TENSOR FIELDS AND THEIR PARALLELISM

MINORU KURITA

Much has been studied about an almost complex structure these ten years.
One of the problems about the structure is to find an affine connection which
makes a given almost complex tensor field parallel. A Riemannian connection
is a one without torsion for which the fundamental tensor field of a Rieman-
nian manifold is parallel. Affine connections on the group manifold were in-
vestigated fully by E. Cartan in [1]. In this paper we treat in general some
tensor fields and affine connections which make the fields parallel. Moreover

some studies about certain tensor fields are given.

1. Affine connections associated with a given tensor field

We assume in this paper that M is an n-dimensional connected separable
differentiable manifold of class C* with a tensor field A of class C”. In the

first we have the following theorem.

TreorREM 1. We assume that M has an affine connectiorn for which a given
tensor field A is parallel. Thén Jor any point p € M we can take in each tangent
space of points of a suitably chosen neighborhood U, differentiable frames with
respect to which components of A are constant each and the constants are equal
on the whole manifold M.

Proof. We take an arbitrary point p M and a coordinate neighborhood
Us. Then U, can be covered simply by curves starting from the point p. Now
we take in the tangent space at p a frame R which by means of the given
connection we translate along every curve above stated in such a way that
resulting frames are parallel. Then the forms (v!) of the affine connection
vanish along the curve and for the components of absolute differentials of the
tensor A = (a?::%) we have

7 =dajig

As A is parallel, we have da}:,‘ijj}:::O along the curve and a}i:j:}ﬁ? are constant
and are equal to the values at p. Thus they are constant on U, for the frames
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chosen above. Now M can be covered by neighborhoods U, of every point p,
and neighborhoods U and Uy of two points p, and p can be joined by a finite
chain of neighborhoods Uy, . .., Ur. Firstly we take a frame R, on the tangent
space at p,and determine frames for all points of U, in the way discussed above.
We take a point py = U, N\ U; and similarly determine frames for the points of
U, starting from the one at p; already determined. Next we take p.c Ui N U,
and proceed in the same manner. In this way frames for points of U, are
determined, and we have frames at every point of M for which the components
of the tensor A are each the same. Of course the frame at a same point is
not unique, because U, and U, may be connected by different chains of neighbor-
hoods, and for two frames R and R at a point p frame transformation preserves
the constant components of A.

Before we take up a converse of theorem 1 we define a reductive decompo-
sition of a Lie group G = GL(#n). Elements of G can be represented by matrices
P with respect to a frame taken in the vector space. Each coefficient p} of
dPP'= (o)) (j denotes a number of row and 7 a number of column) is an in-

variant form of G. Independent linear combinations
05 = 2 Epijo} (p=1,...,7% 4 75=1,...,n) (1.1)
. 7

with constant coefficients kpi; are called relative components by E. Cartan. For
a closed subgroup H of G we can take such a system that

pa=0 (a=1,...,h) ‘ (1.2)

hold good for P< H. These p, are called principal relative components of G/H.
We take variable P€ G and constant S€ G and denote relative components
induced from dPP™! and d(SP)(SP)™! by o, and g5 respectively. Then we have

OP:‘:%SI’QM] (.p: q=1r'~-’n2)

and (sp,) is an element of a linear adjoint group corresponding to S. If for
any S H we have

da= >, Sabpb, Ou = 23 Suvv, (1.3)

(@, b=1,...,h;u,v=h+1,...,%)
we say that G is reductive with respect to H. Relations sox =0 (@=1,..., k;
#=h+1,..., #) hold good for Se H if H is connected, and s4, =0 for S€ H
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hold good if H is connected and the Lie algebra ¢ of G has a decomposition
g=m+ Y such that [§1 C §, [Hm] C m, where §) denotes the subalgebra corre-
sponding to H. (cf. [7] p. 4, 7. [11] p. 41)

Now a converse of theorem 1 can be stated as follows.

THEOREM 2. We assume that M is an n-dimensional differentiable manifold
and has a tensor field A and in each neighborhood of any p <M differentiable
frames in the tangent spaces can be so chosen that the components (a}jj.‘:}ﬁ) of
A are constant each and the same over the whole manifold M. We denote by
H a subgroup of G = GL(n) which preserves all the constant components (a}i jjj}ﬁ)
and we assume that G is reductive with respect to H. Then we have an affine

connection on M for which the given tensor field is parallel.

