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Abstract

This paper gives a static semantics for Haskell 98, a non-strict purely functional programming

language. The semantics formally specifies nearly all the details of the Haskell 98 type system,

including the resolution of overloading, kind inference (including defaulting) and polymorphic

recursion, the only major omission being a proper treatment of ambiguous overloading and

its resolution. Overloading is translated into explicit dictionary passing, as in all current

implementations of Haskell. The target language of this translation is a variant of the

Girard–Reynolds polymorphic lambda calculus featuring higher order polymorphism and

explicit type abstraction and application in the term language. Translated programs can thus

still be type checked, although the implicit version of this system is impredicative. A surprising

result of this formalization effort is that the monomorphism restriction, when rendered in a

system of inference rules, compromises the principal type property.

1 Introduction

It is now more than ten years since the first version of Haskell was made public

(Hudak & Wadler, 1990), and Haskell is now one of two widely used non strict

functional languages (the other being Clean). During this time, Haskell has been

defined by a succession of Reports, the latest one defining Haskell 98 (Peyton Jones

et al., 1999). While the Reports have provided formal descriptions of Haskell syntax,

the static and dynamic semantics has only been treated informally. This is especially

unfortunate for the static semantics since the type system, in particular, is both

complex and innovative. Several research papers describe various aspects of it in a

simplified form (Wadler & Blott, 1989; Jones, 1995; Hall et al., 1996; Jones, 1999),

and still more propose extensions. In particular, Peyton Jones et al. (1997) discuss a

number of minor variations of the type class system, though only informally. None

of the formal papers have dealt with the full Haskell language, the one getting

closest being Hall et al. (1996). This situation has had the concrete consequence

that different Haskell implementations actually differ in the programs they consider

legal.

This paper aims to provide most of what has previously been missing. We describe

the latest version of Haskell, called Haskell 98. While the language is expected to

continue evolving by incorporating the more useful of the proposed extensions,

Haskell 98 is special in that implementations are expected to continue supporting it

even when subsequent versions of the language have been defined. Thus Haskell 98
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is a stable target for application writers and authors of text books (and semantices).

In the rest of the paper we will refer to Haskell 98 simply as Haskell.

We follow previous formalizations of type classes in providing a translation into a

language without overloading. Our target language is explicitly typed and similar to

the Girard-Reynolds polymorphic lambda calculus (Girard, 1972; Reynolds, 1974),

although we do not use the full power of that system.

1.1 Sources

The main source for this work has of course been the Haskell Report (Peyton Jones

et al., 1999); in the rest of the paper we will refer to this document simply as the Re-

port, and we will frequently refer to it when discussing our formalizations of various

features. When the Report has been unclear, we have sometimes consulted (Jones,

1999) which gives a type inference algorithm for a subset of Haskell (basically the

expression sublanguage, including bindings). We have also considered (Jones, 1995)

to be a source with respect to constructor classes and higher order polymorphism.

Another important starting point has been Peyton Jones and Wadler’s unpublished

draft semantics for Haskell 1.2 (Peyton Jones & Wadler, 1991). While that report

describes an earlier version of the language, is incomplete and was never formally

published, it is still the closest ancestor of the present work.

We have not considered the various existing implementations as sources, however.

Where an implementation differs from the Report, we think that the Report is

correct rather than the implementation. Where the Report is vague, we have still

not consulted any implementation but resolved the ambiguity both with an eye to

what appears most useful to the programmer and to what gives the simplest formal

description.

1.2 Scope and contributions

Since this semantics aims to be complete, it deals with many issues which have not

been formalized before. These issues include:

Modules. We deal with import and export specifications (section 4), but the influence

of the module system is pervasive in the semantics. We translate Haskell into a

language using original names to refer to entities defined in other modules.

Kind inference. Kinds can be seen as types for types and are used in Haskell to

structure its higher order type system (type variables range not only over types,

but also over type constructors). Kinds are not explicit in the source language but

are inferred by the type checker. Sometimes, more than one kind can be assigned

to a class or type. Since the kind system is monomorphic, kinds are defaulted in

these situations. Kind defaulting is only sketched in the Report, and its integration

into an inference system is not entirely trivial (section 3).

Default methods. None of the previous formalizations deal with the typing of default

method bindings in class declarations, and the Report is not very explicit. There

does however seem to be only one sensible choice, which we present in section

6.1.
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Labelled fields. Constructors with labelled fields (records) were introduced in Haskell

1.3 and are absent from previous formal descriptions. Much of their semantics is

only described indirectly in the Report, and it turns out that the interaction with

overloading and polymorphism is non obvious (section 5.2.2).

In addition, there are various other constructs, including for instance n+k patterns,

which have not been given formal typing rules previously.

1.3 Omissions

The major omission in this paper is a proper treatment of ambiguity. We have not

been able to formulate inference rules which disallow ambiguity since ambiguity can

always be hidden by making a less than maximally general derivation, resolving the

ambiguous overloading in an arbitrary way (section 10.2).

In addition, we do not deal with strictness flags, nor do we treat newtype

declarations (these are indistinguishable from data declarations from a typing

point of view). A more substantial omission is deriving clauses in algebraic data

type declarations. A proper treatment of derived instances would take up a lot

of space, mainly for specifying the dynamic semantics. Fortunately, generating

derived instances can be done before type checking, and is described in the Report

(Appendix D).

We do not describe the semantics of mutually recursive modules since their

semantics is effectively left up to each implementation by the Report (section 5.7).

2 Notation and an introduction to the formalization

This section discusses the source and target languages, the syntax of types and

judgments, typing environments and some other issues which cut across the entire

system.

2.1 Abstract syntax of Haskell

Since the program has already been parsed, as described in the Report, we will not

work with the concrete syntax but with a slightly simplified abstract syntax which

is quite close to the data type one would use to represent a Haskell program in a

compiler. This syntax differs from the concrete one in the following respects:

• Infix operators are assumed to be compiled to function applications, and

fixity declarations are eliminated. Operator sections are translated to lambda

abstractions.

• List expression and patterns of the form [e1, . . . , en] and [p1, . . . , pn], respect-

ively, are assumed to be written as (:) e1 ( . . . ((:) en [ ]) . . . ) and similarly

for list patterns.

• Likewise, types are written in prefix form. We thus have the following
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mod ∈ Module → module M (ent1 , . . . , entk) where imp1 ; . . . ; impn ; body

k, n > 0

imp ∈ Import → import qualifier M as M ′ implist

qualifier ∈ Qualifier → [qualified]

implist ∈ Import list → [[hiding] (ent1, . . . , entn)] n > 0

ent ∈ Entity → x

| K

| T (x1 , . . . , xk , K1 , . . . , Kn) k, n > 0

| T (..)

| C (x1 , . . . , xk) k > 0

| C (..)

| module M

body ∈ Module body → ctDecls; instDecls; binds

ctDecls ∈ Classes and types → [ctDecl1 ; . . . ; ctDecln then ctDecls] n > 1

ctDecl ∈ Class or type → type S u1 . . . uk = t k > 0

| data cx => S u1 . . . uk = conDecls k > 0

| class cx =>B u where sigs; bind1 ; . . . ; bindn n > 0

t ∈ Type expression → u

| T

| t1 t2

cx ∈ Context → (class1 , . . . , classk) k > 0

class ∈ Class assertion → C (u t1 . . . tk) k > 0

conDecls ∈ Constructor decls → conDecl1 | . . . | conDecln n > 1

conDecl ∈ Constructor decl → J t1 . . . tk k > 0

| J {v1 :: t1 , . . . , vk :: tk} k > 0

instDecls ∈ Instance decls → instDecl1 ; . . . ; instDecln n > 0

instDecl ∈ Instance decl → instance cx =>C t where bind1 ; . . . ; bindn n > 0

sigs ∈ Signatures → sig1 ; . . . ; sign n > 0

sig ∈ Signature → v :: cx => t

Fig. 1. Abstract syntax, part 1.

equalities:

(->) t1 t2 = t1 -> t2 Function types

[] t = [t] Lists

(k) t1 . . . tk = (t1, . . . ,tk) k-tuples
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Table 1. Lexical syntax

Unqualified form Qualified form

Variables v x

Constructors J K (including ( ), (k), [ ] and (:))

Type names S T (including ( ), (k), [ ] and (->))

Type variables u M

Class names B C

Module names M M

We also use the syntax (k) rather than (, . . . ,) with k − 1 commas for the

curried k-tuple constructor.

