
1 Introductory Material

1.1 Introduction

A recurring theme in the field of physics is the endeavor to unify a variety of distinct
physical phenomena into a comprehensive framework that can offer both descriptions
and explanations for each of them. One of the most astounding achievements in this
endeavor is the unification of fundamental forces. When physicists realized that the
forces of electricity and magnetism could be elegantly described using a single frame-
work, it not only substantially enhanced our comprehension of these forces but also
gave birth to the expansive domain of electromagnetism.

The remarkable success in unifying forces serves as a testament to the fact that
seemingly unrelated phenomena can often be traced back to a common origin. This
approach extends beyond the realm of forces and finds resonance in the burgeoning
field of quantum information science. Within this field, a novel discipline has emerged,
which seeks to identify shared characteristics among seemingly disparate quantum
phenomena. The overarching theme of this approach lies in the recognition that vari-
ous attributes of physical systems can be defined as “resources.” This recognition not
only alters our perspective on these phenomena but also seamlessly integrates them
within a comprehensive framework known as “quantum resource theories.”

For example, take the case of quantum entanglement. In the 1990s, it was trans-
formed from a topic of philosophical debates and discussions into a valuable resource.
This transformative shift revolutionized our perception of entanglement; it evolved
from being an intriguing and nonintuitive phenomenon into the essential driving force
behind numerous quantum information tasks. This new perspective on entanglement
opened up a vast array of possibilities and applications, starting with its utilization in
quantum teleportation and superdense coding. Today, entanglement stands as a fun-
damental resource in fields such as quantum communication, quantum cryptography,
and quantum computing.

Given the success of entanglement theory, it is only natural to explore other phys-
ical phenomena that can also be recognized as valuable resources. Currently, there
are several quantum phenomena that have been identified as such. These encompass
areas such as quantum and classical communication, athermality (within the realm of
quantum thermodynamics), asymmetry, magic (in the context of quantum computa-
tion), quantum coherence, Bell nonlocality, quantum contextuality, quantum steering,
incompatibility of quantum measurements, and many more. The recognition of all

1

https://doi.org/10.1017/9781009560870.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009560870.001


2 1 Introductory Material

these phenomena as resources enables us to unify them under the umbrella of quantum
resource theories.

Resource theories serve as a crucial framework for addressing complex questions.
They aim to unravel puzzles such as determining which sets of resources can be trans-
formed into one another and the methods by which such conversions can occur.
Additionally, they explore how to measure and detect different resources. If a direct
transformation between particular resources is not feasible, resource theories examine
the possibility of nondeterministic conversions and the computation of their associ-
ated probabilities. The introduction of catalysts into the equation further deepens the
inquiry.

This investigative approach often yields profound insights into the underlying nature
of the physical or information-theoretic phenomena under scrutiny – such as entan-
glement, asymmetry, athermality, and more. Furthermore, this perspective provides a
structured framework for organizing theoretical findings pertaining to these phenom-
ena. As demonstrated by the evolution of entanglement theory, the resource-theoretic
perspective possesses the potential to revolutionize our understanding of familiar
subjects.

In this context, chemistry exemplifies this framework, elucidating how abundant col-
lections of chemicals can be converted into more valuable products. Similarly, thermo-
dynamics fits this mold by addressing inquiries about the conversion of various types of
nonequilibrium states – thermal, mechanical, chemical, and more – into one another,
including the extraction of useful work from heat baths at differing temperatures.

Within the realm of quantum resource theories, a fundamental challenge arises in
identifying equivalence classes of quantum systems that can be reversibly intercon-
vert (or simulate each other) when considering an abundance of resource copies, and
determining the rates at which these interconversions occur. The relative entropy of a
resource plays a pivotal role in such reversible transformations, gauging the resource-
fulness of a system by quantifying its deviation from the set of free (nonresourceful)
systems. Remarkably, this function unifies essential (pseudo) metrics across seemingly
disparate scientific domains. For instance, the relative entropy of a resource manifests
as free energy in thermodynamics, entanglement entropy in pure state entanglement
theory, and the entanglement-assisted capacity of a quantum channel in quantum
communication; see Figure 1.1.

tFigure 1.1 Unification of resources.
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1.2 About this Book

As mentioned in the introduction, quantum resource theories have recently emerged
as a vibrant research area within the quantum information science community. Ini-
tially, the emphasis was on understanding the resources used in quantum information
processing tasks. However, it has become increasingly evident that quantum resources
have broad relevance, extending from quantum computing to quantum thermodynam-
ics and the fundamental principles of quantum physics. This realization has spurred
rapid developments in the field, resulting in a proliferation of publications and the
development of new tools and mathematical methods that firmly underpin this area of
study.

In light of the extensive literature in the field of quantum information science, one
might understandably question the need for yet another book on quantum resources.
Isn’t this territory already covered in existing quantum information textbooks? For
instance, quantum Shannon theory can be seen as a theory of interconversions among
different types of resources, and Wilde [235] and Watrous [233] have produced out-
standing books delving into these topics. Additionally, detailed treatments of subjects
covered in this book, such as quantum divergences and Rényi entropies, can be found
in Tommamichel’s noteworthy work [211].

While it is accurate to say that many of the topics covered in this book are available
elsewhere, what distinguishes this book is its unique approach. It explores well-trodden
subjects like entropy, uncertainty, divergences, nonlocality, entanglement, and energy
from a fresh perspective rooted in resource theories. Specifically, the book adopts
an axiomatic approach to rigorously introduce these concepts, providing illustrative
examples. Only then does it transition to operational aspects that involve the examples
discussed.