Proof. Any differentiable manifold has an affine connection (without torsion)
induced by a Riemannian metric which always exists. We take an advantage
of such a connection on M. We take a neighborhood U, of an any point pe M
and for the frames already chosén in U, by assumption we denote the con-

nection forms of the above connection by (=) and put mp = >, Epijr; with Bpij
1]

as in (1.1) for which (1.2) holds good. (1.1) can be written conversely as

p}:=§ Lijpop (4, j=1,..., m; p=1,..., #). With these l;j, we have
nh =p2 Lijpmp. (1.4)
We drop terms containing z; (@=1, ..., &) and we get
w,'i=§l,-,-unu. (u=h+1,...,n") (1.5)

Then (0}) is a f-valued differentiable form, and for the constant components

a}:}III 1':2 of the given tensor field A we have
PIPNB TS S IDIT S nE A (1.6)
(4, 7=1,...,n; k=1,...,7; I=1,...,5s)
and for a covariant differential 7 A of the given tensor field we have
Paj=daf} i+ R, (1.7)
where R denotes the term on the left side of (1.6). As ai*':7 are constant,
we get PA=0. Thus we have obtained a required connection in a neighbor-

hood U, of any point p. Now we will show that our process is consistent and
our connection is defined on the whole manifold M.
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To each point in U, N U, two differentiable frames are attached, namely
a frame R defined in Uy and R defined in U, by assumption. We denote by
7= (z}) and 7 = (7}) forms of the connection taken in the first with respect to
frames R and R respectively and by T a frame transformation from R to R.

Thén we have
7=TaT '+dTT ™" (1.8)

When we put 7, = 3 kpijmh, Tp = ) kpis7), (1.8) can be represented as
i 17

Tp = 2 bpgltq+ Tp, (1.9)
q

where (#p,) is a linear adjoint transformation and r, are relative components
corresponding to 7. Constant components a}i:::}: are same for frames R and
R and so T keeps each a}{:::}: invariant. Thus T belongs to the group H and

we have

tab=0, tzu)=0, Ta=0 (a,b=1,.-.,h: u, U=h«+1,...,n2)
and so Fa= D\ tabms,  Tu= 2 tuomo+ Tu. (1.10)
b v

Now a required connection (w}) and (;) were constructed from
mp =2 ljpmp, T = 20 ligpTp
14 4

by dropping terms containing m, and 7. respectively. (1.10) shows that if we
take (Da=0, Wy =Ty instead Of Tay, Ty and 5{1=0, au =TTy instead Of —ﬁa, ﬁu re-
spectively we have

wWg = % tabwes, Ou = 2) tupwy + Tu (1.11)
and putting o = (0}), o = (&}) we get & =ToT *+dTT™", and » and » define

the same connection in Uy N\ U,. Thus our proof concludes.

Remark 1. As the proof of theorem 1 shows, a local existence of an affine
connection for which a given tensor field A is parallel can be assured under
a condition that components of A are constant for suitably chosen frames.
Symmetric tensor fields of type (0, 2) and antisymmetric tensor fields of type
(0, 2) satisfy our condition and a local existence is assured for them. Tensor
fields of type (1, 1) do not satisfy our condition because they have eigenvalues
which are not constant in general. If they are all constant, our connections
exist locally.
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Remark 2. As an application of our theorem 2 we have the case of an
almost complex tensor field and more generally a tensor field of type (1, 1) whose
Jordan’s canonical form is diagonal and whose eigenvalues are all constant. We
have also the case of an antisymmetric tensor field A of type (0, 2) of rank
n =2k on the differentiable manifold A{ of even dimension 7. In the latter case
we can verify that the conditions of theorem 2 hold good. Verification runs as
follows. For suitable chosen frames the components of A = (ai;) and form
2=dPP = (p}) can be put as

A=(5 0 a2 2)

where E is a unit matrix of degree & and 2,, 2., 2;, 2, are k X & matrices. For
a linear transformation T in the vector space of dimension n which preserves
A we have ‘TAT = A and for a group H of such T relations ‘2, = — 2., ‘2, = 0,

', = 2, hold good. In general we decompose 2 into such a sum as

2=004 0 (1.13)

20+, ;oz—’:zz> o _,»1,,<9i—j.o4 -2+‘.r.>2)
.Qa"‘t.Qs 2+ 24 . a2 =T+ 2.