• The same syntax is used for lists of case alternatives and for function bindings;

the different alternatives for the same function is collected into the same match.

This syntax also allows case alternatives with a sequence of patterns, something

which will not be generated by a translation from Haskell source.

• All pattern matching is guarded; an unguarded (source level) match p = e

can be translated into p | True = e. Similarly, all guarded expression lists have

where clauses; a source level list without a where clause can be translated to

gde1 . . . gden where ε.

• A type signature gives a type for one variable only; source level signatures

can easily be split into this form. Similarly for constructor declarations with

labelled fields.

• We mark labelled record updates with an explicit ⇐ to distinguish them from

labelled constructions.

• Haskell has special syntax for bindings in instance declarations since these

may bind qualified names. Our abstract syntax instead allows for qualified

names in all function bindings and patterns.

• Binding groups are explicitly nested in our abstract syntax; a binds consists

of a sequence of bindGs. This allows the result of dependency analysis to be

made explicit, which is important for type checking.

We give the abstract syntax in figures 1, 2 and 3 where we use [phrase] for an

optional occurrence of phrase (either phrase or ε).

2.2 Name spaces

Section 1.4 of the Report states that class names and type names share a single

name space, so that the environment determines whether a given identifier refers

to a class or a type. In this paper we will instead assume that all name spaces are

distinct and that type and class names are syntactically distinguished.
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binds ∈ Binds → [sigs; bindG then binds]

bindG ∈ Bind group → bind1 ; . . . ; bindn n > 1

bind ∈ Binding → x match1 [] . . . [] matchn n > 1

| p gdes

match ∈ Match → p1 . . . pk gdes k > 1

gdes ∈ Guarded exprs → gde1 . . . gden where binds n > 1

gde ∈ Guarded exp → | e1 = e2

e ∈ Expression → x

| literal

| K

| \ p1 . . . pk -> e k > 1

| e1 e2

| let binds in e

| case e of match1 [] . . . [] matchn n > 1

| do stmts

| [e | quals]

| [e1 [,e2 ]..[e3 ]]

| e ⇐ {fbind1 , . . . , fbindk} k > 0

| K {fbind1 , . . . , fbindk} k > 0

stmts ∈ Statements → p <- e; stmts

| let binds; stmts

| e; stmts

| e

quals ∈ Qualifiers → p <- e, quals

| let binds , quals

| e, quals

| ε

fbind ∈ Field binding → x = e

p ∈ Pattern → x

| K p1 . . . pk k > 0

| K {fp1 , . . . , fpk} k > 0

| v@p

| ~p

|
| literal

| v+integer

fp ∈ FieldPattern → x = p

Fig. 2. Abstract syntax, part 2.
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T ∈ Qualified type constructor → S

| M .S

| Σ

Σ ∈ Special type constructor → ( )

| (k)

| [ ]

| (->)

K ∈ Qualified data constructor → J

| M .J

| ∆

∆ ∈ Special data constructor → ( )

| (k)

| [ ]

| (:)

C ∈ Qualified class name → B

| M .B

S ∈ Type constructor

u ∈ Type variable

B ∈ Class name

J ∈ Data constructor

M ∈ Module name

literal ∈ Literal → char

| string

| integer

| float

Fig. 3. Abstract syntax, part 3.

σ ∈ Type scheme → ∀α1 . . . αk . θ ⇒ τ

θ ∈ Context → (Γ1 τ1, . . . ,Γn τn)

τ ∈ Type → α

| χ

| τ1 τ2

χ ∈ Type constructor → Tκ

α ∈ Type variable → uκ

Γ ∈ Class name → Cκ

T ∈ Original type name → S

| M!S

| Σ

C ∈ Original class name → B

| M!B

κ ∈ Kind → ∗
| κ1 → κ2

Fig. 4. Semantic types.

2.3 Qualified and original names

In Haskell, import declarations are used to bring names defined in other modules

into scope. To resolve name clashes, qualified names may be used. A qualified name

has the form M .name where M is either the name of the module that name is

imported from or an arbitrary module identifier given in the import declaration

(using the as form). A module may also export a name it has itself imported from

another module, so the qualifier in a qualified name does not necessarily correspond

to the module containing the definition of the name.

It is also possible that the same definition is referred to by names with different
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qualifiers. To avoid gratuitous name clash errors, it is legal to import the same name

by different routes (through different import declarations) as long as all of the routes

lead to the same definition in the same module.

To formalize these requirements, our semantics uses original names which refer

to the module containing the definition of the name rather than to the import

declaration bringing the name into scope. A local original name looks like an

unqualified name (e.g. foo) and always refers to a definition in the current module.

A global original name is syntactically similar to a qualified name, using “!” rather

than “.” (e.g. Foo!foo) and always refers to a definition in the indicated module.

We will sometimes regard a local name as a global name with ε as the qualifier

(e.g. ε!foo), although we never write them that way. In the translated program,

references to imported entities use global original names whereas locally defined

names are local. The same rule holds for entities used in the inference rules, like

type and class names, which are always global if imported. Consider the following

example modules:

module Foo where

foo = 1

x = True

module Bar(foo,bar,x)

import Foo(foo)

bar = 2

x = "Hello, world!\n"

module Main where

import Foo as F

import Bar

y = 42

main = ...

In the definition of main, the various qualified names are related to original names

as follows:

• bar and Bar.bar correspond to the original name Bar!bar and thus have the

value 2.

• foo, F.foo and Bar.foo correspond to the original name Foo!foo and con-

sequently refer to the definition in Foo with value 1. The F comes from the

as clause, and Bar.foo is legal since Bar imports foo and reexports it. The

unqualified foo is legal since both of the import declarations yield the same

original name for foo.

• F.x corresponds to Foo!x and has value True and Bar.x corresponds to Bar!x

and has the value "Hello, world!\n". The unqualified x is illegal since the

two import declarations yield different original names for x.

• y corresponds to y (or ε!y) with value 42 since we omit the module name part

in locally defined original names.
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x ∈ Original variable → M!v

| v

K ∈ Original constructor → M!J

| J

| ∆

v ∈ Target variable → v

J ∈ Target constructor → J

M ∈ Target module name → M

S ∈ Target type name → S

| B

Fig. 5. Lexical syntax of the target language.

In this way, the module system of the target language is much simplified: Both

import declarations and exports are eliminated, so that a module becomes just a

named set of type declarations and bindings.

We will sometimes want to remove a possible qualifier from a qualified name, and

we write unQual (x) for this purpose (e.g. unQual (Bar.foo) = foo).

2.4 Types

We distinguish between the type expressions of the source program and the types

derived by the inference rules. We call the latter semantic types and we give their

syntax in figure 4. The main differences between syntactic and semantic types are

that semantic type and class names and type variables are explicitly kinded and that

type and class names are original. Semantic contexts, types and type schemes are

always assumed to be well-kinded. Whenever these entities occur in an inference

rule, it is an implicit side condition that the entity is well-kinded.

We will not assume that the type system knows about the special type constructors

Σ (( ), [ ], etc) and data constructors ∆. Instead we will have information about

these in an initial environment given in figure 16.

From time to time, we will help ourselves to some syntactic sugar: When a context

in a type scheme is empty, we will write the type scheme as ∀α1 . . . αk. τ and if the

list of quantified type variables is empty as well we will simply write τ. We will also

use the familiar notation for some types, for instance [τ] instead of [ ]∗→∗ τ for

lists and τ1 → τ2 rather than (->)∗→∗→∗ τ1 τ2 for functions.

2.5 The target language

The target language of the translation is rather similar to the source language,

differing mainly in things related to the module system, type classes and types

in general, and bindings. The module system is much simplified due to the use

of original names for imported entities, obviating the need for import and export

specifications. The constructs related to type classes (class and instance declarations,

contexts, do expressions and arithmetic sequences) are removed by the translation

and do not occur in the target language. The types of all variables are explicit

and universal quantification and instantiation are also explicit in the term language.