Take, for instance, the topic of conditional entropy, a subject widely covered in
numerous textbooks in both classical and quantum information theory. This book,
however, offers a distinctive approach by presenting this concept from three distinct
perspectives: axiomatic, constructive, and operational. Notably, all three perspectives
converge to the same notion of conditional entropy. This approach not only provides
the reader with a deeper understanding of the concept but also underscores its robust
foundation.

The primary goal of this book is pedagogical in nature, with the hope of pro-
viding readers with a contemporary perspective on quantum resource theories. It
aspires to equip readers with the necessary physical principles and advanced mathe-
matical techniques required to comprehend recent advancements in this field. Upon
completing this book, readers should have the ability to explore open problems and
research directions within the field, some of which will be highlighted in the text.

In anticipation of a diverse readership, this book is designed to be inclusive, targeting
both graduate students and senior undergraduate students who possess a foundational
understanding of linear algebra. It aims to provide themwith a comprehensive resource
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4 1 Introductory Material

for delving into this fascinating field. Simultaneously, the book serves as a reference,
offering fresh insights and innovative approaches that researchers in the early stages
of their careers may find valuable. With numerous examples and exercises, it aims to
serve as a textbook for courses on the subject, enhancing the learning experience for
students.

While the primary audience for this textbook consists of entry-level graduate stu-
dents interested in pursuing research at the master’s or PhD level in quantum resource
theories, encompassing quantum information science, it may also prove valuable to
researchers in fields influenced by quantum information and resource theories, such as
quantum thermodynamics and condensed matter physics. They may find this book to
be a useful and accessible reference source.

Although we have endeavored to make the book self-contained, a basic understand-
ing of linear algebra is essential. The goal was to create a resource accessible to graduate
students from diverse backgrounds in mathematics, physics, and computer science. As
a result, the book includes preliminary chapters and several appendices (online ver-
sion) that fill potential knowledge gaps, given the interdisciplinary nature of the subject
matter.

Quantum resource theories constitute a vast research area, with new properties of
physical systems continually being recognized as resources. Consequently, the aim of
this book is not to exhaustively cover all resource theories but rather to select those that
illustrate the techniques used in quantum resource theories effectively. On the technical
front, we have chosen to begin with the modern single-shot approach and employ it to
derive asymptotic rates. Historically, asymptotic rates were studied first, but from a
pedagogical standpoint, it is more intuitive to start with the single-shot regime.

To the best of our knowledge, there are currently no dedicated books specifically
focused on quantum resource theories. With this book, we hope to contribute to the
field by providing a comprehensive overview and integrating both new and existing
results within a unified framework. While we do not claim this book to be the ultimate
authority, we believe it can serve as a valuable reference that consolidates ideas scat-
tered across various journal articles, addressing the need for a centralized resource in
the field of quantum resource theories.

1.3 The Structure of the Book

In this book, we delve deep into the comprehensive framework of quantum resource
theories, offering a detailed study of their general principles and equipping readers with
the necessary tools and methodologies. We extensively cover three illustrative exam-
ples of resource theories – Entanglement, Asymmetry, and Thermodynamics – chosen
for their pedagogical value in showcasing the diverse facets of quantum resource theo-
ries. While we do not have a dedicated chapter solely focused on quantum coherence,
this concept is seamlessly woven into our broader discussions. It serves as a recurring
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illustrative example that enriches our understanding of various aspects of quantum
resource theories throughout the book.

The initial volume of this book is structured into five main parts, with an additional
sixth part containing supplementary materials.

Section 1 The opening section of this book is thoughtfully designed to cater to read-
ers who may not possess prior knowledge of quantum mechanics or quantum
information. Within this segment, we embark on a rigorous mathematical journey
through quantum theory, emphasizing precise definitions and mathematical proofs
of fundamental physical theorems. Key subjects covered in this section encompass
quantum states, generalized quantum measurements, quantum channels, POVMs,
and more. Moreover, this section extends its reach beyond the boundaries of quan-
tum theory, delving into topics such as Ky Fan norms, the Strømer–Woronowicz
theorem, the Pinching Inequality, the Reverse Hölder Inequality, certain hidden
variable models, and other subjects that may not commonly cross the paths of grad-
uate students in physics, mathematics, or computer science. Therefore, even those
well-versed in these topics may find it beneficial to skim through this chapter briefly,
as it has the potential to reveal previously undiscovered insights.

Section 2 The second section delves deep into the methodologies and tools employed
within the realm of quantum resource theories and quantum information. While
it explores numerous quantum information concepts, it distinguishes itself from
conventional quantum information theory textbooks. The introductory chapter of
this section provides an all-encompassing mathematical review of majorization the-
ory, encapsulating recent groundbreaking discoveries, such as relative majorization,
conditional majorization, and the intersection of probability theory with this field.

Subsequent chapters in this section adopt a distinctive approach to elucidate
concepts associated with metrics, divergences, and entropies. These notions are
introduced and dissected using techniques and insights drawn from the framework
of quantum resource theories. For instance, entropy, conditional entropy, relative
entropies, and other divergences are introduced as additive functions that adhere to
monotonicity under the set of free operations, a foundational concept in quantum
resource theories.

