
TENSOR FIELDS AND THEIR PARALLELISM

MINORU KURITA

Much has been studied about an almost complex structure these ten years.

One of the problems about the structure is to find an affine connection which

makes a given almost complex tensor field parallel. A Riemannian connection

is a one without torsion for which the fundamental tensor field of a Rieman-

nian manifold is parallel. Affine connections on the group manifold were in-

vestigated fully by E. Cartan in [1]. In this paper we treat in general some

tensor fields and affine connections which make the fields parallel. Moreover

some studies about certain tensor fields are given.

1. Affine connections associated with a given tensor field

We assume in this paper that M is an ^-dimensional connected separable

differentiable manifold of class C00 with a tensor field A of class C00. In the

first we have the following theorem.

THEOREM 1. We assume that M has an affine connection for ivhich a given

tensor field A is parallel. Then Jor any point p^M we can take in each tangent

space of points of a suitably chosen neighborhood Up differentiable frames with

respect to which components of A are constant each and the constants are equal

on the whole manifold M.

Proof. We take an arbitrary point p^M and a coordinate neighborhood

Up. Then Up can be covered simply by curves starting from the point p. Now

we take in the tangent space at p a frame R which by means of the given

connection we translate along every curve above stated in such a way that

resulting frames are parallel. Then the forms (ωj) of the affine connection

vanish along the curve and for the components of absolute differentials of the

tensor A - (a)\'.'.jr

s) we have

As A is parallel, we have da}\'.'.jr

s = Q along the curve and a)\\\\)r

s are constant

and are equal to the values at p. Thus they are constant on Up for the frames
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chosen above. Now M can be covered by neighborhoods Up of every point p,

and neighborhoods UQ and Up of two points pQ and p can be joined by a finite

chain of neighborhoods Uu . - - , Uk> Firstly we take a frame i?0 on the tangent

space at po and determine frames for all points of Z70 in the way discussed above.

We take a point A G UQΓ\ lh and similarly determine frames for the points of

Uι starting from the one at pi already determined. Next we take p2^U\Γ\ Ui

and proceed in the same manner. In this way frames for points of Up are

determined, and we have frames at every point of M for which the components

of the tensor A are each the same. Of course the frame at a same point is

not unique, because Uo and Up may be connected by different chains of neighbor-

hoods, and for two frames R and R at a point p frame transformation preserves

the constant components of A.

Before we take up a converse of theorem 1 we define a reductive decompo-

sition of a Lie group G = GL(n). Elements of G can be represented by matrices

P with respect to a frame taken in the vector space. Each coefficient p) of

dPP'1 = (pj) (j denotes a number of row and i a number of column) is an in-

variant form of G. Independent linear combinations

Pp = *Σkpijβ} (p = 1, . . . , n2; iy / = 1, . . . , n) (1.1)

with constant coefficients kpij are called relative components by E. Cartan. For

a closed subgroup H of G we can take such a system that

P* = 0 (a = l h) (1.2)

hold good for P^H. These pα are called principal relative components of G/H.

We take variable P G G and constant S e G and denote relative components

induced from dPP"1 and d(SP)(SP)~1 by pp and αp respectively. Then we have

op = Σ spQpq {p, q = 1, . . . , n2)
Q

and (spQ) is an element of a linear adjoint group corresponding to S. If for

any S G ^ w e have

ΰα = Σ Sαbpby Ou = Σ SuvPυ* (1.3)

(α, b = 1, . . . , h w, υ = h + 1 , . . . , n2)

we say that G is reductive with respect to H. Relations sαu - 0 (α = 1, . . . , h

u = h + 1 , . . . , n2) hold good for S e H if H is connected, and suα = 0 for S e //
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hold good if H is connected and the Lie algebra fl of G has a decomposition

fl = m + ί) such that ϋjfβ C ϊj, [fjm] C m, where ΐ) denotes the subalgebra corre-

sponding to H. (cf. [7] p. 4, 7. [11] p. 41)

Now a converse of theorem 1 can be stated as follows.

THEOREM 2. We assume that M is an n-dimensional differentiable manifold

and has a tensor field A and in each neighborhood of any p^M differentiable

frames in the tangent spaces can be so chosen that the components {a)[\';X) of

A are constant each and the same over the ivhole manifold M. We denote by

H a subgroup ofG = GL(n) ivhich preserves all the constant components (a}\;;;}£)

and we assume that G is reductive with respect to H. Then we have an affine

connection on M for which the given tensor field is parallel.