Type and variable names are annotated with kinds. The explicit type information

on variable bindings also makes the nesting of binding sets unnecessary since that
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mod ∈ Module → module M where typeDecls; binds

typeDecls ∈ Type declarations → typeDecl1; . . . ; typeDecln n > 0

typeDecl ∈ Type declaration → data χ α1 . . . αk = conDecl1 | . . . | conDecln k > 0

n > 1

conDecl ∈ Constructor decl → J σ1 . . . σk k > 0

| J {v1 : σ1, . . . , vk : σk} k > 0

binds ∈ Bindings → bind1; . . . ; bindn n > 0

| rec bind1; . . . ; bindn n > 1

bind ∈ Binding → v :σ match1 [] . . . [] matchn n > 1

| p gdes

match ∈ Match → p1 . . . pk gdes k > 1

gdes ∈ Guarded expressions → gde1 . . . gden where binds n > 1

gde ∈ Guarded expression → | e1 = e2

e ∈ Expression → x

| literal

| K

| λ p1 . . . pk -> e k > 1

| e1 e2

| let binds in e

| case e of match1 [] . . . [] matchn n > 1

| [e | quals]

| e ⇐ {fbind1, . . . , fbindk} k > 0

| e {fbind1, . . . , fbindk} k > 0

| e τ1 . . . τk k > 1

| Λα1 . . . αk. e k > 1

quals ∈ Qualifiers → p <- e, quals

| let binds, quals

| e, quals

| ε

fbind ∈ Field binding → x = e

p ∈ Pattern → v :σ

| K p1 . . . pk k > 0

| K {fp1, . . . , fpk} k > 0

| v :σ@p

| ~p

|
| {e}
| v :σ{e1, e2}

fp ∈ Field pattern → x = p

Fig. 6. Target syntax.
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̂(Γ1 τ1, . . . ,Γk τk) = (Γ̂1 τ1, . . . , Γ̂k τk) Context to dictionaries

Ĉκ = Cκ→∗ Class to dictionary type

Vars and context to

(v1, . . . , vk) :̂ (Γ1 τ1, . . . ,Γk τk) = (v1 : Γ̂1 τ1, . . . , vk : Γ̂k τk) typed dictionary pattern

(x1, . . . , xk) :̃ (Γ1 τ1, . . . ,Γk τk) = {x1 : Γ1 τ1, . . . , xk : Γk τk} instance environment

Fig. 7. Correspondence between classes and types.

nesting only serves to allow more polymorphic types to be derived in the absence of

explicit types.

The semantics implements overloading by explicit dictionary passing. This trans-

lation affects types as follows: An overloaded value with type ∀α1 . . . αk. θ ⇒ τ will be

translated to a function with type ∀α1 . . . αk. θ̂ → τ where θ̂ is the type of a dictionary

tuple corresponding to the context θ. The basic names in the target language are

taken from those in the source language (e.g. a v is a v), as shown in figure 5 on

page 303, with the extra feature that a target type name S can also be a source class

name B, which is convenient for this translation.

On the term level, we will use the :̂ operator to construct typed dictionary patterns

from a tuple of dictionary variables (v1, . . . , vk) (which we will often write as vs) and

a context θ. We will also use :̃ to make an overloading environment (section 2.7.4)

from the same ingredients.

A class declaration for class Γ will be translated to an algebraic type declaration

declaring Γ̂ to be a single constructor type with labelled fields for the class operations

and super classes. Since class methods may be polymorphic in Haskell, we allow

polymorphic fields in constructor declarations.

There are two unusual forms of pattern in the target language. They are used to

implement overloaded literal patterns and n+k-patterns and are discussed in more

detail in section 9.1.

2.6 Judgment forms

The task of the inference rules presented in the following sections is in general

three-fold:

• To check that the program is well-formed,

• to specify a translation of the program into a language without overloading

and

• to derive some information about the program.

These requirements carry over to the smaller syntactic units and give the judgments

in the system the general form

environments
judgement name` source phrase  target phrase : derived information

where environments contain various contextual information, the target phrase is

the translation of source phrase and the derived information may be the type of
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source phrase (if it is an expression) or for instance one or more environments

describing names defined in the phrase. If no translation of source phrase occurs

in the target program, the target phrase is omitted, giving the following form of

judgment:

environments
judgement name` source phrase : derived information

This form is used for instance to derive a semantic type from a syntactic one.

Sometimes, when judgments are used in different contexts, not all parts of the

judgment always have a meaningful function. In such situations we will write an “ ”

as a wildcard with the understanding that any value will do in this context.

2.7 Environments

There are several forms of environment used in the inference rules presented in the

following sections. An environment is a set of pairs of the form name : information

where name can be e.g. a variable and information is in general a tuple containing

various pieces of information about name.

The environments are all formalized as sets but they will almost always have the

(partial) function-like property that there should be at most one item which carries

information about each name.

This motivates certain operations on environments. If E1 and E2 are environments,

then

• dom(E1 ) = {name | name : information ∈ E1 } is the set of names in E1,

• E1 \ names = {name : information | name : information ∈ E1 ∧ name 6∈ names}
is E1 with the names in the set names removed,

• E1 |names = {name : information | name : information ∈ E1 ∧ name ∈ names} is

the part of E1 which contains information about names in the set names only,

• E1 ⊕ E2 is E1 ∪ E2 with the side condition that dom(E1) ∩ dom(E2) = ∅,

• E1⊕̄E2 is E1 ∪ E2 with the side condition that E1 |names = E2 |names where

names = dom(E1 ) ∩ dom(E2 ),

• E1~⊕E2 = (E1 \ dom(E2)) ∪ E2 is an asymmetric version of ⊕ where entries in

E2 hide entries with the same name in E1,

• E1⊕̃E2 = E1 ∪ E2 without any side conditions, so there may be multiple

conflicting entries,

• unQual (E1 ) = {unQual (name) : information | name : information ∈ E1 } re-

moves any qualifiers among the names in E1,

• justQs(E1 ) = {M .uname : information | M .uname : information ∈ E1 } includes

only the information about qualified names in E1,

• justSingle(E1 ) = {name : information | name : information ∈ E1 ∧ (name :

information ′ ∈ E1 ⇒ information = information ′)} only retains information

about names with a single entry.

We will often use tuples of environments, and we extend the above operations com-

ponentwise to such tuples. Note that ⊕, ⊕̄ and ⊕̃ have slightly different definitions

on instance environments (see section 2.7.4).
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2.7.1 The class environment

The class environment, ranged over by CE , contains information about type classes.

This information is derived from class declarations and is used in instance declara-

tions and contexts. An item in the class environment has the general form

C : 〈Γ, h , xdef , α, IEsup〉
where Γ is the annotated original name of the class, h is a positive integer used to

express the acyclicality of the superclass relation, xdef is the name of the default

dictionary for the class, α is the class variable (occurs free in IEsup) and IEsup

is an instance environment (see section 2.7.4) giving the names of the fields the

superclasses are stored in in dictionaries for the class. There is an entry of the form

x : Γ′ α in IEsup for every superclass Γ′ of Γ. Information about the types of the

operations of the class is not stored in the class environment but in the top-level

value environment. This simplifies the class some rule on page 321 for selective

import or export of only a subset of the class methods.

2.7.2 The type environment

The type environment, ranged over by TE , contains information about type con-

structors and type variables. The type constructor information is derived from type

declarations in the program and the type variable information records in-scope type

variables. The information is used to check type signatures, type declarations and

instance declarations. An item in the type environment is of one of the general forms

below:

T : χ Algebraic data type name

T : 〈χ, h,Λα1 . . . αk.τ〉 Type synonym

u : α Type variable

The name of an algebraic type constructor is associated with just the annotated

original version of the name χ whereas a type synonym is also associated with a

positive integer h (expressing the acyclicality of dependencies among type synonyms)

and an expansion of the synonym (Λ is abstraction on the type level). A type variable

is associated with its annotated counterpart α. See figure 4 for the syntax of types.

2.7.3 The data constructor environment

The data constructor environment, ranged over by DE , contains information about

data constructors and named fields. The information is derived from algebraic data

type declarations and is used to type constructors, field construction, field updates

and constructor and field patterns. An item in the constructor environment is of one

of the general forms below:

K : 〈K, χ, σ〉 Constructor

x : 〈x, χ,LE 〉 Labelled field

Here K and x are the original names of K and x, respectively, χ is the annotated

original name of the type constructor in whose declaration the data constructor K
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is defined, σ is a type scheme giving the type of K , and LE records local contexts

and labels with their types for all constructors which have the field x .