The final chapter in this section is dedicated to the asymptotic regime, focus-
ing on the consequences of the “law of large numbers” in quantum information
and quantum resource theories. This chapter introduces concepts such as weak and
strong typicality, the method of types, classical and quantum hypothesis testing,
and the symmetric subspace. These tools prove particularly valuable in the asymp-
totic domain of quantum resource theories when exploring interconversion rates
among infinitely many resources.

In summary, although the contents of this second section share some com-
monalities with conventional quantum information theory textbooks, they diverge
significantly by presenting concepts and tools in a unique manner. Rather than
employing Venn diagrams to define key concepts like entropy, this part of the book
aims to provide a comprehensive and rigorous approach to precisely define these
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concepts by employing axiomatic, constructive, and operational approaches. Lever-
aging the framework of quantum resource theories, this section offers a fresh and
innovative perspective on these familiar topics.

Section 3 In the third section, we delve into the fundamental framework of quantum
resource theories. Our journey begins with a meticulous mathematical elucidation
of a quantum resource theory. We proceed to examine its foundational princi-
ples, including but not limited to the golden rule of free operations, resource
nongenerating operations, physically implementable operations, convex and affine
resource theories, state-based resource theories, as well as resource witnesses and
their associated properties.

Next, we delve into the quantification of quantum resources. In this context,
we introduce a plethora of resource measures and resource monotones, delving
deep into their properties, which include additivity, sub-additivity, convexity, strong
monotonicity, and asymptotic continuity. These concepts form the bedrock of
quantum resource theories, and understanding them is pivotal.

Resource monotones and resource measures offer a valuable means of quanti-
fying resources. Our emphasis is on divergence-based resource measures, such as
the relative entropy of a resource, given their operational interpretations across
various resource theories. We also explore techniques for computing these mea-
sures, including semidefinite programming, and delve into a practical approach
for “smoothing” these measures, a technique commonly employed in single-shot
quantum information science.

Concluding this section of the book, we introduce a rich array of resource inter-
conversion scenarios. These encompass exact interconversions, stochastic (probabi-
listic) interconversions, approximate interconversions, and asymptotic interconver-
sions. We delve into essential tools intricately linked to resource interconversions,
such as the conversion distance within the single-shot regime, the asymptotic equi-
partition property, and the quantum Stein’s lemma within the asymptotic domain.
Additionally, we explore the uniqueness of the Umegaki relative entropy within the
context of quantum resource theories. Our investigation extends to the evaluation of
both the cost and distillation of resources, examining these processes within both
the single-shot and asymptotic regimes. We have encapsulated the essence of this
section of the book in Figure 1.2.

Section 4 The fourth section is dedicated to the quintessential exemplar of quantum
resource theories, often referred to as the “poster child” – entanglement theory. This
section comprises three chapters, each focusing on distinct facets of entanglement.
The first chapter delves into the realm of pure bipartite entanglement, followed by
the second chapter, which explores mixed bipartite entanglement. The third chapter,
in turn, delves into the intricacies of multipartite entanglement.

Within these chapters, we leverage the techniques and concepts developed in Sec-
tions 2 and 3 to delve into the theory of entanglement. This enables us to furnish a
precise definition of quantum entanglement and undertake a comprehensive exami-
nation of its detection, manipulation, and quantification. Notably, the first of these
three chapters serves as the cornerstone, offering an in-depth exploration of pure
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tFigure 1.2 The structure of quantum resource theories

bipartite entanglement, which forms the foundational knowledge upon which the
subsequent chapters on mixed and multipartite entanglement build.

Section 5 The fifth section comprises three chapters, with the first two chapters
focusing on asymmetry and nonuniformity, laying the groundwork for the third
chapter on quantum thermodynamics. In this section, we reveal that athermal-
ity, the resource essential for thermodynamic tasks, consists of two components:
time-translation asymmetry and nonuniformity.

The first chapter explores the resource theory of asymmetry, introducing an oper-
ational framework that arises from practical constraints when multiple parties lack
a common shared reference frame. This theory has found numerous applications in
quantum information and beyond.

The second chapter delves into the resource theory of nonuniformity. In this the-
ory, maximally mixed states are considered free, while all other states are regarded
as valuable resources. This theory can be seen as a unique variant of thermody-
namics, involving completely degenerate Hamiltonians. Indeed, we introduce this
chapter to serve as a gentle introduction to the world of quantum thermodynamics.

Finally, in the third chapter of this section, we dive into quantum thermodynam-
ics. Throughout the book, whenever we introduce a new quantum resource theory,
we adhere to the structured framework outlined in Figure 1.2.

Section 6 The final section serves as a comprehensive resource aimed at ensuring the
self-containment of the entire text. It exclusively includes material that directly
complements the core content of the book.

In the initial three chapters, we delve into key subjects: convex analysis, oper-
ator monotonicity, and representation theory. It’s important to note that each of
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8 1 Introductory Material

these topics is vast in its own right, with numerous dedicated books solely focused
on representation theory or convex analysis, for example. In this section, we have
thoughtfully curated and presented the aspects of these topics that are pertinent to
our book’s core themes. Our approach emphasizes utilizing quantum notations and
placing a strong emphasis on furnishing all the essential elements needed to ensure
the book’s self-contained nature.

Appendices The appendices can be downloaded from www.cambridge.org/
9781009560917.