Proof. Any differentiable manifold has an affine connection (without torsion)

induced by a Riemannian metric which always exists. We take an advantage

of such a connection on M. We take a neighborhood Up of an any pointp^M

and for the frames already chosen in Up by assumption we denote the con-

nection forms of the above connection by (TΓ)) and put πp = Σ kpaπ) with kp, j
ij

as in (1.1) for which (1.2) holds good. (1.1) can be written conversely as

Pi = Σ UjpPp {i, j = 1, . . , n ί P = 1, . . . , n2). With these hjp we have

(1.4)
p

We drop terms containing πa (a = 1, . . . , h) and we get

j 1, . . . , n2) (1.5)

Then (ωj) is a ϊj-valued differentiable form, and for the constant components

tf}ί!'.!jϊ oί the given tensor field A we have

Σ Σ flWi±;> - Σ Σ 4<# ::x.£ = 0, d.6)
k i I j

(i, y = l , . . . , n; ft=»l, . . . , r ; / = ! , . . . , s)

and for a covariant differential FA of the given tensor field we have

r&vX^da&Y/js + R, (1.7)

where R denotes the term on the left side of (1.6). As αj }:::ί; are constant,

we get FA = 0. Thus we have obtained a required connection in a neighbor-

hood Up of any point p. Now we will show that our process is consistent and

our connection is defined on the whole manifold M.
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To each point in Up Γ) Uq two differentiable frames are attached, namely

a frame R defined in Up and R defined in Uq by assumption. We denote by

7τ= (πj) and π = {π}) forms of the connection taken in the first with respect to

frames R and R respectively and by T a frame transformation from R to R.

Then we have

(1.8)

When we put πp = Σ kpijπ), πp ~ Σ A/,y7rj, (1.8) can be represented as
ij ij

Σ α̂7Γα + Γ/>> (1.9)πp

where (f^) is a linear adjoint transformation and τp are relative components

corresponding to T. Constant components a){γ;.)r

s dire same for frames R and

R and so T keeps each tf)ί ::*./£ invariant. Thus T belongs to the group // and

we have

tab » 0, ί«» = 0, Tα =* 0 (a, b = 1, . . . , h : w, v = /Ϊ + 1, . . . , n2)

and so πa = Σ ία&7Γ6, τf« = Σ ί«v7Γϊ; + r». (1.10)Σ
6

Now a required connection (ω}) and (wy) were constructed from

P V

by dropping terms containing 7rΛ and 7Γα respectively. (1.10) shows that if we

take ωa = 0, ωu = πu instead of πa, πu and ωa = 0, ωu = 7f« instead of πa, πu re-

spectively we have

ωa = Σ ίβδωό, ωw = Σ iwû y + τ« (l.ll)
6

and putting o> = (ωy), ω = (ωy) we get ω = TωT'1 -f dTT~* and ω and ω define

the same connection in Up(ΛUq. Thus our proof concludes.

Remark 1. As the proof of theorem 1 shows, a local existence of an affine

connection for which a given tensor field A is parallel can be assured under

a condition that components of A are constant for suitably chosen frames.

Symmetric tensor fields of type (0, 2) and antisymmetric tensor fields of type

(0, 2) satisfy our condition and a local existence is assured for them. Tensor

fields of type (1,1) do not satisfy our condition because they have eigenvalues

which are not constant in general If they are all constant, our connections

exist locally.
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Remark 2. As an application of our theorem 2 we have the case of an

almost complex tensor field and more generally a tensor field of type (1,1) whose

Jordan's canonical form is diagonal and whose eigenvalues are all constant. We

have also the case of an antisymmetric tensor field A of type (0, 2) of rank

n-2k on the differentiate manifold M oί even dimension n. In the latter case

we can verify that the conditions of theorem 2 hold good. Verification runs as

follows. For suitable chosen frames the components of A — {CHJ) and form

8 = dPP'1 = (pj) can be put as

A~( ° E\ o-(Ωί ΩΛ (i r>)

where E is a unit matrix of degree k and Ωly Ω>>, Ω?., Ωι are k x k matrices. For

a linear transformation T in the vector space of dimension n which preserves

A we have ιTAT^A and for a group H of such T relations t Ωι = - Ω.u

 ύΩ2 = Ω2,
1 Ω% = Ωz hold good. In general we decompose Ω into such a sum as

£ = J2(1) + ,2(2\ (1.13)

where X? -

Then by a transformation of a linear adjoint transformation corresponding to

Γeff .we have

* TΩ^T'1 (1.14)

and we can show that the decomposition (1.14) is a one for TΩT"1 correspond-

ing to (1.13), and the decomposition (1.13) is reductive with respect to H.

