 24, and By = {yo + B|. |« }
(recall that z, = Me,/\/2).

Now let B € T \ {a}, and assume that the families B, have been already defined
forall y < B. Put Y3 = U,g(UB,).

(i) Ileg c Y/g, define Bﬁ = Uy<ﬁ ‘By.
(i) Otherwise, let xg be the first point of X \ Yg, and define

Bg = ( Lgﬁﬁy) u{yp +BH.”p} where yg = xg + 2.
y

We shall show that the family B = Uger By has the desired properties.

First of all, let us show that the elements of B are pairwise disjoint. Indeed, let
Bo = yp, +B. s and By = yg, +B| . s be two distinct elements of B (with oy, B1 € I').
By our construction, we may suppose that Bo < B1, xg, ¢ ¥, + B| . s and xg, (1) = 0.
Since xp, (B1) = xp,(P1) = 2p,(P1) = 0 and xp, — x5, — zp, ¢ B|. s, We can apply
Lemma 5.3 to conclude that By. s, and (xp, — xp, — 2g,) + B|. s are disjoint. It
follows that B; and B are disjoint.

It remains to show that B covers X. Suppose that this is not the case and let w be
the first element of X N\ UB. Put L = {x € X : x < w}. Since L is covered by B, for
each v € L there exists B, € I' such that v € yg, + By.js,. Let us consider the set A c T
defined by

A= supp(w) U U [supp(v) U supp(yp, )]
(here supp(u) denotes the support of u € X). Notice that
|A] < (2|L| +1) - Ro = max{|L|,R¢} < T.

Since T is regular and |A| < T, A is not cofinal in T. Thus there exists § € I such that
B < & foreach e A. Clearly, w € Xs ~ (UB) c X5\ Ys.

We claim that w is the first element of X5 \ Ys. Indeed, if v € L, then 8, € A and
Bv < 6, which implies that v € yg, + By s, ¢ UBg, c Ys.
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But this means that w = x5 € (y5 + B|.s) € B, which is a contradiction that
concludes the proof of the first step.

Step 2: To prove the general case, we proceed as in the proof of [9, Theorem 3.2]. Given
our cardinal I, consider T := (2!)*, the successor of the cardinal 2!. By [8, Remark 1.1]
[ is regular and T™ = T. By Step 1, ,(T) admits a disjoint tiling B by centrally
symmetric bounded LUR bodies. For each B € B let ¢ be its center of symmetry.

LetIp = I c T and Gy = @. Let us inductively construct Ig c T and Cg c B for
B < w;. Assume that I, and €, have been already defined for all y < . If 8 is a limit
ordinal, define Cp= Uy<p Cyand g = Uy<p Iy- If B = a +1, define

Cp={BeB;Bn&(la) #2}, Ig=1I, uBLé supp(ca).
€Cp

We claim that |Ig| = Tand |C4| < I'for each 8 < w;. Let us prove our claim by induction.
Clearly it holds for = 0. Now assume that [I,| = T = I"* and |C,| < I hold for each
a < . If B is a limit ordinal, then we have I < [Ig| < RoI = Iand |Cg| < RoI = L. For
B = a+1, wehave |Cg| < [£1(Ia)| = [Io[™ = I, and hence also [Iz \ L,| < Ro|Cp| < I
which implies that [I4| = I. The claim is proved.

Now define J = Ug<, Ig. Clearly, [J| < ®;T = Tand hence [J| = I. Let €’ = Up<q, Cp
and C = {Bn¢(]) : B € C'}. Then C is a disjoint tiling of ¢,(J) by centrally symmetric
bounded LUR bodies. We are done since ¢;(J) and ¢;(I) are isometrically isomorphic.

|

Remark 5.5 Let us remark that under the generalized continuum hypothesis our
assumption I™ = T holds for every uncountable cardinal I. To see this, first suppose
thatI = K* (the successor of a cardinal K). Then I = 2K and hence I = 2K®0 = 2K =T,
Now assume that I is not a successor cardinal; hence 2X < Twhenever K < L. As usual,
we can identify any ordinal K with the smallest ordinal of cardinality K, and hence
also with the interval [0, K) of ordinals. Since I is uncountable, every sequence in
[0,1) is contained in [0, K) for some infinite cardinal K < I. Hence

I<I™< 3 Ko< S (29%= 3 28<I1.1=1,

wo<K<I wo<K<I wo<K<I

and we are done.
On the other hand, it follows by [8, Proposition 3.5] that if £ (X;) admits a disjoint
tiling, then we have &, = 2%0 the continuum hypothesis.
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