The label environment, ranged over by LE , contains information about named

fields of constructors. The information is used when typing field updates, field

construction and field patterns. An entry in the label environment is of the form

K : ϕ

where ϕ is of the form ∀α1 . . . αk. θ ⇒ UE → τ. Here the αi are the parameters of

the algebraic type containing the constructor K, θ is the part of the context of the

type pertaining to K and UE is an update environment, so called because it records

the types in a field update. An entry in the update environment is of the form

x : τ

where x is a field name and τ a type. Both of these two forms of environment

are looked up with original names, and they are unaffected by selective import, so

they can contain information about constructors and fields which are not visible.

Where needed, the data constructor environment is used to look up a source name

to find the original name to use for accessing the label or update environments. See

section 5.2.1 for further discussion of the typing of labeled fields.

2.7.4 The instance and overloading environments

The instance environment, ranged over by IE , contains information about which

dictionary variable is bound to a dictionary of which instance of which class. The

information in the instance environment is in part derived from instance declarations

and in part related to dictionary variables bound in dictionary abstractions. The

information is used to construct dictionaries for occurrences of overloaded variables

and constants. An entry in the instance environment has one of the general forms

below:

v : Γ (α τ1 . . . τk) v is bound in a dictionary abstraction

x : Γ α x represents a superclass in classinfo

x : ∀α1 . . . αk . θ ⇒ Γ (χ α1 . . . αk) x is a dictionary from an instance declaration

x : ∀α .Γ′ α ⇒ Γ α x extracts a dictionary for the superclass Γ

Note that v and x are variables that do not occur in the source program but only

in the target program. In the last three cases above, x is bound to a dictionary or

function returning a dictionary for some instance of the class Γ while v is bound in

a dictionary abstraction.

We will write ∀α1 . . . αk . θ ⇒̃ IE for {x : ∀α1 . . . αk . θ ⇒ Γ τ | x : Γ τ ∈ IE}.
An overloading environment OE is an instance environment which only contains

entries of the first kind above. We use overloading environments in rules which deal

with dictionary abstractions; the context abstracted over must be the right-hand

sides of an overloading environment.

One extra condition pertains to instance (and overloading) environments: Not only

is such an environment ill-formed if the same name occurs with different information,
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but it is also ill-formed if the same information occurs with different names. Thus we

require that there is only one dictionary for each instance of each class. This rule

also has consequences for the definition of the environment combining operators

⊕ and ⊕̄ over instance and overloading environments; they get the implicit side

condition that the resulting environment must have unique right hand sides. For

these environments, ⊕̃ is defined to mean the same as ⊕̄.

2.7.5 The variable environment

The variable environment, ranged over by VE , contains information about in-scope

variables. The information comes from several different sources; algebraic type

declarations with labeled fields define the field names as selector functions, class

declarations introduce overloaded operations and ordinary binding constructs yield

ordinary variables. The information is used to type variable occurrences in expres-

sions as well as to find class operations in instance declarations. An entry in the

variable environment has one of the general forms below:

x : 〈x, σ〉 Field selectors and ordinary variables

x : 〈x, ∀α .Γ α ⇒c σ〉 Class methods of class Γ

In both cases, x is the original name of x and σ is a type scheme. Note that a type

scheme is necessary to the right of ⇒c (which we distinguish syntactically from ⇒
in order to mark class methods) since class operations may be polymorphic and

overloaded in type variables other than α. An example of this is the ceiling method

in the class RealFrac from the Haskell Prelude (discussed in section 6.4.6 of the

Report). Its type will be recorded as

∀a∗. Prelude!RealFrac∗ a∗ ⇒c ∀b∗. Prelude!Integral∗ b∗ ⇒ a∗ → b∗

in the variable environment.

We will write ∀α1 . . . αk . θ ⇒̃ VE for {x : ∀α1 . . . αk . θ ⇒ 〈x, τ〉 | x : 〈x, τ〉 ∈ VE}
and similarly for ⇒̃c .

2.7.6 The kind environment

The kind environment, ranged over by KE , contains information about the kinds of

class and type names and type variables. It is used in the derivation of kinds for

types and classes as well as when checking type signatures. An entry in the kind

environment has the general form

name : κ

where name is C , T or u. See section 3 for more details of the Haskell kind system.

We will write kindsOf (CE ,TE ) for the kind environment having the same kind

information as the union of CE and TE. For classes, type names and type variables,

the kind is taken from the semantic class name, type name or type variable in the

environment, respectively.
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2.7.7 The source environment

The source environment, ranged over by SE , contains information about which names

are imported from which modules. It is a tuple 〈CS ,TS ,DS ,VS 〉 of basic source

environments containing information about class names, type names, constructor

and field names and variable names. An entry in a basic source environment has

the form

name : M

signifying that name is imported from module M (there are in general several entries

with the same name). We will write names : M for {name : M | name ∈ names}
indicating a source environment associating each name in names with M.

2.7.8 Environment tuples

The global environment, ranged over by GE , is a tuple of the form 〈CE ,TE ,DE 〉
containing information from global declarations which is not affected (hidden or

augmented) by bindings or expressions. Global environments are used in judgments

for bindings, expressions and patterns.

The full environment, ranged over by FE, is a tuple 〈CE ,TE ,DE , IE ,VE 〉 and

is used in module environments and in connection with imports and exports. The

entity environment, ranged over by EE , is a tuple of the form 〈CE ,TE ,DE ,VE 〉 and

is also used in this context.

2.7.9 The module environment

The module environment, ranged over by ME, contains the environments exported

from each module. An entry in the module environment has the form

M : FE

where FE is the full environment exported by the module named M.

3 Kind inference

Haskell uses a system of kinds to classify type expressions much in the same way as

a type system is used to classify expressions. Indeed, kinds are best thought of as

“types for types”. The kind system, seen as a type system, is very simple: There is

only one base kind, written as ∗, and there are no kind variables and consequently

no polymorphism. The grammar of kinds is:

κ ∈ Kind → ∗ | κ1 → κ2

The base kind ∗ is the kind of ordinary types, like Int, Char or [Char]. A kind

of the form κ1 → κ2 represents a function from types to types. For instance, []

(the type constructor for lists) is of kind ∗ → ∗ since it represents a function from

ordinary types to ordinary types.

Prior to type inference and resolution of overloading, kind inference is performed
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in order to determine kinds for all type and class names as well as for all type

variables. The kind inference system has two major groups of judgments:

1. KE
ktype` t : κ. The type expression t has kind κ in kind environment KE .

2. KE
ksig` sig . The signature sig is well-kinded in kind environment KE .

In both cases, KE is a kind environment as discussed in section 2.7.6.

3.1 Kind defaulting

There are some cases where unique kinds cannot be inferred. Consider a type

signature

x :: a b

where the type variables a and b can be kinded as

a : κ → ∗ b : κ

for any kind κ. This situation is well-known from type inference where some terms

can be assigned more than one type. Polymorphic type systems capture the sets

of possible types using type variables and quantification, but the kind system of

Haskell is monomorphic, so this option is not available. Instead, kinds are defaulted

to ∗ in these situations, giving

a : ∗ → ∗ b : ∗
in our example. A polymorphic kind system is quite possible, but was not deemed

worth the added complexity during the design of Haskell 98.

Kind defaulting is not only used for type variables in signatures, but also for type

and class names. Consider the algebraic type declaration below:

data Tree a = Leaf | Fork (Tree a) (Tree a)

The type constructor Tree can be assigned kind κ → ∗ for any kind κ, and is

defaulted to ∗ → ∗. Since class declarations and algebraic type declarations can be

mutually recursive, kind inference is performed one mutually recursive declaration

group at a time.

The Report is not entirely explicit about what constitutes a mutually recursive

declaration group since it does not detail what constitutes a dependence. We propose

the following rule:

Definition 1 (Kind dependence)

Any occurrence of a class or type name within an algebraic data type declaration

or type synonym declaration, except in a deriving clause1, counts as a dependence.

In a class declaration, occurrences in the superclass context or in the signatures

1 Since deriving clauses may only refer to certain predefined classes, mutual dependence through
deriving clauses is not an issue anyway.
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defining the class methods count, but occurrences in type signatures inside any

default method bindings do not count.

The occurrences that count for dependency analysis are exactly those that are

touched by the kctDecl judgement on page 314.