Remark 3. Theorem 1 can be extended to the case of a Euclidean con-

nection (especially Riemannian connection). We replace in theorem 1 'affine

connection' by 'Euclidean connection' and 'differentiable frames' by 'differenti-

able rectangular frames' and then the theorem holds good, which is evident

from the proof. As an example we have a symmetric Riemannian manifold on

which Riemannian curvature tensor is parallel.

Our next interest is an existence of an aίfine connection without torsion,

for which a tensor field is parallel. For a non degenerate symmetric tensor of

type (0, 2) a unique existence is wellknown, namely Riemannian connection. It

seems hard to find a general theory. We treat some cases in the following

sections.
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2. Antisymmetric tensor field of type (0, 2)

We assume that M is an ^-dimensional differentiable manifold with an

antisymmetric tensor field A of type (0, 2). We denote by ω\ . . . , ωn base in

the dual tangent spaces and components of tensor A by (an). Then we have

a form

11
a = ~

Δ
Λ cor.

Next we assume that an affine connection exists. We denote connection forms

by (ω*j) and torsion forms by τ—dω—ω3ί\ω). (Hereafter we obey a usual

rule of tensor calculus and omit a summation symbol except when specially

mentioned to.) Then we have

2 da = Van A ω* A ωJ -f anτ1 A cor7 - aijω1 Ar ;",

If A = (an) is parallel and torsion vanishes, we have da = 0. Thus we get

THEOREM 3. When a differentiable manifold M has an antisymmetric tensor

field of type (0, 2) and an affine connection without torsion for which A is

parallel a quadratic differential form a induced by A is closed.

Now we take up a converse.

THEOREM 4. We assume that M is a 2 k-dimensional differentiable manifold

and has an antisymmetric tensor field A of maximal rank, for tvhich an induced

quadratic differential form a is closed. Then there exists on M an affine con-

nection without torsion for which a given tensor field A is parallel.

Proof. For any point p e M we take a neighborhood U of p. Then by

virtue of da = 0 we have a 1-form β on U such that a = dβ. Owing to a funda-

mental theorem about 1-form, β can be written as

either β = dx*+yadxa or β=yadxa,

where a ranges from 1 to a certain integer /, and x°> xa, ya are independent

functions. In each case we have a = dβ — dya A dxa. By our assumption a has

a maximal rank 2 k and we must have

β -yadxa, and so a = dya A dxa (a = 1, . . . ,k).

We take x\ . . . , xk

t xk+1 ~yi, . . . , x2k =yu- as local coordinates. Thus com-

ponents of our tensor A — (an) are each constant for a natural frame attached
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to coordinates x1, . . . , xn(n~2k), namely

da = dxa+k Λ dxa (summed for a).

In the following we use coordinrtes x = (x1, . . . ,xn) only, tor which all the

components an are constant. Now there exists on M an affine connection

without torsion (for example Riemannian connection) and we denote the con-

nection forms by π) = Γ)kdxι\Γβ = 1%)>. We take an antisymmetric tensor B

= (bυ) of type (2, 0) such that aiΦkj = 5/ (which exists owing to non singularity

of (an)) and put

jak Γkij (2.1)

and also Lijk = - | ( J/y* + />*,- -f Γkij). (2.2)

/yjfe is symmetric with respect to indices ί, /, ^. We put

LΪj^b^Liij, ω} = L}kdx\ (2.3)

/ife- is symmetric with respect to indices j , k and for the connection (ωj )

Γ«/y = daij - β̂ ωy — akjωi = ώ/y + (L/y/ - Ljn)dxι.

These vanish because βy are constant and Liji-Lju.