1
W _ L
where 2% = 2(

1

2

Then b.y a transformation of a linear adjoint transformation corresponding to
T < H we have

TQT—l — Tg(l)T—I T TQ(Z)CI“X (114)

and we can show that the decomposition (1.14) is a one for 727" correspond-

ing to (1.13), and the decomposition (1.13) is reductive with respect to H.

Remark 3. Theorem 1 can be extended to the case of a Euclidean con-
nection (especially Riemannian connection). We replace in theorem 1 ‘affine
connection’ by ‘Euclidean connection’ and ‘differentiable frames’ by ‘differenti-
able rectangular frames’ and then the theorem holds good, which is evident
from the proof. As an example we have a symmetric Riemannian manifold on
which Riemannian curvature tensor is parallel.

Our next interest is an existence of an affine connection without torsion,
for which a tensor field is parallel. For a non degenerate symmetric tensor of
type (0, 2) a unigue existence is Wellknoxvn, namely Riemannian connection. It
seems hard to find a general theory. We treat some cases in the following

sections.
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2. Antisymmetric tensor field of type (0, 2)

We assume that M is an n-dimensional differentiable manifold with an
antisymmetric tensor field A of type (0,2). We denote by o',

the dual tangent spaces and components of tensor A by (ai;). Then we have
a form

..., 0" base in

a = é a,'ja)" A o

Next we assume that an affine connection exists. We denote connection forms
by (coj-) and torsion forms by ' =dw — o A w}:. (Hereafter we obey a usual
rule of tensor calculus and omit a summation symbol except when specially

mentioned to.) Then we have
2da =Vaij N o' N o +aijtt N’ — a,'jwi A,
If A = (aij) is parallel and torsion vanishes, we have da =0. Thus we get

TueoreM 3. When a differentiable manifold M has an antisymmetric tensor
field of type (0,2) and an affine connection without torsion for which A is
parallel, a quadratic differential form « induced by A is closed.

Now we take up a converse.

TueoreM 4. We assume that M is a 2 k-dimensional differentiable manifold
and has an antisymmetric tensor field A of maximal rank, for which an induced
quadratic differential form « is closed. Then there exists on M an affine con-

nection without torsion for which a given tensor field A is parallel.

Proof. For any point p= M we take a neighborhood U of p. Then by
virtue of da =0 we have a 1-form 3 on U such that « =dB. Owing to a funda-

mental theorem about 1-form, 3 can be written as
either B=dx"+yudx® or B=2y.dx’

where @ ranges from 1 to a certain integer /, and x°, % y. are independent
functions. In each case we have a = d3 = dy.\dx®. By our assumption « has

a maximal rank 2% and we must have
B8 =y.dx°, and so a =dy. N dx° (@a=1,....k).

s 2k :
We take %, ..., " x*"'=y, ..., x®* =y as local coordinates. Thus com-

ponents of our tensor A = (a;;) are each constant for a natural frame attached
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to coordinates x'; . . ., x"(n=2%), namely
da = dx®F A dx® (summed for a).
In the following we use coordinrtes x = (x', ... ,x") only, tor which all the

components a@;; are constant. Now there exists on M an affine connection
without torsion (for example Riemannian connection) and we denote the con-
nection forms by n} = I'ixdx*(I'ix =1'%;). We take an antisymmetric tensor B
= (b7) of type (2, 0) such that @b = Bi: (which exists owing to non singularity
of (ai;;)) and put

Ff-jalk = [kij (2.1)
and also Lijr = %‘(rijk + ki + Tkij)- (2.2)

Lijr is symmetric with respect to indices 7, 7, .- We put
L% =b"L;;, 0} = Lizdx". (2.3)
L,"-k is symmetric with respect to indices j, 2 and for the connection ( a)}:)
Vai; = daij — airwf — arjor = dai; + (Liji— Lji)dx'.
These vanish because a;j; are constant and L;j; = Lji.