1.4 Resurrection of Quantum Entanglement: The Birth
of a Fundamental Resource

In this section, we delve into the transformative protocols of quantum teleportation
and superdense coding. These groundbreaking techniques marked a pivotal moment
in the history of quantum physics, elevating entanglement from a purely theoretical
curiosity to a precious resource with tangible applications. This paradigm shift, akin
to the “resurrection” of quantum entanglement, carried profound implications for the
burgeoning field of quantum information. In essence, it played a significant role in cat-
alyzing the emergence of quantum information science. If you’re new to the formalism
of quantum mechanics, we recommend starting with Chapter 2 before delving into the
following two sections.

Even in the early days of quantum mechanics, entanglement stood out as a distinc-
tive and defining feature of the theory. As articulated by Schrödinger, he remarked,
“I would not call [entanglement] one but rather the characteristic trait of quan-
tum mechanics, the one that enforces its entire departure from classical lines of
thought.” This statement underscores the profound departure from classical physics
that entanglement embodies. Significantly, the intriguing properties of entanglement
were recognized well before Bell’s seminal paper on the exclusion of local hidden
variable models (as discussed in Section 2.6).

To illustrate this point, consider a composite system consisting of two 1/2-spin
particles, such as electrons, in the singlet state:

|9−〉 = 1√
2
(|↑n〉|↓n〉 − |↓n〉 ↑n〉) . (1.1)

Here, {|↑n〉, | ↓n〉} forms an orthonormal basis in the complex vector space C2, rep-
resenting the two eigenvectors of the spin observable corresponding to the “up” and
“down” orientations along a direction n ∈ R3. Notably, a remarkable property of this
state is its independence from the specific spin direction n (see Chapter 2).

Now, if Alice performs a measurement in the n direction, it will instantaneously
dictate Bob’s post-measurement state to align with the opposite n direction. This
peculiar phenomenon allows Alice to exert immediate influence on Bob’s state by
simply choosing whether to conduct a Stern–Gerlach measurement (as discussed in
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Section 2.1) along the n or m direction. This nonintuitive behavior of entangled com-
posite quantum systems prompted Einstein to describe it as a “spooky action at a
distance.”

Beyond its profound implications from a fundamental standpoint, entanglement has
gained recognition as a valuable and indispensable resource for the realization of spe-
cific quantum information processing tasks. This shift in perspective has given rise to a
substantial body of research, as entanglement is no longer solely a philosophical curi-
osity but a powerful tool with remarkable practical applications. These applications
encompass protocols like quantum teleportation, superdense coding, and numerous
innovations in quantum cryptography and quantum computing.

In this section, we embark on a journey through some of these protocols, known
as unit protocols, as they exclusively rely on unit noiseless resources. These proto-
cols serve as a testament to the versatility of entanglement and employ three distinct
resource types: a noiseless quantum communication channel, a noiseless classical
communication channel, and the entangled bit, abbreviated as ebit.

1.4.1 Quantum Teleportation

Quantum teleportation is a groundbreaking protocol enabling Alice to transmit an
unknown quantum state |ψ〉 to Bob, all without the need for a dedicated quantum
communication channel. Instead, it relies on the clever utilization of entanglement and
a classical communication channel to achieve this remarkable feat, as illustrated in
Figure 1.3. To elucidate, consider the scenario where Alice and Bob share a composite
system comprising two electrons initially prepared in the singlet state:

|9 AB− 〉 =
1√
2

(|01〉 − |10〉). (1.2)

tFigure 1.3 Quantum teleportation. Single-line arrows correspond to quantum systems. Double line arrows correspond to classical
systems.
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Furthermore, let’s consider the scenario where Alice possesses an additional electron
in her system, characterized by a quantum state |ψ Ã〉 = a|0〉 + b|1〉. Importantly,
both Alice and Bob lack knowledge regarding the spin state of this electron, which
means they are unaware of the specific values of a and b. According to the principles of
quantum mechanics, the collective quantum state of these three electrons – two under
Alice’s control and one under Bob’s – is described by the tensor product:

|ψ Ã〉 ⊗ |9 AB− 〉 =
1√
2

(a|0〉 + b|1〉)⊗ (|01〉 − |10〉)

Openning
Parentheses→=

1√
2

(
a|001〉 + b|101〉 − a|010〉 − b|110〉). (1.3)

It’s noteworthy that in our description in (1.3), we represented the state |ψ Ã〉 ⊗
|9 AB− 〉 using the computational basis of the vector space ÃAB. However, we can
achieve a more insightful representation by substituting the computational basis
|00〉, |01〉, |10〉, |11〉 of system ÃA with the Bell basis consisting of |8 ÃA± 〉 = 1√

2
(|00〉 ±

|11〉) and |9 ÃA± 〉 = 1√
2
(|01〉 ± |10〉). This substitution allows us to express the state as

follows:

|ψ〉 Ã ⊗ |9 AB− 〉 =
1
2

[
a
(|8 ÃA+ 〉 + |8 ÃA− 〉

)|1〉 + b
(|9 ÃA+ 〉 − |9 ÃA− 〉

)|1〉
− a

(|9 ÃA+ 〉 + |9 ÃA− 〉
)|0〉 − b

(|8 ÃA+ 〉 − |8 ÃA− 〉
)|0〉]

Collecting terms→= 1
2

[
|8 ÃA+ 〉(a|1〉 − b|0〉)+ |8 ÃA− 〉(a|1〉 + b|0〉)