The rationale for this choice is that the occurrences that count contribute to the

definition of the type or class, whereas the default methods and derived classes are

logically related to instance declarations. This means that adding or removing a

derived instance in an algebraic datatype declaration or a type signature in a default

method binding does not affect kind inference. The following somewhat contrived

example illustrates the difference:

class C a where

op :: d a

op = let x = undefined

x :: C b => T b c

in undefined x

data C a => T a b = MkT (a b)

The kind of C can be any κ, whereas the type T uses C in such a way that C must

have a kind of the form κ → ∗. By our definition of dependence, the type signature

in the default method for op does not count, so the class declaration will be kinded

first, defaulting the kind of C to ∗ which makes the type declaration ill-kinded. If

the occurrence counts, on the other hand, the two declarations are kinded together

and the kind of C is defaulted to ∗ → ∗ instead, eliminating the kind error. But in

that case, removing the signature, removing the default method or even rewriting

the class declaration as

class C a where

op :: d a

op = foo

foo = let x = undefined

x :: C b => T b c

in undefined x

would make the program fragment ill-kinded. We feel that such a simple syntactic

change should not have such a subtle consequence.

3.1.1 Kind ordering

The above examples indicate that when several kinds are possible, we choose the

kind that is in some sense the simplest one. We formalize this intuition using the

relation ≺, defined by these two inference rules:

∗ ≺ κ

κ1 ≺ κ′
1 κ2 ≺ κ′

2

κ1 → κ2 ≺ κ′
1 → κ′

2
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The first rule says that ∗ is the simplest of all kinds and the second rule says that

a function kind is simpler than another function kind if its argument and result

kinds are simpler than those of the other. Note the covariance in both argument

and result kinds in this definition. This ordering is extended to environments by the

following rule:

∀(name : κ) ∈ KE1 . ∃κ′. (name : κ′) ∈ KE2 ∧ κ ≺ κ′

KE1 ≺ KE2

One consequence of this rule is that if KE1 ⊆ KE2 , then KE1 ≺ KE2 .

We refer to this ordering when kinding groups of mutually recursive type and class

declarations in the kctdecls rule on page 314 and when kinding signatures in the

sig rule on page 330. In these cases we seek the smallest kinding environment such

that certain judgments can be derived. These premises are a bit special since there

are no inference rules which allow us to infer this minimality; this is an additional

proof obligation. In practice there are no particular problems since the main purpose

of the inference rules in this paper is to be a specification of an inference algorithm,

and the extra proof obligation can be taken care of when proving the correctness of

that algorithm.

3.2 Kind inference rules

The kind inference rules are mostly straight forward. The kctDecls rule on page 314

traverses the nested lists of class or type declarations and applies kind defaulting

to every mutually recursive group of declarations. The defaulting, expressed using

the kind ordering, makes this judgment deterministic; given a kind environment KE

and a declaration nest ctDecls there is at most one KE’ such that

KE
kctDecls` ctDecls : KE ′.

In the kind data and kind type rules (for algebraic type declarations and type

synonyms), the kinds chosen for the type variables are reflected in the kind of the

type name. Observe that an algebraic data type applied to all of its type parameters

must have kind ∗ since it is the type of a data object, whereas a type synonym

applied to all of its parameters may still have a higher kind. Looking at the rules for

the kcondecl judgement on page 315 we see that the arguments to the constructors

must all have kind ∗.

In the kind class rule, the context and signatures are checked in an environment

extended with the kind of the class variable. Referring to the kind sig rule on

page 315 we find that the kinding for the class variable is not hidden by the

kindings of other type variables, ensuring that the same kind is assumed for the

class variable in all of the signatures for the class operations. The other type variables

are entirely local to the signature in which they appear and will be given minimal

kinds when a semantic type is derived by the sig rule on page 330.

The analogy of kinds as types for types is very striking in the definition of the
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KE
kctDecls` ctDecls : KE ′

KEdecls = min{KE ′ | KE ⊕ KE ′ kgroup` ctDecl1 ; . . . ; ctDecln : KE ′}
KE ⊕ KEdecls

kctDecls` ctDecls : KEgroups

KE
kctDecls` ctDecl1 ; . . . ; ctDecln then ctDecls : KEdecls ⊕ KEgroups

kctdecls

KE
kctDecls` ε : { } kctempty

KE
kgroup` ctDecl1 ; . . . ; ctDecln : KE ′

i ∈ [1 , n] : KE
kctDecl` ctDecli : KEi

KE
kgroup` ctDecl1 ; . . . ; ctDecln : KE1 ⊕ . . . ⊕ KEn

kgroup

KE
kctDecl` ctDecl : KE ′

κ = κ1 → . . . → κk → ∗
KE ⊕ {u1 : κ1 , . . . , uk : κk } kctx` cx

i ∈ [1 , n] : KE ⊕ {u1 : κ1 , . . . , uk : κk } kconDecl` conDecli

KE
kctDecl` data cx => S u1 . . . uk = conDecl1 | . . . | conDecln : {S : κ}

kind data

KE ⊕ {u1 : κ1 , . . . , uk : κk } ktype` t : κ

KE
kctDecl` type S u1 . . . uk = t : {S : κ1 → . . . → κk → κ}

kind type

KE ⊕ {u : κ} kctx` cx KE ⊕ {u : κ} ksigs` sigs

KE
kctDecl` class cx =>B u where sigs; bind1 ; . . . ; bindn : {B : κ}

kind class

Fig. 8. Kind inference, top level declarations.

https://doi.org/10.1017/S0956796802004380 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004380


A static semantics for Haskell 315

KE
kconDecl` conDecl

i ∈ [1 , k ] : KE
ktype` ti : ∗

KE
kconDecl` J t1 . . . tk

kind poscon

i ∈ [1 , k ] : KE
ktype` ti : ∗

KE
kconDecl` J {v1 :: t1 , . . . , vk :: tk}

kind labcon

KE
ksigs` sigs

i ∈ [1 , n] : KE
ksig` sigi

KE
ksigs` sig1 ; . . . ; sign

kind sigs

KE
ksig` sig

KE ′ = {u1 : κ1 , . . . , un : κn} KE ⊕ KE ′ kctx` cx KE ⊕ KE ′ ktype` t : ∗

KE
ksig` v :: cx => t

kind sig

KE
kctx` cx

{C1 : κ1 , . . . ,Cn : κn} ⊆ KE i ∈ [1 , n] : KE
ktype` ti : κi

KE
kctx` C1 t1 , . . . ,Cn tn

kind ctx

Fig. 9. Kind inference, signatures and contexts.

kinding rules for type expressions given in figure 10. Note that type synonyms are

not treated specially in kind inference.

4 Modules

A module consists of a module header, specifying the name of the module and the

entities to be exported from the module, a set of imports specifying the entities to

be imported from other modules, and a body consisting of top-level declarations.
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KE
ktype` t : κ

u : κ ∈ KE

KE
ktype` u : κ

kind tvar

T : κ ∈ KE

KE
ktype` T : κ

kind tcon

KE
ktype` t1 : κ1 → κ2 KE

ktype` t2 : κ1

KE
ktype` t1 t2 : κ2

kind app

Fig. 10. Kind inference, type expressions.

ME
module` mod  mod : ME ′

i ∈ [1 , n] : ME
import` impi : FEi , SEi

FE imp = justSingle(FE1 ⊕̃ . . . ⊕̃FEn )

SEimp = SE1 ⊕̃ . . . ⊕̃SEn

M ,FEimp

body` body  typeDecls; binds : FE , SE

i ∈ [1 , k ] : FEimp~⊕[FE ]M , SEimp~⊕SE
export` enti : FE ′

i

FEexp = FE ′
1 ⊕̄ . . . ⊕̄FE ′

k

ME
module`

{
module M(ent1, . . . , entk) where

imp1; . . . ; impn; body

}
 

{
module M where

typeDecls; binds

}
: {M : FEexp}

module

Fig. 11. Modules.

4.1 The top level judgment

The module judgment is the root of this semantics. Given a module environment

ME and a module mod it allows us to derive a target module mod and a module

environment ME ′ containing information about the entities exported by mod .

The module rule on page 316 deals with creating an environment FE imp, to be

used for typing the body of the module, from the environments exported from other

modules. It also forms an environment FE exp to be exported from the module. This
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environment is built from the imported information (FE imp) and the environment

derived from the module body (FE).

The scoping rules for Haskell are rather complex, in particular the rules concerned

with name clashes between imported entities. The imported environment FE imp is

formed by unioning the environments yielded by different import declarations,

followed by discarding entries for names which occur multiple times with conflicting

information. Since the original name of the entity is included in the information

about it, this rule enforces the requirement from section 5.5.2 of the Report that a

name may only be imported by multiple import declarations if all of the imports

refer to the same original definition. If that is not the case, a name clash is said

to occur, but this only makes the program invalid if the multiply-defined name is

actually used.