Now we will show that a connection thus defined is consistent throughout
the manifold M. We cover M by coordinate neighborhoods and take frames
on them for which a;; are each the same constant on the whole manifold M,
which is possible. We assume that U/ and U are intersecting neighborhoods in
which coordinates are given by x=(x", ..., ") and ¥ = (%', ..., %). x and
% are related differentiably in U N U, and we put
>

i OF e
ox’oxk

bi= o bik="Dpri =

Then we have
bl
anp;p; = aij (2.4)
and by differentiation of both sides amzbf'kﬁf+ amj?f"ﬁf'k =0.
Hence by putting Qijr = anpipin (2.5)
we have Qjir = Qijr.

Thus Qi;r is symmetric with respect to indices ¢, J, k.
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We take connection forms i =I"idx* and 7} =T jxd%® of the same con-
nection with respect to coordinates x and ¥ respectively and construct o; and

@; in the way stated above. We have in the first
Tiph = pi 0 Thm+ bis

and by multiplying with #;’ar» we obtain by virtue of (2.1), (2.4), (2.5)
Tiij = pEp7 D1 Tonm — Quis.

1
3

Hence for Luj = 4 (Iij+ Niji+ Ti), Luj = ‘%(rlij +Liji+T i)

we have Liij = pIp7 bF Tonm — Quis.
We get by multiplying with 5™p%

Lipt = pEpiThu+ .
Thus Li-j and ij define a same connection in U A U.

Remark. An affine connection without torsion, for which a given anti-
symmetric tensor of type (0, 2) is parallel, is not unique, because the connection
taken at the beginning of the proof is not unique. When we restrict to a local
existence of a required connection we can take arbitrary Lip which are sym-

metric with respect to indices and our connection can be given by (2.3).

3. Tensor fields of type (1, 1)

We assume that M is a differentiable manifold with a tensor field A of
type (1,1). In the first we investigate a Nijenhuis tensor of A whose eigen-
values are not necessarily constant, and then an affine connection for which A
with constant eigenvalues is parallel.

1. We take two arbitrary tangent vector fields X and Y and construct a
vector such as

Z=—-ATX, Y]-[AX, AY]+ ALAX, Y1+ ALX, AY]

Then a mapping (X, Y)—>Z is bilinear and antisymmetric in X and Y, and
define a tensor N which was introduced by A. Nijenhuis and others. (cf. [10])
We take a neighborhood U and differentiable base X, ..., X, in the tangent
space of each point of U, and denote by &, . . ., «” dual base in the space of

tangent covectors. We put as usual
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do' = —%-c}:kw" A o, [X;, Xpl=XiXp— XpXj= — c;:kX.'.

We take component (a’) of A with respect to the base, and for X =u'X; we

k

have AX = (a}uj ) X;. Putting Xwa! = ax, namely daj = a§kw , we get for N = (Nix)

Nix= = d"aln+ diain+ aj(alj — av)
+ @} ai'cim — aid} chx+ diak chi + alahch. ~ (3.1)
For an Ith power B=A'= (b}) of A we have
bi=ahal: - - - g
Putting tr. B =S, which is a sum of l-th power of eigenvalues of A, and also
dS? = S{w*, we get by contraction of (3.1)

i B i i h hal 1
Ni = Nir = akain — anaix = apSp’ — 2 Sy,

If S and S® are constant (which is true when eigenvalues of A are constant),
a vector N = (V) vanishes. Next we assume that A is non singular and put

A™'=(d!). Then we have by contraction
M, = diNix=diakain— ak.
If we put 4=det. A and dd = 4ro”, we have 4, = a;:kd{:A and so
Mi=did dn— Siv.

If SV and 4 are constant (which is true when eigenvalues of A are constant),
a vector M = (M}) vanishes.

2. Hereafter we assume that Jordan's canonical form of a matrix A = (a})
is diagonal and the dimensions of the eigenspaces are each constant on M. We
take a neighborhood U of any point p € M and take complex base in the tangent
space of each point of U. Then formal tensor algebra holds good in the space.

We have a decomposition

A=2,uiEi (i=1,...,7) (3.2)
such that gz, . .., ur are all different and

ZEi=E(unit), El=E;, EE;=0 (7% 7).