+ |9 ÃA+ 〉(b|1〉 − a|0〉)− |9 ÃA− 〉(a|0〉 + b|1〉)
]
. (1.4)

Therefore, if Alice performs the Bell measurement on her two qubits ÃA, that is the
basis (projective) measurement{

P0 = |9 ÃA− 〉〈9 ÃA− |, P1 = |8 ÃA− 〉〈8 ÃA− |, P2 = |8 ÃA+ 〉〈8 ÃA+ |, P3 = |9 ÃA+ 〉〈9 ÃA+ |
}

,
(1.5)

she will get with equal probability four possible outcomes (denoted x = 0, 1, 2, 3, and
global phase is ignored):

Simplification
Outcome Post-Measurement State (Up to a global phase)

x = 0 |9 ÃA− 〉 ⊗ (a|0〉 + b|1〉) |9 ÃA− 〉 ⊗ |ψ〉
x = 1 |8 ÃA− 〉 ⊗ (a|1〉 + b|0〉) |8 ÃA− 〉 ⊗ σ1|ψ〉
x = 2 |8 ÃA+ 〉 ⊗ (a|1〉 − b|0〉) |8 ÃA+ 〉 ⊗ σ2|ψ〉
x = 3 |9 ÃA+ 〉 ⊗ (b|1〉 − a|0〉) |9 ÃA+ 〉 ⊗ σ3|ψ〉

where we denote by {σx }x=0,1,2,3 the identity matrix σ0 = I2, and the three Pauli matri-
ces σ1, σ2, and σ3. Hence, up to a global phase, Bob’s state after outcome x occurred
is σx |ψ〉. After Alice sends (via a classical communication channel) the measurement
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outcome x to Bob, Bob can then perform the unitary operation Ux = σx to obtain the
state

σx (σx |ψ〉) = σ 2
x |ψ〉 = |ψ〉. (1.6)

Therefore, by using shared entanglement, and after transmitting two classical bits
(cbits), Alice was able to transfer her unknown qubit state |ψ〉 to Bob’s side.

If Bob did not receive the classical message from Alice, then his state is one of the
four states {σx |ψ〉}x=0,1,2,3. Since he does not know x , from his perspective his state is
(see Exercise 1.1)

ρ = 1
4

3∑
x=0

σx |ψ〉〈ψ |σx = 1
2

I . (1.7)

That is, without the knowledge of x , Bob’s resulting state is the maximally mixed state,
and contains no information about |ψ〉.

Exercise 1.1. Show that for any density matrix ρ ∈ D(C2),

1
4

3∑
x=0

σxρσx = 1
2

I . (1.8)

Hint: Prove first that the left-hand side of (1.8) is invariant under a conjugation by σx .

Exercise 1.2. Show that if instead of the singlet state |9 AB− 〉, Alice and Bob share another
maximally entangled state |8AB〉 (i.e. the reduced density matrix of |8AB〉 is the max-
imally mixed state), then, by modifying slightly the protocol, they can still teleport an
unknown quantum state from Alice to Bob.

This protocol can be generalized in several different ways. First, in Exercise 1.3 you
will generalize it to d-dimensions. Moreover, in general, if Alice and Bob do not share
the singlet state, but instead their particles are prepared in some other nonseperable
state (i.e. entangled state, but not maximally entangled state) ρAB ∈ D(AB), then typi-
cally perfect/faithful teleportation will not be possible. Still in this case one can design a
protocol achieving quantum teleportation with probability that is less than 1 (see Exer-
cise 1.4), and/or in the end of the protocol the state in Bob’s lab is not exactly equal to
Alice’s original state |ψ〉 Ã but only close to it up to some treshold. Thus, the protocol
described here is called faithful teleportation, since the protocol teleport perfectly |ψ〉
form Alice to Bob with 100% success rate.

Exercise 1.3. Let |8AB〉 := 1√
d

∑
z∈[d] |zz〉 be a 2-qudit (normalized) maximally

entangled state in AB ∼= Cd ⊗ Cd . Consider a family of d2 states in AB defined by

|ψ AB
xy 〉 = T x ⊗ Sy |8AB〉, x , y ∈ [d], (1.9)

where T and S are the phase and shift operators defined by T |z〉 = ei 2π z
d |z〉 and S|z〉 =

|z ⊕ 1〉, where ⊕ is the plus modulo d, and z ∈ [d].
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1. Show that {|ψ AB
xy 〉}x ,y∈[d] is an orthonormal basis of AB.

2. Show that the reduced density matrix of |ψ AB
xy 〉 is the maximally mixed state for all

x , y ∈ [d].
3. Find a protocol for faithful teleportation of a qudit from Alice’s lab to Bob’s lab.

Assume that the joint measurement that Alice performs on her two qudits is a basis
measurement in the basis {|ψ AB

xy 〉}x ,y∈[d]. What are the unitary operators performed
by Bob? How many classical bits (cbits) Alice transmits to Bob?

Exercise 1.4. Suppose Alice and Bob share the state |ψ AB〉 = 1
2 |00〉+

√
3

2 |11〉. Show that
there exists a 2-outcome (basis)measurement thatAlice can perform, such that with some
probability greater than zero, the state of Alice and Bob after the measurement becomes
the maximally entangled state |8AB+ 〉 = 1√

2
(|00〉 + |11〉).