Now we will show that a connection thus defined is consistent throughout

the manifold M. We cover M by coordinate neighborhoods and take frames

on them for which an are each the same constant on the whole manifold M,

which is possible. We assume that U and U are intersecting neighborhoods in

which coordinates are given by #= (x1, . . . , xn) and x - (x1, . . . , xn). x and

x are related differentiably in UΓ\U, and we put

Then we have

ahφhiplj = βij (2.4)

and by differentiation of both sides ahiphp) + ahφΊpjk - 0.

Hence by putting Qijk-ahiphipljk (2.5)

we have Qjik = Qijk.

Thus Qijk is symmetric with respect to indices i, j , k.
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We take connection forms π) = Γ)kdxk and π) = T)kdxk of the same con-

nection with respect to coordinates x and % respectively and construct ω) and

ω) in the way stated above. We have in the first

ijPh = Pi Pj i hm -f Pij

and by multiplying with pfakm we obtain by virtue of (2.1), (2.4), (2.5)

Γlij = PipψPl Γkhm ~ Qlij.

Hence for Luj = γ(Γnj + Γ/y/ + / » , Zay = -^-(Γ

we have £//y -p^pTpΪΓkhm — Qiij-

We get by multiplying with £/wi>n

Thus L/y and Z|y define a same connection in U ί\U.

Remark. An aίfine connection without torsion, for which a given anti-

symmetric tensor of type (0, 2) is parallel, is not unique, because the connection

taken at the beginning of the proof is not unique. When we restrict to a local

existence of a required connection we can take arbitrary L ^ which are sym-

metric with respect to indices and our connection can be given by (2.3).

3. Tensor fields of type (1,1)

We assume that M is a differentiable manifold with a tensor field A of

type (1,1). In the first we investigate a Nijenhuis tensor of A whose eigen-

values are not necessarily constant, and then an aflϊne connection for which A

with constant eigenvalues is parallel.

1. We take two arbitrary tangent vector fields X and Y and construct a

vector such as

Z = ~ A2ίX, Y] - ZAX, Λ7] + At AX, Y] + AtX, AYl

Then a mapping (X, Y)->Z is bilinear and antisymmetric in X and Y, and

define a tensor N which was introduced by A. Nijenhuis and others, (cf. [10])

We take a neighborhood U and differentiate base Xu . . . , Xn in the tangent

space of each point of £/, and denote by ω1, . . , , ωn dual base in the space of

tangent covectors. We put as usual
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dω* = ~ < W Λ ω\ [A), Xkl = XjXk - XkXj = - c}kXi.

We take component (aj) of A with respect to the base, and for X-u'Xi we

have AX=* {a)uj) Xi. Putting Xua) = ajk, namely da) = a)kωk, we get for iV= (Njk)

(3.1)

For an /-th power β = A1 = (̂ }) of A we have

Putting tr. B =*Sa\ which is a sum of /-th power of eigenvalues of A, and also

dS{l) = Sk)ωk

i we get by contraction of (3.1)

If S(1) and Sί2) are constant (which is true when eigenvalues of A are constant),

a vector iV= (iV&) vanishes. Next we assume that A is non singular and put

A'1 = (rfj ). Then we have by contraction

If we put Δ = det. A and </J = Jfeωfe, we have Δk = a)kd\Δ and so

If SΛ) and J are constant (which is true when eigenvalues of A are constant),

a vector M= (MA?) vanishes.

2. Hereafter we assume that Jordan's canonical form of a matrix A = (a))

is diagonal and the dimensions of the eigenspaces are each constant on M. We

take a neighborhood U of any point p^M and take complex base in the tangent

space of each point of U. Then formal tensor algebra holds good in the space.

We have a decomposition

A = Σ/«fi ( f=l, . . . . r) (3.2)
i

such that μi, . . . , μr are all different and

Σ fi = E (unit), £2 = fi , EiEj = 0 (ί * /).

We take suitable complex base ωι, . . . , ωw in the dual tangent space and we get
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a) = λi for i = j and a) = 0 for i # /,

where Λy is each equal to some μ,. We put JΛ/ = Λ/yα/ and then (3.1) reduces to

N)k = - «U/ - λdλki + ί/U* ~ λ ) ^ + Q; - Λy) U - λk)c}k (3.3)

(not summed for i, / A)

Thus we get iVy* = 0 for λi = Λy = λ*

<5}(λ* - λi)λjk for A/ = Ay # A* (3.4)

j (λi - ;y)(;, - ^)c}* for ;, # y, ;£ # ^ .