The source environments SE and SEimp indicate from which module(s) a name is

imported. It is used to determine what information to export for an export entity of

the form module M ′. We use the operator ⊕̄ to combine environments from different

export entities. This allows the same name to be exported with the same information

by different export entities, but ensures that the program is rejected if unique

information can not be found. Note that the FE ′
i only contain information about

unqualified names since all qualifiers have been stripped by the export judgement.

Any qualifiers will be added by the import declarations of importing modules.

The environment FE derived from the body of the module may contain unqualified

(local) original names which can not be exported since the same local name may

occur in other modules. Therefore, FE is globalized before being exported. We write

this as [FE ]M with the meaning that every local original name name occurring in

FE is replaced by M !name. For most environments, these names occur only to the

right, but in instance environments, label environments and update environments,

they may also occur to the left. Whether occurring to the right or to the left, they are

globalized in the same way. One way to think about globalization is to regard every

unqualified name which occurs in a place where an original name is expected (these

are the local original names) as implicitly qualified with ε, in which case [FE ]M is

FE with M substituted for ε. This corresponds to the requirement in section 5.5.3 of

the Report that any entity needed for type checking must be automatically imported

even if it is not explicitly imported.

4.2 Scoping of imported names

The scoping rules formalized in this paper deviates from those in the Report (section

5.3) in the following respects:

• In our semantics it is not possible to use qualified names to refer to top-level

declarations and bindings in the same module. The following module is legal

according to the Report but illegal in our semantics:

module Foo where

foo = 1

bar = Foo.foo
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FE , SE
export` ent : FE ′

Cs = {C | C : M ∈ CS }
Ts = {T | T : M ∈ TS }
Ks = {K | K : M ∈ DS }
xs = {x | x : M ∈ VS } ∪ {x | x : M ∈ DS }
FE = 〈CE |Cs ,TE |Ts ,DE |Ks∪xs , IE ,VE |xs〉

〈CE ,TE ,DE , IE ,VE 〉, 〈CS ,TS ,DS ,VS 〉 export` module M : unQual (FE )

export module

〈CE ,TE ,DE ,VE 〉 entity` ent : 〈CE ′,TE ′,DE ′,VE ′〉

〈CE ,TE ,DE , IE ,VE 〉, SE
export` ent : unQual (〈CE ′,TE ′,DE ′, IE ,VE ′〉)

export entity

Fig. 12. Export.

• In our semantics, top-level bindings and declarations hide imported names

whereas they give rise to name clashes according to the Report (although an

error only occurs if the name is actually used). The following module is illegal

according to the Report but legal in our semantics:

module Foo where

import Bar(bar)

bar = 1

foo = bar

We feel that our rule is simpler to understand and formalize and, in addition, a

Haskell module that is legal according to the Report can be made legal in our

semantics by replacing each reference M .name to the local top-level name name with

name and renaming any non top-level binding of name in scope at the occurrence

of M .name.

4.3 Import declarations

Haskell import declarations allow rather fine-grained control over what gets im-

ported. The import judgement on page 319 fetches the environment exported by

the imported module from the module environment. What actually gets imported

is determined by a two-stage process. First the import list is consulted using the

implist judgement. In the list some rule rule an explicit list of entities to import

is used to filter the imported environment. Whether this filtering should also affect

the qualified names is not entirely clear from the Report; we have chosen to filter

them as well. In the hide some rule the import list contains entities which will not

be imported from the module. In this case qualified imports are not affected. An
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ME
import` imp : FE , SE

M : 〈CE ,TE ,DE , IE ,VE 〉 ∈ ME

M ′, 〈CE ,TE ,DE ,VE 〉 implist` implist : EE

EE
qualifier` qualifier : 〈CE ′,TE ′,DE ′,VE ′〉

SE = 〈dom(CE ′), dom(TE ′), dom(DE ′), dom(VE ′)〉 : M

ME
import` import qualifier M as M ′ implist : 〈CE ′,TE ′,DE ′, IE ,VE ′〉, SE

import

M ,EE
implist` implist : EE ′

i ∈ [1 , n] : EE
entity` enti : EEi

EE ′ = EE1 ∪ . . . ∪ EEn

M ,EE
implist` (ent1 , . . . , entn) : EE ′⊕̃M .EE ′

list some

i ∈ [1 , n] : EE
entity` enti : EEi

〈CE ,TE ,DE ,VE 〉 = EE \ (EE1 ∪ . . . ∪ EEn )

Ks = {K | K ∈ {ent1 , . . . , entn}}
EE ′ = 〈CE ,TE ,DE \ Ks ,VE 〉

M ,EE
implist` hiding (ent1 , . . . , entn) : EE ′⊕̃M .EE ′

hide some

M ,EE
implist` ε : EE ⊕̃M .EE all

EE
qualifier` qualifier : EE ′

EE
qualifier` qualified : justQs(EE ) qualified

EE
qualifier` ε : EE unqualified

Fig. 13. Import declarations.
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entity of the form K hides any data constructor with that name; otherwise data

constructors only appear in import lists together with the name of the algebraic

data type they are part of. Finally, the all rule imports the entire environment, both

qualified and unqualified, exported by the imported module. Note that the exported

environment of a module only contains unqualified names; the qualified names are

added by the rules for the implist judgement.

The second stage of import processing deals with the possibility of only importing

the qualified names. In the qualified rule for the qualifier judgement the unqualified

names are removed from the imported environment.

In all cases, the instance environment is unaffected by the filtering performed by

the implist judgement as well as the qualifier judgement.

4.4 Entities

Both import and export lists consist of entities. The entity judgement on page 321

filters out the information associated with a particular entity from an export en-

vironment. The filtering functions constrs and fields finds which constructors and

fields of a given type χ are in the domain of the data constructor environment,

and the ops function finds all methods of a given class Γ which are in the domain

of the variable environment. Recall that variables may occur both in the variable

environment and in the data constructor environment. In the latter case, they must

be field names.

An entity of the form C(..) or T(..) refers to all in-scope methods or field

and constructor names associated with the class or type. Entities with an explicit

enumeration only refer to the enumerated names; it is an error if some of these names

are not in scope. It is possible to mention some constructors, field names or methods

in one entity in an import or export list, and also mention other constructors, field

names or methods of the same type or class in another entity in the same list. This

motivates the choice of not keeping information about the visibility of such names

in the information recorded about the type or class. The consequences of this choice

are apparent in the rule for instance declarations on page 332, among other places.

4.5 Module bodies

The body rule on page 322 takes the name of the module, the imported environment

and the module body and yields the environment produced from the declarations

and bindings in the body together with the data type declarations and bindings that

form the translation of the body.

The rule applies kind inference, using the kctDecls judgement on page 314, to the

type and class declarations of the module starting from kind information extracted

from the imported class and type environments. The kind information derived in

this premise must agree with the kind information in the environments CE ′ and

TE ′ derived from the module’s own declarations. Since kind inference, as embodied

in the kctdecls rule on page 314, is deterministic, this definition corresponds to

performing the kind inference before type inference.
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EE
entity` ent : EE ′

x ∈ dom(VE )

〈CE ,TE ,DE ,VE 〉 entity` x : 〈{ }, { },DE |{x},VE |{x}〉
var ent

T : χ ∈ TE xs ⊆ fields(DE , χ) Ks ⊆ constrs(DE , χ)

〈CE ,TE ,DE ,VE 〉 entity` T(xs ,Ks) : 〈{ },TE |{T },DE |xs∪Ks ,VE |xs〉
type some

T : χ ∈ TE xs = fields(DE , χ) Ks = constrs(DE , χ)

〈CE ,TE ,DE ,VE 〉 entity` T(..) : 〈{ },TE |{T },DE |xs∪Ks ,VE |xs〉
type all

T : 〈χ, h ,Λα1 . . . αk . τ〉 ∈ TE

〈CE ,TE ,DE ,VE 〉 entity` T : 〈{ },TE |{T }, { }, { }〉
type syn

C : 〈Γ, h , xdef , α, IEsup〉 ∈ CE xs ⊆ ops(VE ,Γ)

〈CE ,TE ,DE ,VE 〉 entity` C(xs) : 〈CE |{C }, { }, { },VE |xs〉
class some

C : 〈Γ, h , xdef , α, IEsup〉 ∈ CE xs = ops(VE ,Γ)

〈CE ,TE ,DE ,VE 〉 entity` C(..) : 〈CE |{C }, { }, { },VE |{x1 , ...,xk }〉
class all

fields(DE , χ) = {x | x : 〈x, χ′,LE 〉 ∈ DE ∧ χ′ = χ}
constrs(DE , χ) = {K | K : 〈K, χ′, σ〉 ∈ DE ∧ χ′ = χ}
ops(VE ,Γ) = {x | x : 〈x, ∀α .Γ′ α ⇒c σ〉 ∈ VE ∧ Γ′ = Γ}

Fig. 14. Import-export entities.