We take suitable complex base ', . . . , »” in the dual tangent space and we get
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a; =1 for i=j and a}:=0fori#j,

where 1; is each equal to some g, We put di; = A;;0’ and then (3.1) reduces to

Nie= =682 = 2)Akj + 05 (e = A Ak + (Ai = 2) (X — M) (3.3)
(not summed for 4, j, k)
Thus we get N;:k =0 for Ai=4;=2
N;k=5;(/1k“11)/1,k for Xi:]j:‘q AR (3.4)

Mk =(A—=2)(Ai— Zk)0§k for Ai % 25, A, = Zr.
(not summed for i, j, k)

Thus the condition Njz=0 is equivalent to
cir=0 for A % 2j, 4 = Ax, and 2;x=0 for 1; % . (3.5)
From this we get a following theorem.

THEOREM 5. When a Nijenhuis tensor of A whose decomposition is given
by (3.2) with u; all different, then a Nijenhuis tensor of B = E viE; with constant

vi (not necessarily different) vanishes.

The condition (3.5) means that the following relations hold good for j =1,

., tn, where A;, =2;,= - -+ =1, exhaust eigenvalues equal to u;:
dw’ =0 (mod o™, ..., ™) (8.6)
di;=0 (mod o™, . .., o™). 8.7)

As our tensor A = (a}) is real, eigenvalues are real or complex. We assume
li= +++ =X are real and different from others. Then a part of basic tangent
covectors o', . . ., o" corresponding to the eigenvalues 4, is real and by (3.6)
local coordinates %', . .., x” can be taken in such a way that for i=1,..., &

we have

=0 (mod dx', . .., dxs")
and by (3.5) di=0  (mod dx', ..., ax").

Thus ; is a function of %%, . .., x” and moreover we can take ds', ..., dx"

as a part of base instead of o', ..., »". The same process can be taken for
any other real eigenvalues.
Next we assume that

lpr1=Apre= *** =2Apib, Aprbr1=Apsbiz= ** * =Aps2b
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are complex conjugate and are different from others. Then as a corresponding
part of our basic vectors we can take such o®', ..., 0®*?® that o' and o***
are corﬁplex conjugate (§=p+1,..., p+b). By (3.6) we have for j=p+1,
.., D420

do’ =0 (mod w?*, ..., 0?®*®),

and if we take real base 7' = o' + o°", 2" =V=1 (o' =) G=p+1,...,

p+Db), we have
dniEO, dn® =0 (mod »**%, ..., 7rp+2b)

and a part ¥**%, ..., %**%% of real coordinates %', . . ., #” can be taken in such
a way that 7/ =0 (mod dx?*%, . . ., dx*™*®) for j=p+1, ..., p+2b. By virtue
of (3.5) we have

dii=0  (mod dz?*, ..., ax**®®).
We take up a submanifold V of U with local coordinates ™, . .., #**®. We
put Aps1=2Aps2= * - =Apss (=us). Then usEs and its conjugate sEs are

contained in the decomposition (3.2) and a tensor defined by / ,—’-21 (Es—Es)
induces a real and almost complex ténsor on V and its Nijenhuis tensor vanishes
by theorem 5. Thus by a wellknown theorem of N. Newlander and L. Niren-
berg [9] we can take on V complex analytic coordinates 2', . . ., 2’ and we can
take as basic covectors dz', ..., dz%, dz', ... dz". Es reduces toa unit matrix
with respect to d2, ..., d?® and so does E; with respect to dz', ..., az’.
Then we have by (3.7)

dus=0 (mod dz, . .., d2),
which means that us is an analytic function. Thus we have got
TueoreM 6. We assume that A is a tensor field of type (1,1) on a differ-
entiable manifold M and Jordan's canonical matric form of A is diagonal and

the multiplicities of eigenvalues of A are each constant on M. Then vanishing

of a Nijenhuis tensor of the temsor A means the jfollowing: M decomposes

locally into a product of submanifolds Vi, ..., Vi and Visy, . . ., Viesl, where
Va(a=1, ..., k) correspond each to a real eigenvalues p, of A and pa is a
function on Va, while Vi(s=k+1, ..., k+1) are real forms of complex mani-

folds on which eigenvalues ps, fs are complex analytic functions on Vs and their
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complex conjugates.

The vanishing of a Nijenhuis tensor has already been studied by him and
A. Frolicher [5], and theorem 6 overlaps partly their results.