(not summed for i, j, k)

Thus the condition N)k = 0 is equivalent to

cjk = 0 for A, * λj, λi * λki and λjk = 0 for λj # ; A . (3.5)

From this we get a following theorem.

THEOREM 5. When a Nijenhuis tensor of A whose decomposition is given

by (3.2) with μ, all different, then a Nijenhuis tensor of B-*Σ v%E% with constant
i

pi {not necessarily different) vanishes.

The condition (3.5) means that the following relations hold good for j-iu

. . . , thy where λix = λi2 = - = λih exhaust eigenvalues equal to μ,:

dωJ = 0 (mod ω\ . . . , ωifι) (3.6)

dλjsO (rnod'ω1'1, . . . , ωih). (3.7)

As our tensor A = (a)) is real, eigenvalues are real or complex. We assume

χx = = λh are real and different from others. Then a part of basic tangent

covectors α>\ . . . , ωh corresponding to the eigenvalues λi is real and by (3.6)

local coordinates x1, . . . , xn can be taken in such a way that for / = 1, . . . , h

we have

ω f 's0 (mod dx\ . . . , dxh)

and by (3.5) dλi = 0 (mod dx\ . . . , dxh).

Thus λi is a function of xι, . . . , xh and moreover we can take dx\ . . . , rfjt*

as a part of base instead of ω1, . . . , ω\ The same process can be taken for

any other real eigenvalues.

Next we assume that

λp+i = λp\ 2 ~ * * * = λρ>τb> λp + b + i = λp + b+2 = * * *
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are complex conjugate and are different from others. Then as a corresponding

part of our basic vectors we can take such ωp+1> . . . , (ύp+2b that ω1 and ωb+i

are complex conjugate (i = p + l, . . . , p-\-b). By (3.6) we have for j=

J O / Ξ O (mod ωp+\ . . . , ωp+2b),

and if we take real base τrf' = ω1' + ωb+\ π

b+i-y/^ΐ (ω* - ωbH) (f=jf> + l, . . . ,

p + b), we have

dπ< = 0, dπb+i s 0 (mod τr*+1, . . . . ^2b)

and a part AΓ^+1, . . . , xp+2b of real coordinates x\ . . . , xn can be taken in such

a way that v? Ξ 0 (mod Λc*+1, . . . , rf*^2*) for i = ̂  + 1 , . . . , p + 2&. By virtue

of (3.5) we have

ΛysO (mod ^ + 1 , . . . , ^ + 2 6 ) .

We take up a submanifold F of Z7 with local coordinates xp+1, . . . , # ί + 2 δ . We

put λp+ί = λp+2- ' ' ' = λp+t (=μ3). Then μsEs and its conjugate fisEs are

contained in the decomposition (3.2) and a tensor defined by /~ o (Es-Es)

induces a real and almost complex tensor on V and its Nijenhuis tensor vanishes

by theorem 5. Thus by a wellknown theorem of N. Newlander and L. Niren-

berg [9] we can take on V complex analytic coordinates z\ . . . , zb and we can

take as basic covectors dzι> . . . , dzb, dz1, . . . dzb. E$ reduces to a unit matrix

with respect to dz1, . . . , dzb and so does Έ3 with respect to dzx

t . . . , dzb.

Then we have by (3.7)

dMs = 0 (mod dz\ . . . , &*),-

which means that μs is an analytic function. Thus we have got

THEOREM 6. We assume that A is a tensor field of type (1,1) on a differ-

entiate manifold M and Jordan's canonical matric form of A is diagonal and

the multiplicities of eigenvalues of A are each constant on M. Then vanishing

of a Nijenhuis tensor of the tensor A means the following: M decomposes

locally into a product of submanifolds VΊ, . . . , Vk and Vk+u . . . , Vk+u where

Va (α = 1, . . . , k) correspond each to a real eigenvalues μa of A and μa is a

function on Va, ivhile ^ ( 5 = ̂  + 1, . . . , k + l) are real forms of complex mani-

folds on which eigenvalues μs, fis are complex analytic functions on Vs and their
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complex conjugates.