The top level environments GEtop , IEtop and VEtop are formed by combining

the environments derived from the declarations and bindings in the module, the

imported environments and the initial environment containing information about

the special type and data constructors (given in figure 16).

The translated bindings represent bindings of default and instance dictionaries
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M ,FE
body` body  typeDecls; binds : FE ′, SE

kindsOf (CE ,TE )
kctDecls` ctDecls : kindsOf (CE ′,TE ′)

GEtop , IEtop ,VEtop

ctDecls` ctDecls  typeDecls; bindstycl : 〈CE ′,TE ′,DE ′, IE ′,VE ′〉
GEtop , IEtop ,VEtop

instDecls` instDecls  bindsinst : IE ′′

GEtop , IEtop ,VE~⊕VE ′ binds` binds  bindsbds : VE ′′
GE ′ = 〈CE ′,TE ′,DE ′〉
GEtop = GEinit ⊕ (〈CE ,TE ,DE 〉~⊕GE ′)
IEtop = IE ⊕ IE ′ ⊕ IE ′′
VEtop = VE~⊕(VE ′ ⊕ VE ′′)
FE = 〈CE ′,TE ′,DE ′, IE ′ ⊕ IE ′′,VE ′ ⊕ VE ′′〉
SE = 〈dom(CE ′) : M , dom(TE ′) : M , dom(DE ′) : M , dom(VE ′) ∪ dom(VE ′′) : M 〉
binds = rec bindstycl; bindsinst; bindsbds

M , 〈CE ,TE ,DE , IE ,VE 〉 body` ctDecls; instDecls; binds  typeDecls, binds : FE , SE

body

Fig. 15. Module bodies.

GEinit = 〈CEinit, TEinit, DEinit〉
CEinit = { }
TEinit = {( ) : ( )∗, [ ] : [ ]∗→∗, (->) : (->)∗→∗→∗}

∪{(k) : (k)∗1→ ...→∗k→∗ | k > 1}
DEinit = {( ) : 〈( ), ( )∗, ( )∗〉,

[ ] : 〈[ ], [ ]∗→∗, ∀u∗. [u∗]〉,
(:) : 〈(:), [ ]∗→∗, ∀u∗. u∗ → [u∗] → [u∗]〉

}
∪ {(k) : 〈(k), (k)∗1→ ...→∗k→∗, ∀u∗

1 . . . u
∗
k. u

∗
1 → . . . → u∗

k → (u∗
1, . . . , u

∗
k)〉

| k > 1}

Fig. 16. The initial global environment.

as well as translations of the top-level binds . They are all joined in one mutually

recursive group of bindings in the translated program since the dictionary bindings

may refer to variables bound in the top-level bindings and the latter in general will

refer to the dictionaries. Since the target program contains explicit type informa-

tion, it is not necessary to maintain the dependency sorting present in the source

program.

The rules for the ctDecls judgment are not very interesting and only traverse

the nested structure which is necessary to get the right defaulting in the kind

inference. The same environments are passed down to all of the type and class

declarations.
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GE , IE ,VE
ctDecls` ctDecls  typeDecls; binds : FE

i ∈ [1 , n] : GE , IE ,VE
ctDecl` ctDecli  typeDeclsi; bindsi : FEi

GE , IE ,VE
ctDecls` ctDecls  typeDecls; binds : FE

typeDecls′ = typeDecls; typeDecls1 , . . . , typeDeclsn

binds′ = binds; binds1 , . . . , bindsn

FE ′ = FE ⊕ FE1 ⊕ . . . ⊕ FEn

GE , IE ,VE
ctDecls` ctDecl1 ; . . . ; ctDecln then ctDecls  typeDecls′; binds′ : FE ′

ctdecl

GE , IE ,VE
ctDecls` ε ε; ε : 〈{ }, { }, { }, { }, { }〉 empty ctdecl

Fig. 17. Type and class declaration groups.

5 Types and type declarations

This section deals with type expressions and type declarations. The latter are top-

level declarations and fall in three groups; data, newtype (omitted) and type

declarations.

5.1 Type synonym declarations

Since type synonyms are expanded during type inference, Haskell does not allow

type synonym declarations to be mutually recursive without an intervening algebraic

datatype. We express this acyclicality using the integer h which is included in the

information about a type synonym in the type environment. The height of the

synonym S is constrained to be larger than the height of any synonym occurring in

the expansion (right hand side) of S . The ktype premise only serves to find the kind

κ for the expansion of the synonym.

5.2 Algebraic datatype declarations

Typing a data declaration yields a translated declaration as well as some environ-

ments. The type environment records the semantic name of the declared type, the

constructor environment records information about the constructors and labelled

fields of the type and the variable environment records the types of the field names

when used as selector functions.

5.2.1 Typing of labelled fields

If the typing rule for algebraic datatype definitions looks forbidding, it is because of

the indirect way the semantics of operations on datatypes with field labels is defined
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TE , h
type` t : τ

u : α ∈ TE

TE , h
type` u : α

tvar

T : χ ∈ TE

TE , h
type` T : χ

tcon

T : 〈χ, g ,Λα1 . . . αk .τ〉 ∈ TE g < h i ∈ [1 , k ] : TE , h
type` ti : τi

TE , h
type` T t1 . . . tk : τ[τ1/α1 , . . . , τk/αk ]

tsyn

TE , h
type` t1 : τ1 TE , h

type` t2 : τ2

TE , h
type` t1 t2 : τ1 τ2

tapp

Fig. 18. Type expressions.

in the Report; by translating operations involving fields into operations using the

underlying positional constructors, which have their semantics specified explicitly.

For this reason, we will discuss an example of a data type with field labels, to point

out some of the issues before tackling the inference rules.

data (Monad m, Eq (m a)) => Foo a m = ConA {x :: a, w :: Int}

| ConB {y :: m Int, w :: Int}

| ConC {z :: m a}

A data declaration may contain a context cx . Any type variables occurring in cx

must be parameters of the data declaration. This context will affect creation of

objects of the declared type through the types derived for the constructors by the

conDecl judgement on page 327. Each constructor J acquires the part of the context

cx that mentions only variables in the types of the arguments to J . This context is

used both for construction and for pattern matching. The contexts associated with the

constructors above is empty for ConA, Monad m for ConB and (Monad m, Eq (m a))

for ConC.

The above declaration defines exactly the same type and the same constructor

functions as the corresponding declaration without labels:

data (Monad m, Eq (m a)) => Foo a m = ConA a Int

| ConB (m Int) Int

| ConC (m a)
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In addition, it becomes possible to use the labels x, y, z and w as selector functions

with the following types:

x : ∀ a m. Foo a m → Int

y : ∀ a m. Monad m => Foo a m → m Int

z : ∀ a m. (Monad m, Eq (m a)) => Foo a m → m a

w : ∀ a m. Monad m => Foo a m → Int

These types, and in particular the contexts, are motivated by their translation to

selector functions using pattern matching. For example, here is the definition of w:

w v = case v of

ConA a b -> b

ConB a b -> b

_ -> undefined

In general, the case will enumerate the constructors which have the selected field

(in this case w). Here we see that ConA, which has no context, and ConB, which has

context Monad m, are mentioned, yielding the context Monad m for the type of the

selector function.

In addition to selector functions, constructors with labelled fields provide us with

special syntax for construction and non destructive update of objects built with these

constructors. The labelled constructions are fairly straightforward, but the update

construct has extremely tricky typing rules. Using the above type, we can write for

instance:

aFoo {x = ’A’}

This will translate into a case expression with one branch for every constructor

containing all of the fields in the update (in this case just x):

case aFoo of

ConA a b -> ConA ’A’ b

_ -> undefined

If we encountered this expression during type inference, we would conclude that the

variable aFoo must have some type Foo τ1 τ2 with an empty context (since ConA

has an empty context) and the expression as a whole would have type Foo Char τ3.