3. Next we investigate an affine connection for which a given tensor field
of type (1, 1) is parallel. For that purpose it is necessary that the eigenvalues

of A are constant, as is clear from the theorem 1. In the first place we prove

Tueorem 7. When a tehsor of type (1,1) decomposes into tensors E; (i=1,

..., k) in such a way that in matric form
A= Z_.u,-E,-, where D) E; = E (unit matrix), Ei=Ei;, EE=0 (i=%j)

with constant p; all different. Then A is parallel with respect to an affine con-

nection when and only when all E; are so.

Proof. We take a neighborhood of any point and frames in the tangent
spaces of points of U in such a way that A = (a}) reduces to a diagonal form.
If p, pj are complex conjugate, corresponding base o', »’ in dual tangent spaces
are complex conjugate. We denote by 2 = (v}) connection forms and assume

that
wEY 2u Q- Dy
A= -, and Q= | u O
.urEm Q1 22+ * 2oy
correspond, where E, . .., E” are unit matrices of degree d,, . . ., dr respec-

tively and @2;; is a d; X d; matrix. As p; are constant, parallelism FA=dA+ AQ
~R2A=0of A reduces to 2A=AQ, and so 2;;=0 for ixj This is also a
condition in order that E; are all parallel.

We assume that M is an z-dimensional differentiable manifold with an
affine connection, which makes a tensor field A of type (1,1) parallel. We
denote in a coordinate neighborhood of any point p» € M the connection forms
by of = I'iydx®, where %', . . ., x" are local coordinates. Then we have

da; + adtoh—abof =0.
Putting da} = aﬁkdxk we have
ai=— a’}l‘};z+ ai!"fz. (3.8)

As we have taken natural frames, cj-k vanish in (3.1) and putting T = I'kj — I
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(torsion tensor) we get by (3.1) and (3.8)
Nix=dal Tin+djay Tl + ahd; T+ aial Th;.
If our connection is without torsion, then N ;k =0. Thus we get

TureoreM 8. We assume that a differentiable manifold M has an affine
connection without torsion for which a tensor field A of type (1.1) is parallel.

Then eigenvalues of A are all constant and a Nijenhuis tensor of A vanishes.

Now we prove a converse of theorem 8.

Taeorem 9. We assume that a differentiable manifold M has a tensor A
of type (1,1) for which eigenvalues are all constant and Jordan’s canonical form
is diagonal and moreover a Nijenhuis tensor vanishes. Then there exists locally

on M an affine connection without torsion for which A is parallel.

Proof. We denote by u1, ..., u real eigenvalues which are all different
and by pe+1, - - -+, ke, pkeies = Bhes, « - o, Hksol = B+l cOmplex eigenvalues which
are all different. We take a neighborhood U of any point of M. Then by

theorem 6 U decomposes into a product of real submanifolds Vi, ..., V¢ and
of complex manifolds Vi+y, . . ., Vi (in real form), where V, correspond to
#a (@a=1, ..., k), and Vs correspond to us and us+1=70s (s=k+1, ..., k+1).

Now A decomposes into a direct sum
A =2 piE;
= %—-I‘ taEo+ ) (usEs + ﬁs_E—s) (3.9)

(E=1,...,k+1l; a=1,..., k;
s=k+1,... k+1),
where S)E;=E is a unit and

E}=E;, EiEj=0 (ixj).

Each E,; can be considered as a tensor on V,. As E, corresponds to a unit
matrix with respect to a tangent space of each point of Vg, a tensor psEs (ua
const) is parallel for any affine connetion on V,. A tensor usEs+ fsEs can be
considered as one on a complex manifold V;. As a Nijenhuis tensor of A

vanishes, that of B = / '—21 (Es— Es) vanishes by theorem 5. The tensor B is

a real almost complex tensor on V;, because B’= — (E;+Es). It is already
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known that there exists an affine connection without torsion for which an
almost complex tensor field B is parallel. (cf. [4] and [6]. This will be proved
more generally in theorem 10.) For such an conneotion usFEs+ fisEs is also
parallel.

We take an arbitrary affine connection without torsion on each manifold
V. and on Vs the connections above stated. Then the totality of the affine
connections defines one without torsion on U for which A is parallel.

4. Now we investigate an affine connection for which a given tensor A of

type (1.1) is parallel and whose torsion is closely related to a Nijenhuis tensor.