So far we assumed that the teleported state is a pure state. However, the exact same
protocol works even if the unknown state |ψ〉 is replaced with a mixed state ρ. This is
becausewe can view anymixed state as some ensemble of pure states {px , |ψx 〉} in which
the parameter x is unknown. Irrespective of the value of x , the protocol in this section
will teleport |ψx 〉 from Alice to Bob, and thereby, given that the value of x is unknown,
Alice effectively teleported to Bob the mixed state ρ :=∑x px |ψx 〉〈ψx |. Alternatively,
note that the quantum teleportation protocol in Figure 1.3 can be described as a real-
ization of the identity quantum channel id ∈ CPTP(A→ B) (with |A| = |B| := d)
given by

idA→ B(ρA) =
∑

x∈[d2]

TrAÃ

[(
P ÃA

x ⊗U B
x

) (
ρA ⊗8 ÃB

) (
P ÃA

x ⊗U B
x

)∗]
, (1.10)

where {P ÃA
x }x∈[d2] corresponds to the measurement on systems Ã and A in the maxi-

mally entangled basis, Ux is the unitary performed by Bob after he received the value x
from Alice, and 8AB is the maximally entangled state on system AB. The quantum
teleportation protocol states that there exists {P ÃA

x } and {Ux } such that the quan-
tum channel idA→ B above is indeed the identity channel. Although, in the protocol
above we proved it only for pure input states |ψ〉〈ψ |, from the linearity of the quantum
channel idA→ B , it follows that idA→ B is the identity quantum channel on all mixed
states.

Exercise 1.5 (Entanglement Swapping). Consider four qubit systems A, B, C , and D, in
the double-singlet state |9 AB− 〉 ⊗ |9C D− 〉.
1. Show that a joint Bell measurement on system BC generates a maximally entangled

state on system AD (along with another maximally entangled state on system BC)
for all four possible outcomes of the measurement (see Figure 1.4).

2. Show that the singlet state in AD can be generated by quantum teleportation between
system BC and system D.

3. Generalize the entanglement swapping protocol to four qudit systems each of
dimension d.
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13 1.4 Resurrection of Quantum Entanglement: The Birth of a Fundamental Resource

tFigure 1.4 Entanglement swapping.

1.4.2 Superdense Coding

How much classical information can be transmitted with a single qubit? Suppose Alice
wants to transmit a classical message to Bob, but all she has at her disposal is a single
qubit (e.g. spin of an electron) and a perfect noiseless quantum communication channel
that she can use to transmit the electron to Bob. She can prepare the single electron
in the spin that she wants and send the electron to Bob over the noiseless quantum
channel. Alice and Bob agree at the beginning that a message 0 corresponds to spin
up in the z direction, and a message 1 corresponds to spin down in the z direction.
In this way, Alice can transmit one cbit with one use of a perfectly noiseless quantum
channel. Can they do better? We will see later on that it is not possible to encode more
than one classical bit into a single electron, as long as Alice’s electron is not entangled
with another electron in Bob’s system.

Suppose now that Alice’s electron is maximally entangled with another electron in
Bob’s lab, so that Alice and Bob share the singlet state |9 AB− 〉. In the first step of the
protocol, Alice encodes a message x into a her qubit. She is doing it by performing one
out of several (unitary) rotations {U A

x }m−1
x=0 on her qubit (electron). If Alice chose to do

the x rotation, the state of the system after the rotation is

|ψ AB
x 〉 :=

(
U A

x ⊗ I B
)
|9−〉AB . (1.11)

Taking Ux = σx to be the four Pauli matrices (with σ0= I2) we get that the four states
{|ψ AB

x 〉}3x=0 are orthonormal and form a basis of C2 ⊗ C2. In fact, this is the Bell
basis we encountered in the previous subsection. In the next step of the protocol, Alice
sends her electron (over a noiseless quantum communication channel) to Bob. Upon
receivingAlice’s electron, Bob has in his lab two electrons in the state |ψ AB

x 〉. Given that
the set of states {|ψ AB

x 〉}3x=0 form an orthonormal basis, in the last step of the protocol,
Bob performs a joint basis measurement on his two electrons, in the basis {|ψ AB

x 〉}3x=0,
and thereby learns the outcome x . The outcome x is the message that Alice intended
to send Bob.

Exercise 1.6. Show that the set of states {|ψ AB
x 〉}3x=0 is an orthonormal basis of C2⊗C2.
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14 1 Introductory Material

tFigure 1.5 Superdense coding. Double lines correspond to classical systems, and single lines to quantum systems.

Exercise 1.7. Let |8AB〉 := 1√
d

∑
z∈[d] |zz〉 be a maximally entangled state in Cd ⊗ Cd .

Show that Alice can use it to transmit to Bob 2 log2 (d) cbits.

1.5 Resource Analysis and Reversibility

The previous two protocols demonstrate that entanglement is a valuable resource with
which certain tasks will not be possible without it. We have seen in the protocols above
that entanglement can be converted to other types of resources such as quantum or
classical communication channels. We will use the following notations to denote these
resources:

1. [qq] denotes one ebit; that is, a unit of a static noiseless resource comprising of two
qubits in a maximally entangled state.

2. [q→ q] denotes one use of an ideal (noiseless) qubit channel.
3. [c→ c] denotes one use of a classical bit channel capable of transmitting perfectly

one classical bit.
4. [cc] denotes one bit of shared randomness.

Observe that these resource units can be classified into being classical or quantum, and
static (such as [qq] and [cc]) or dynamic (such as [q→ q] or [c→ c]).