The vanishing of a Nijenhuis tensor has already been studied by him and

A. Frδlicher [5], and theorem 6 overlaps partly their results.

3. Next we investigate an affine connection for which a given tensor field

of type (1,1) is parallel. For that purpose it is necessary that the eigenvalues

of A are constant, as is clear from the theorem 1. In the first place we prove

THEOREM 7. When a tensor of type (1, l) decomposes into tensors Ei (/ = 1,

. . . , k) in such a way that in matric form

A = ΣμiEi, where Σ £,• = £• {unit matrix), E) = Ei, EtEj = 0 (ι =* j)
i «'

with constant μi all different. Then A is parallel with respect to an affine con-

nection when and only when all Ei are so.

Proof We take a neighborhood of any point and frames in the tangent

spaces of points of U in such a way that A = {a)) reduces to a diagonal form.

If μi, μj are complex conjugate, corresponding base ω\ ωJ in dual tangent spaces

are complex conjugate. We denote by Ω = {ω}) connection forms and assume

that

/ " * " \
A = I β I and Ω

\ μrEir)l
correspond, where E^X)

9 . . . , E{r) are unit matrices of degree dι, . . . , dr respec-

tively and Ωij is a di x dj matrix. As μi are constant, parallelism FA -dA + AΩ

-ΩA = 0 of A reduces to ΩA-AΩ, and so Ωij = 0 for f#y. This is also a

condition in order that Ei are all parallel.

We assume that M is an w-dimensional differentiate manifold with an

affine connection, which makes a tensor field A of type (1,1) parallel. We

denote in a coordinate neighborhood of any point p&M the connection forms

by ω) = Γjkdxk, where xι, . . . , xn are local coordinates. Then we have

Putting da) = a)kdxk we have

αj/= - a^Γu ^ dkΓ)ι. (3.8)

As we have taken natural frames, c)k vanish in (3.1) and putting T)k = T\j — Γ)k
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(torsion tensor) we get by (3.1) and (3.8)

N)k = a)a\ Tίh + a\a\ T)u + a\a) T\ι + a\a\ Tι

hj.

If our connection is without torsion, then N)k = 0. Thus we get

THEOREM 8. We assume that a differentiate manifold M has an affine

connection without torsion for which a tensor field A of type (1.1) is parallel.

Then eigenvalues of A are all constant and a Nijenhuis tensor of A vanishes.

Now we prove a converse of theorem 8.

THEOREM 9. We assume that a differentiate manifold M has a tensor A

of type (1,1) for which eigenvalues are all constant and Jordan's canonical form

is diagonal and moreover a Nijenhuis tensor vanishes. Then there exists locally

on M an affine connection without torsion for which A is parallel.

Proof. We denote by μu - . . , βk real eigenvalues which are all different

and by juk+u . . . > /«*+/, μk+ι+i = βk+u , Mk+-zi = βk+ι complex eigenvalues which

are all different. We take a neighborhood U of any point of M. Then by

theorem 6 U decomposes into a product of real submanifolds VΊ, . . . , V* and

of complex manifolds Vk+i, . . . , Vk+ι (in real form), where Va correspond to

μa {a = 1, . . . , k), and Vs correspond to μs and μs+ι = μs (s - k 4-1, . . . , k •+• /).

Now A decomposes into a direct sum

(3.9)

\ a = l, . . . , kl

where Σ Ei = E is a unit and

Each Ea can be considered as a tensor on Va. As Ea corresponds to a unit

matrix with respect to a tangent space of each point of Vμ> a. tensor μαEα (μα

const) is parallel for any affine connetion on Vα. A tensor μsEs + μsEs can be

considered as one on a complex manifold Vs. As a Nijenhuis tensor of A

vanishes, that of J5= / ~<>~ (Es - ~Es) vanishes by theorem 5. The tensor B is

a real almost complex tensor on V$t because J32= - {ES+~E5). It is already
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known that there exists an affine connection without torsion for which an

almost complex tensor field B is parallel, (cf. [4] and [6]. This will be proved

more generally in theorem 10.) For such an conneotion μsEs-\ μs~Es is also

parallel.

We take an arbitrary affine connection without torsion on each manifold

Va and on Vs the connections above stated. Then the totality of the affine

connections defines one without torsion on U for which A is parallel.