(cf. [15])

THEOREM 10. We assume that a differentiable manifold M has a tensor field
A of type (1.1), whose eigenvalues are each one of two canStants w, ta. and
whose Jordaw's canonical form is diagonal. Then there exists on M an affine
connection for which A is parallel and a torsion tensor is a constant multiple
of a Nijenhuis tensor of A.

Proof. We assume that M is n-dimensional and eigenvalues of A are
M=d= " =k(=pm)
Qs = Rpra =+ ** =2 = 10)
and throughout the proof we use indices which run as follows:
a bc, de=1 ...,k D q=k+1,..., n

We take a neighborhood U of any point of M and frames in the tangent spaces
of every point of U in such a way that A = (a}) has a diagonal form with respect
to the frames and denote by ', . . ., »” dual base corresponding to 1, . . . , Ax

respectively. If 4 and 1 are complex numbers (naturally conjugate), the forms

o', ..., o" are complex. In this case # is even (n=2%) and we can take
base o', ..., " in such an order as
o, ot o= G P

Thus we have by (3.4)
Nabs = 0, qu = (,uj_ - #2.)26‘;4, ng =0

owing to the relations da=4s= 4, da=xxdp=14,, and 4dsp =0, which is a conse-

quence of the assumption that As is constant. If we put
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v = é' (o — ug)—zN;‘kmj A of, (3.10)
we have = % cl0” N ?
and also V= —% chow® A ®.
Hence v® =do® — %—c‘icwb A o = c2pa’ A o? (3.11)

1
v = dw? — —2"053 TN o = caw? N %

Now we shall show that there exists an affine connection for which A is parallel
and whose torsion forms are equal to »’. We take in the first place an affine
connection (which always exists) and denote by =j=T ;kwk connection forms

defined for frames in U given above. We put

Hic = %(I‘%c +T'%), Hb = év(rg, +I2). (3.12)
Hence we have H%=H%, H5 =H?,. (3.13)

Next we put

1
wh = 5€he0° + Ctzp o + Hpcof

2
wh= ;cgr o+ chew® + Ho 0" (3.14)
w3 =0, wh=0.

Then (w}) gives a required connection as is shown in the following. In the
first we have by (3.11), (3.13), (3.14)

v =do® - " N 0§ — o A 0}
W =do® —0® N b= N\ of
and so ¥ =do' — o’ A o}
Thus »' (i=1,..., n) are torsion forms of our connection. Fa}=0 can be
easily verified on account of (3.14) and
. .
ap=0%m, ah=0m, a3=0, ab=0.

Next we will prove that connections given by (3.14) on each neighborhoods
are consistent on M and give a required one. We take two intersecting neighbor-

hoods U and U (here—does not mean complex conjugate), and on U we
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construct a connection (w}) in the way above stated, and on U a connection
(5,‘:) in the same way. As we have taken the same canonical form of A, a
frame transformation on U N U is such that

o®=t80", o’ =t{" (=0, t5=0). (3.15)
In advance we have
di_lr" k —i_ 1 i .k
» —7Cjkar’/\w , do'= 5 Cik® No
and for a transformation o' = t}Bi we have
£} theh = — the+ thi+ £ Cha, (3.16)
where we have put di} = tixo". We get by (3.14), (3.15)
508 = %— toctaw® + tictpw? + toH 4 0%
= —;— totd cad® + tath ko + 1ot Hea ",
By taking (3.16) into account we have
to0d = 5 (= thot that £E)T + (= 1+ BT + 1512 Ha"

By adding d#5 = t5,5° + 5,07 we get

150l +dtf = t’é(%fﬁew‘“+éﬁqa"+Hﬁea‘z>
+ (543 H 2 — 2 o+ - the + St (8.17)

k

Next for forms r=T}o", E§=—§-k5 , on U and U respectively, of the con-

nection taken at the beginning, we have

15l + did = £75.

Hence by (3.15) 8y + the = 127G,
and so 3 T8 + 15 = 8T
Hence for H%: = —%~(F§c+ I'%) and H%. = %(’T"éc—kf‘éb) we have
te 15 Ho + —é—(tﬁﬁ t2e) = t2 HS, (3.18)
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and by (3.14), (8.17), (3.18)  t50% +dtb =25,
The same is true for o5 and .
Thus m§- and »; define the same connection in UNT.