With these notations, the teleportation can be viewed as a process in which one ebit
plus two uses of a classical bit channel are consumed to simulate a qubit channel. In
resource symbols this can be characterized as the following resource inequality:

[qq]+ 2[c→ c] ⩾ [q→ q]. (1.12)

Note that the use of the inequality here is justified by the fact that a single use of a quan-
tum channel cannot generate both an entangled state and a double use of a classical
channel.
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15 1.5 Resource Analysis and Reversibility

For superdense coding, an ebit plus one use of a quantum channel is used to simulate
two uses of a classical channel. This can be expressed as the resource inequality

[qq]+ [q→ q] ⩾ 2[c→ c]. (1.13)

Note that if entanglement is not considered as a resource, that is, the parties are sup-
plied with unlimited singlet states, then we can remove the ebit cost [qq] in (1.12)
and (1.13) and get that for teleportation 2[c→ c] ⩾ [q→ q] and for superdense cod-
ing [q→ q] ⩾ 2[c→ c]. This makes teleportation and superdense coding the dual
protocols of each other, and in this case we can say that [q→ q] = 2[c→ c].

However, in almost all practical scenarios, entanglement is an expensive resource
that can be difficult to generate over long distances and that is also highly sensitive to
decoherence and noise. Therefore, specifically pure maximally entanglement is scarce,
and must be treated as a resource. The question then becomes if it is possible to
change slightly the protocols of teleportation and superdense coding, making them
more symmetric, in the sense that the two resource inequalities in (1.12) and (1.13)
merge into a single resource equality. This is indeed possible if we replace 2[c→ c]
in the right-hand side of (1.13) with two uses of an isometry channel known as the
coherent bit channel.

1.5.1 The Coherent Bit Channel

We introduce here another unit resource that is called the coherent bit channel, or
in short the cobit channel, and is denoted by [q→ qq]. As the symbol suggests, this
unit resource represents one use of a channel. The channel is defined by the isometry,
V : A→A ⊗ B, with |A|=|B|=2, according to the following action on the basis of A:

V |x〉A = |x〉A|x〉B ∀ x ∈ {0, 1} or equivalently V =
1∑

x=0

|x〉〈x |A ⊗ |x〉B . (1.14)

We will denote by

VZ (ρ) := VρV ∗, ∀ ρ ∈ L(A), (1.15)

where the subscript Z indicates that the basis {|0〉, |1〉} is an eigenbasis of the third
Pauli operator (i.e. eigenvectors of the spin observable in the z-direction). One can
define V with respect to other bases. For example, we will denote by VX ( · ) = U ( · )U∗
the coherent bit channel with respect to the basis {|+〉, |−〉}, where U is the isometry
defined by U |±〉A = |±〉A|±〉B .

How is this resource related to other resources? First note that with such a resource
Alice can transmit a classical bit to Bob. Indeed, Alice can encode a cbit x ∈ {0, 1} in
the state |x〉A and send it over the channel VZ . Then, Bob receives |x〉B on his system
and performs a basis measurement to learn x . We therefore have

[q→ qq] ⩾ [c→ c]. (1.16)
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Exercise 1.8 shows that we also have [q→ qq] ⩾ [qq]. Among other things, this also
implies that [c→ c] 6⩾ [q→ qq] or in other words, [c→ c] is strictly less resourceful
than [q→ qq].

Exercise 1.8. Show that VZ
(|+〉〈+|A) = |8AB+ 〉〈8AB+ |.

1.5.2 Coherent Superdense Coding

For superdense coding, we saw that an ebit, [qq], plus one use of a quantum channel,
[q→ q], can be used to simulate two uses of a classical channel, 2[c→ c].We now show
that the same resources can also be used to simulate two uses of the coherent map V .
That is, we will show that

[qq]+ [q→ q] ⩾ 2[q→ qq]. (1.17)

Note that due to (1.16), the above equation also implies the resource inequality (1.13).
The quantum protocol that achieves this resource conversion is called coherent super-
dense coding.

Coherent superdense coding protocol (see Figure 1.6) consists of several steps. Ini-
tially, Alice and Bob share the maximally entangled state |8AB+ 〉. Alice then prepares
an input state |x〉A1 |y〉A2 so that Alice and Bob’s initial state (time t0 is the figure) is

|x〉A1 |y〉A2 |8AB+ 〉. (1.18)

tFigure 1.6 Coherent superdense coding. One ebit plus one use of a noiseless qubit channel are implemented to realize two uses of
the cobit channel.
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17 1.5 Resource Analysis and Reversibility

Alice then performs a sequence of two controlled unitary gates, controlled X on system
A2 and A, followed by controlled Y gate on system A1 and A. The resulting state at time
t1 is

|x〉A1 |y〉A2 |φAB
xy 〉, where |φAB

xy 〉 :=
(

Z x X y ⊗ I B
)
|8AB+ 〉 and x , y ∈ {0, 1},

(1.19)

where Z x equals the identity matrix for x = 0, and the third Pauli matrix for x =
1 (X y is defined similarly). A key observation is that {|φAB

xy 〉}x ,y∈{0,1} is precisely the
Bell basis, and therefore forms an orthonormal basis for C2 ⊗ C2. Note also that this
encoding (x , y)→ |φAB

xy 〉 is done by Alice alone, and therefore essentially identical to
the superdense coding protocol we encountered earlier.