4. Now we investigate an affine connection for which a given tensor A of

type (1.1) is parallel and whose torsion is closely related to a Nijenhuis tensor,

(cf. [15])

THEOREM 10. We assume that a differentiable manifold M has a tensor field

A of type (1.1), whose eigenvalues are each one of two constants μι, μi* and

whose Jordan's canonical form is diagonal. Then there exists on M an affine

connection for which A is parallel and a torsion tensor is a constant multiple

of a Nijenhuis tensor of A.

Proof. We assume that M is ^-dimensional and eigenvalues of A are

Λi = Λ2 = - = λk( = μi)

and throughout the proof we use indices which run as follows:

a, b, c, d, e = l, . . . , ki pt q = k +1, . . . , n.

We take a neighborhood U of any point of M and frames in the tangent spaces

of every point of U in such a way that A = (a)) has a diagonal form with respect

to the frames and denote by ω\ . . . , ωn dual base corresponding to λu . . . , λn

respectively. If μx and μ2 are complex numbers (naturally conjugate), the forms

ω1, . . . , ωn are complex. In this case n is even (n = 2k) and we can take

base co\ . . . , ωH in such an order as

1 k k "f" 1 1 2k k
OJ , . . . , OJ , Cϋ = = ί t ) ) . . . , C l ) = 0 ) .

Thus we have by (3.4)

owing to the relations λa = λb - λc, λa *F λp = Λ̂ , and iίό/> = 0, which is a conse-

quence of the assumption that λb is constant. If we put
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ωJ Λ αΛ (3.10)

we have va = <yC%Qωp A ω f l

and also vp = ~^cpb(oa A ω .

Hence va = dωa- ~ca

bcω
b A ωc - c%Pω

b A ω* (3.11)

Ϊ/ = Jα/ - ~| 4 r ω* A </ - cp

qaω
q A ωα.

Now we shall show that there exists an affine connection for which A is parallel

and whose torsion forms are equal to v. We take in the first place an affine

connection (which always exists) and denote by 7r} = Γ^ω* connection forms

defined for frames in U given above. We put

Hie = \{Ta

hc + Γ%\ Hp

qr = \ΛΓp

qr + Γ^). (3.12)

Hence we have H%- = Ha

cbi Hp

qr = i / ^ . (3.13)

Next we put

ω? = \ca

bc ωc + 4/> </ + fife ωc

ω§ = \ ~cp

qr ω
r + c$βω

β + ̂ r ωr (3.14)

ω« = 0, ωg=0.

Then (ωy) gives a required connection as is shown in the following. In the

first we have by (3.11), (3.13), (3.14)

υa = dωa - ωb A <4 - ω* A ωj

and so v - dωι — ωJ A ω).

Thus vι (ί = l, . . . , n) are torsion forms of our connection. Faj = 0 can be

easily verified on account of (3.14) and

Next we will prove that connections given by (3.14) on each neighborhoods

are consistent on M and give a required one. We take two intersecting neighbor-

hoods U and U (here—does not mean complex conjugate), and on U we
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construct a connection (ωj) in the way above stated, and on Ό a connection

(ω}) in the same way. As we have taken the same canonical form of At a

frame transformation on U Π XJ is such that

of = f?ωδ, ωp = #5* (# = 0, tp

a = 0). (3.15)

In advance we have

dω' = -γcjko/ Λ ωk

y dω{ = -^jk ωJ A ωk

and for a transformation ω1 = ήa? we have

ί/44/= -ήk + ih+thc$k9 (3.16)

where we have put dή = tjkωk. We get by (3.14), (3.15)

faω
bc = -—

By taking (3.16) into account we have

By adding d&^&Έf + ήtΈP we get

γ ^bea)ωe. (3.17)

Next for forms π)-T)kωk, π)-Γ)kωk, on £7 and U respectively, of the con-

nection taken at the beginning, we have

taπc + dta = ΓcTΓfl.

Hence by (3.15) Ufaτ\d + &> = ίcΠβ

and so f^ Γ j c + ίj« = th

cΓ
c

ea.

Hence for jEf?c= \-(Γa

bc + Γa

cb) and S2c = -g" ( Γ 8 c + Γ ? 6 ) w e h a v e

, (3.18)
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and by (3.14), (3.17), (3.18) tc

aω
b

c

The same is true for ω% and ω%.

Thus ω) and ω) define the same connection in UC\U.