Hitherto we have dealt with complex base o, ..., 0" if w1 and p are
complex conjugate. But in that case our connection (»)) determined by (z})
in U defines a real one if we take real base in the tangent spaces. This fact
can be verified as follows. When eigenvalues x and ,» are complex, their
multiplicities are the same as A is real on M. When we take conjugate base

k+1 k

o ..., 0% 0" =5 . . ., o = 5" (here—means complex conjugate) correspond-

ing to A= + -+ =A( =) and ps1= - -+ = 2x( =), affine connections deter-
mined by forms (o)) are real in real coordinates when and only when
)

—a a+k —a a+
Wp = Wp+ky, Wp+k = Wp .

This can be verified by taking real frames 7%= 0®+ 0®**, %% = y=1(0® ~ 0**%).

Hence for an affine connection 7% = I';x 0", which is real in real frames, we have

in conjugate frames o', ..., 0"
_ 3 = ’
7§ =nith, hence I'fe=T5ik con (3.19)
and so Hi. = HE con. (3.20)
1 1
Next do® = -2——0?,_0 N0+ cf crre® Aot HE + ~~2-—c‘1',+k,c+k ALY N
+r__ 1 1
do®t = 76?2"‘(0” A ®+ cfEp® N o®tE + —2—0'51'5,”1; ALy NS
+ —
As 0% = 5% we have
—a .. Atk ~a _ a+k (3 21)
Cb, c+k = Ch+k,cy Cpc =Chik,ctk .

and by (3.14), (3.20), (3.21)  @f=w}ik, Ghr=wf**=0
and so our connection is real. A

Remark. For an almost complex tensor A we havs A’= — E (unit) and
so #m1=V-1, ;z= —y—1. Hence by (3.10) we have »' = — ?1;— Nizo’ A of. For
an almost product tensor A we have A’=FE. Then u=1, and &= —1 with
multiplicities %z and I (k+1=mn, h arbitrary). Hence by (3.10) we have
p"=b—§—N}"kw" A o*. Thus in the cases of an almost complex tensor and an

almost product tensor we have an affine connection without torsion when and

only when Nf}k =0.
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4. Group manifold

We consider a space M of a connected Lie group. We take an arbitrary

differentiable frame ', . . ., »” in the dual tangent spaces and put
di_li_j k I
' = o crow ANow (¢ = —cky).

Then (c§k) are not components of a tensor. But if we take invariant differential
forms ', ..., 0" as a base we have structure constants (Cj'k) and they are in-
variant under a linear adjoint transformation. (cf. [7] p. 3 and [12] p. 220)
They are components of a tensor of type (1,2) in somuch as we take invariant
differential forms as a base. The tensor C so defined satisfies the condition for
a local existence of an affine connection for which C is parallel. In fact, if we

take an affine connection defined by forms

wh=aciko® (@ constant) (4.1
with respect to the base chosen above, the ténsor C = (C;:k) is parallel. This
can be verified as follows.

14 c;:k = a’c}k + oy c’}k - w,’-‘ Chte ~ wf C;:h

and these vanish by the relation

c’},zcl}k + C;,k C’llj -+ c’},]-ci;, =0. (4.2)
Next as a torsion form of the connection we have

d=do' - o N oj=(1-2a)do’. (4.3)

When we put a= + % 0, we get +, —, O-connection of E. Cartan [1]. We

denote by ¢ = (cx) a vector obtained from C = ( C_I;'k) by a contraction with respect
to 7 and 7. By contracting (4.2) with respect to ¢ and /, we get chc’e =0 and
this means that a 1-form « = cz0” is closed, namely da =0. Vanishing of the
vector ¢ = (¢g) is equivalent to a unimodularity of a linear adjoint group, and
also to an existence of a both side invariant volume on our group manifold G
(cf. [2] and [8])

We may define an almost group structure by such a tensor field (ai-k) of
type (1,2) that for suitably chosen frames a}k reduce to structure constants cje

of a certain Lie group. For such a frame o', ..., 0" we define
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O =do' — ; e’ N o

For a frams transformation o' = t}wj , where (t}) is a transformation of a linear
adjoint group of G, we have p'=¢t}¢’ for o' = d(B"—-—% c§k @ A* (with the same
ci-k). Vanishing of a vector valued differential form (o) characterizes a group

manifold locally.
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