In the next step Alice uses a noiseless qubit channel to transmit system A to Bob.
Therefore, at time t2 the state of the system is |x〉A1 |y〉A2 |φB1 B2

xy 〉, where as before,

|φB1 B2
xy 〉 :=

(
Z x X y ⊗ I B2

)
|8B1 B2+ 〉. (1.20)

Since both {|φB1 B2
xy 〉}x ,y∈{0,1} and {|xy〉B1 B2}x ,y∈{0,1} are orthonormal bases of Bob’s two

qubit space B1 B2, we conclude that there exists a unitary matrix U B1 B2 such that

|xy〉B1 B2 = U B1 B2 |φB1 B2
xy 〉 ∀ x , y ∈ {0, 1}. (1.21)

It turns out that the unitary U AB as already defined can be expressed as a CNOT gate
followed by a Hadamard gate on system B1 (see Bob’s side in Figure 1.6 between time
steps t2 and t3). Explicitly,

U B1 B2 =
(

H |0〉〈0|B1
)
⊗ I B2 +

(
H |1〉〈1|B1

)
⊗ X B2

= |+〉〈0|B1 ⊗ I B2 + |−〉〈1|B1 ⊗ X B2 .
(1.22)

Hence, after the application of the unitary U B1 B2 on Bob’s system, Alice and Bob state
is |x〉A1 |y〉A2 |x〉B1 |y〉B2 . That is, the quantum circuit in Figure 1.6 simulates the linear
transformation

|x〉A1 |y〉A2 → |x〉A1 |x〉B1 ⊗ |y〉A2 |y〉B2 , (1.23)

which is equivalent to two coherent channels. The resources we used to simulate
these two coherent channels are precisely the same ones used in superdense coding
to simulate two noiseless classical channels.

Exercise 1.9. Show that the unitary matrix U B1 B2 above satisfies (1.21).

Exercise 1.10. Suppose the initial ebit shared between Alice and Bob was given in the sin-
glet state |9 AB− 〉 instead of |8AB+ 〉, and consider the exact same protocol as in Figure 1.6,
until time step t2. Revise the unitary matrix U B1 B2 after time step t2 so that the protocol
still simulates two coherent channels.
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1.5.3 Coherent Teleportation

The coherent teleportation protocol is the resource reversal of the coherent superdense
coding protocol. Particularly, it reveals that two uses of a cobit channel are sufficient
to generate one ebit and at the same time simulate one use of a qubit channel. That is,
the coherent teleportation protocol demonstrates that

2[q→ qq] ⩾ [qq]+ [q→ q]. (1.24)

The protocol achieving this resource inequality is depicted in Figure 1.7.
In the first step of the protocol Alice sends a qubit |ψ A〉 = a|0〉A + b|1〉A into the

first cobit channel. The cobit channel VZ transforms this state into the state

a|0〉A|0〉B1 + b|1〉A|1〉B1 = 1√
2

[
|+〉A

(
a|0〉B1 + b|1〉B1

)
+ |−〉A

(
a|0〉B1 − b|1〉B1

)]
.

(1.25)

In the next step, system A goes through the second cobit channel, VX , yielding the state

1√
2

[
|+〉A|+〉B2

(
a|0〉B1 + b|1〉B1

)
+ |−〉A|−〉B2

(
a|0〉B1 − b|1〉B1

)]
. (1.26)

Finally, in the last step, Bob sends his systems through aCNOT gate. Note that X |+〉 =
|+〉 so that the CNOT gate only changes |−〉B2 |1〉B1 to −|−〉B2 |1〉B1 while keeping all
the other terms intact. Hence, after Bob’s CNOT gate, Alice and Bob share the state

1√
2

[
|+〉A|+〉B2

(
a|0〉B1 + b|1〉B1

)
+ |−〉A|−〉B2

(
a|0〉B1 + b|1〉B1

)]
= |8AB2+ 〉|ψ B1〉.

(1.27)

That is, at the end of the protocol Alice teleported her quantum state |ψ〉 to Bob’s
system B1, and also share with Bob’s system B2 the maximally entangled state 8AB2+ .

tFigure 1.7 Coherent quantum teleportation. Two cobit channels produce one ebit plus one use of a noiseless qubit channel.
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Coherent quantum teleportation and coherent superdense coding demonstrate that
two cobit channels have the same resource value as one ebit and one use of a qubit
channel:

[qq]+ [q→ q] = 2[q→ qq]. (1.28)

This means that coherent teleportation is the reversal process of coherent superdense
coding and vice versa.

1.6 Notes and References

Quantum teleportation was discovered in Ref. [20], and quantum superdense coding in
Ref. [23]. These seminal papers paved the way for the development of quantum Shan-
non theory and entanglement theory, as they demonstrated that entanglement, besides
being interesting from a fundamental point of view, is a resource that can be consumed
to achieve certain exotic tasks such as quantum teleportation. Moreover, these proto-
cols are considered as the unit protocols (see, for example, Ref. [235]), since they form
the building blocks with which one studies the capabilities of noisy quantum channels
to transmit information in asymptotic settings involving many uses of the channels.

The resource analysis using notations such as [q→ q] was first introduced in
Ref. [62] where the rules of this “resource calculus” developed. The coherent bit, coher-
ence teleportation, and coherent superdense coding are due to Ref. [112]. More details
on coherent communication can be found in the book of Wilde [235].
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