Hitherto we have dealt with complex base ω1, . . . , ωn if μι and μ% are

complex conjugate. But in that case our connection (ω)) determined by (π))

in U defines a real one if we take real base in the tangent spaces. This fact

can be verified as follows. When eigenvalues μι and μ2 are complex, their

multiplicities are the same as A is real on M When we take conjugate base

ω\ . . . ,ωk,ωk+ί = ω\ . . . , ω2k = ωk (here—means complex conjugate) correspond-

ing to Λi= ~λk(=μi) and λk+i- * = hk( = ^2), affine connections deter-

mined by forms (ω/) are real in real coordinates when and only when

α+k —α α+k

ιk ωbk^ωt

This can be verified by taking real frames πα = ωα + ωα"\ πα+k = y/~^ϊ(ωα - ωα+k).

Hence for an affine connection 7r} = Γtjkωk

1 which is real in real frames, we have

in conjugate frames ω\ . . . , ωn

τt% = 4 ί i hence T% = ΓUi. c+k (3.19)

and so Ήα

bc = HiXl.e+k. (3.20)

Next dωα ^ γclcωb ^ωc + ci,c+kωb ^ωc+k + -~cl+kίC+kωb+k k

dωα+k = \c%tkωbΛ ωc + cg,+Λfeω6 A ωc+* + y 4 : l , c + f e ω δ + f e A ωc+fe.

As ω*+* = ωα, we have

—α Λα+k —α Ji+k to OΛ\
Cb.c+k — Cb+k,c, Cbc^Cb+k.c+k Kδ.Δl)

and by (3.14), (3.20), (3.21) 5g = c4:{, ωα

b+k = ωΓk = 0

and so our connection is real.

Remark. For an almost complex tensor A we havs A2 = - E (unit) and

so Λ«I = V-ϊ , Afe = " V - ϊ Hence by (3.10) we have n f = --^-Njkω* A ωfe. For

an almost product tensor A we have A2 = i?. Then μi = l, and ^2= — 1 with

multiplicities h and / (h+l=n, h arbitrary)- Hence by (3.10) we have

v = -δ-NtjkωJΓA αA Thus in the cases of an almost complex tensor and an
o

almost product tensor we have an affine connection without torsion when and

only when N)k = 0.
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4. Group manifold

We consider a space M of a connected Lie group. We take an arbitrary

differentiate frame ω1, . . . , ωn in the dual tangent spaces and put

dω{ = -g- cyjfe ωj Λ ω* (cy* = - c[j).

Then (c)k) are not components of a tensor. But if we take invariant differential

forms ω1, . . . , ωn as a base we have structure constants (c}&) and they are in-

variant under a linear adjoint transformation, (cf. [7] p. 3 and [12] p. 220)

They are components of a tensor of type (1, 2) in somuch as we take invariant

differential forms as a base. The tensor C so defined satisfies the condition for

a local existence of an affine connection for which C is parallel. In fact, if we

take an affine connection defined by forms

k (a constant) (4.1)

with respect to the base chosen above, the tensor C =•- (c}k) is parallel. This

can be verified as follows.

i7 ί Ύ i: , i h hi hi

Vcjk = dCjk + ωnCjk - ωj Chk — o)k Cjh

and these vanish by the relation

C\JC\I = 0. (4.2)

Next as a torsion form of the connection we have

τ£ = dJ - co*' Λ 4 = (1 - 2a)dω\ (4.3)

When we put a- ±\-t 0, we get + , —, 0-connection of E. Cartan [1]. We

denote by c = (ck) a vector obtained from C = (c)k) by a contraction with respect

to i and j . By contracting (4.2) with respect to i and /, we get ChC%-Q and

this means that a 1-form a^cuωk is closed, namely da = 0. Vanishing of the

vector c = (ck) is equivalent to a unimodularity of a linear adjoint group, and

also to an existence of a both side invariant volume on our group manifold G

(cf. [2] and [8])

We may define an almost group structure by such a tensor field (a)k) of

type (1,2) that for suitably chosen frames a)k reduce to structure constants c)k

of a certain Lie group. For such a frame or, . . . , ωn we define
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For a frams transformation ω% = ήωJ, where (tj) is a transformation of a linear

adjoint group of G, we have p1 = tjpJ for pz = aίω' — ~ - c^ω^ Λ ωfe (with the same
z

cj fe). Vanishing of a vector valued differential form (p;) characterizes a group

manifold locally.
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