These two types are not the same, which has the implication that the expression

aFoo {x = ’A’} does not necessarily have the same type as the variable aFoo.

Sometimes the types are the same, though. Consider instead aFoo {w = 3} which

translates into

case aFoo of

ConA a b -> ConA a 3

ConB a b -> ConB a 3

_ -> undefined

where the first arguments of the two constructors are copied and thus force the type

of the result of the expression the be the same as the type of aFoo. Given these

subtle differences in typing, it should not come as a surprise that the typing rules

for algebraic data types essentially have to anticipate the translation.
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GE , IE ,VE
ctDecl` ctDecl  typeDecls; binds : 〈CE ′,TE ′,KE ′, IE ′,VE ′〉

χ = S κ1 →...→κk →∗
i ∈ [1 , k ] : αi = u

κi
i

TE ′ = {u1 : α1 } ⊕ . . . ⊕ {uk : αk }
CE ,TE ⊕ TE ′,

context` cx : θ

i ∈ [1 , n] : TE ⊕ TE ′, θ, τ
conDecl` conDecli  conDecli : DEi ,VEi ,LEi , θi

DE ′ = DE1 ⊕ . . . ⊕ DEn ⊕ DEfields

{v1 : 〈v1 , τ1 〉, . . . , vm : 〈vm , τm〉} = VE1 ⊕̄ . . . ⊕̄VEn

i ∈ [1 ,m] : LE ′
i = ∪{LEj | vi ∈ dom(VEj )}

DEfields = {v1 : 〈v1 , χ,LE ′
1 〉, . . . , vm : 〈vm , χ,LE ′

m〉}
i ∈ [1 ,m] : σi = ∀α1 . . . αk . t {θj | vi ∈ dom(VEj )} ⇒ τ → τi

VE ′ = {v1 : 〈v1 , σ1 〉, . . . , vm : 〈vm , σm〉}
τ = χ α1 . . . αk

GE = 〈CE ,TE ,DE 〉

GE , IE ,VE
ctDecl` data cx => S u1 . . . uk = conDecl1 | . . . | conDecln

 data χ α1 . . . αk = conDecl1 | . . . | conDecln ; ε

: 〈{ }, {S : χ},DE ′, { },VE ′〉

data decl

kindsOf ({ },TE ⊕ TE1 ⊕ . . . ⊕ TEk )
ktype` t : κ

TE ⊕ TE1 ⊕ . . . ⊕ TEk , h
type` t : τ

i ∈ [1 , k ] : TEi = {ui : u
κi
i }

TE ′ = {S : 〈S κ1 →...→κk →κ, h ,Λu
κ1
1 . . . u

κk
k . τ〉}

GE = 〈CE ,TE ,DE 〉

GE , IE ,VE
ctDecl` type S u1 . . . uk = τ  ε; ε : 〈{ },TE ′, { }, { }, { }〉

type decl

Fig. 19. Type declarations.

5.2.2 Formalizing algebraic datatype declarations

With the above remarks in mind, we will now discuss the formalization. The

type environment TE ′ records the kinds of the type parameters. These kinds are

constrained by the kinds derived by kind inference and recorded for the type S in

TE . The type parameters in a data declaration must be distinct, hence the use of ⊕
to combine the type environments corresponding to the individual type parameters.

The constructor declarations are processed by the conDecl judgement which yields

a data constructor environment DE containing information about the constructor

and a variable environment VE, a label environment LE and a context θ which

are used to construct the information about the labelled fields of the constructor.

The variable environment simply maps the labels to their original names and types.

Combining the VEi from different constructor declarations using ⊕̄ (in the data
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TE , θ, τ
conDecl` conDecl  conDecl : DE ,VE ,LE , θ

i ∈ [1 , n] : TE ,
type` ti : τi

σ = ∀α1 . . . αk . θ
′ ⇒ τ1 → . . . → τn → χ α1 . . . αk

DE = {J : 〈J , χ, σ〉}
θ′ = θ |τ1 , ...,τn

TE , θ, χ α1 . . . αk

conDecl` J t1 . . . tn  J τ1 . . . τn : DE , { }, { }, θ′

poscon

i ∈ [1 , n] : TE ,
type` ti : τi

DE = {J : 〈J , χ, σ〉}
VE = {v1 : 〈v1 , τ1 〉} ⊕ . . . ⊕ {vn : 〈vn , τn〉}
LE = {J : ∀α1 . . . αk . θ

′ ⇒ {v1 : τ1 , . . . , vn : τn} → τ}
σ = ∀α1 . . . αk . θ

′ ⇒ τ1 → . . . → τn → τ

θ′ = θ |τ1 , ...,τn
τ = χ α1 . . . αk

TE , θ, τ
conDecl` J {v1 :: t1 , . . . , vn :: tn} J {v1 : τ1 , . . . , vn : τn} : DE ,VE ,LE , θ

labcon

Fig. 20. Type declarations continued; constructor declarations.

x : 〈x, Foo, {ConA : ∀ a m. {x : a, w : Int} → Foo a m}〉
y : 〈y, Foo, {ConB : ∀ a m. Monad m ⇒ {y : m Int, w : Int} → Foo a m}〉
z : 〈z, Foo, {ConC : ∀ a m. (Monad m, Eq (m a)) ⇒ {z : m a} → Foo a m}〉
w : 〈w, Foo, {ConA : ∀ a m. {x : a, w : Int} → Foo a m,

ConB : ∀ a m. Monad m ⇒ {x : m Int, w : Int} → Foo a m}〉

Fig. 21. Examples of information about labelled fields.

decl rule) means that different constructors may have identically named fields if

they have identical type. The label environments LE i each contain information

about one constructor and are used to construct the LE ′
j which contain, for each

field label, information about each constructor having a field with that label. For

each constructor, the types of the labels are given together with the type of the

constructed value. The contexts θi, which are the same contexts that go into the

types of the constructors in DEi , are used for getting the right context in the selector

functions using t as a union operator on contexts. Figure 21 gives the entries for the

field labels added to the global data constructor environment for the example data

type Foo. Note how, in each case, the constructors included are those that would be

used in the generated selector functions. In this example we have omitted the kind

annotations and we have not used original names for entities imported from the

Standard Prelude.

https://doi.org/10.1017/S0956796802004380 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004380


328 K.-F. Faxén

IE , ϕ
lcon` τold ,UE , τnew

UE [τ′
1/α1 , . . . , τ

′
k/αk ] = UE [τ1/α1 , . . . , τk/αk ]~⊕UE ′

IE
dict` : θ[τ1/α1 , . . . , τk/αk ]

IE
dict` : θ[τ′

1/α1 , . . . , τ
′
k/αk ]

IE , ∀α1 . . . αk . θ ⇒ UE → τ
lcon` τ[τ1/α1 , . . . , τk/αk ],UE ′, τ[τ′

1/α1 , . . . , τ
′
k/αk ]

lcon

Fig. 22. Instantiation for constructors and labelled fields.

We also use the lcon judgement defined in figure 22 when typing expressions

and patterns involving labelled fields. This judgment implements the instantiation

of the universal quantification in the ϕ associated with one constructor in the label

environment. It also arranges for the type of the updated value and the result of

the update to be suitably similar depending on which fields are updated. There are

two reasons why these types need not be identical. First, some type parameters may

not occur in the type of any field of the constructor, in which case the type variable

does not occur in UE . This is the case for m in the example update aFoo {x = ’A’}

since only ConA has the field x and m does not appear in the type of any field of

ConA. Second, all fields which mention a type parameter might be assigned a new

value in the update. This is formalized using the ~⊕ operator; types in the update

hide those in the original value. Again this is the case in the example, for a this time,

since the field x is the only field whose type mentions a in any constructor which

has a field named x.

This judgment also checks that the instance environment entails the context of the

constructor, both when used in pattern matching with the type of the value being

updated and when it is used to construct the new value with the new instance. See

also the upd rule on page 347 for an example of how the lcon judgment is used.

Labelled construction (the labcon rule on page 347) and labelled patterns (the plab

rule on page 351) also use this judgment, but do not use all of its features.

6 Class and instance declarations

In this section we present the rules concerning the class system, including rules for

class and instance declarations, type signatures (since they are used in class

declarations), contexts, method bindings and dictionary construction.

6.1 Class declarations

A class declaration is translated to an algebraic datatype declaration for the type

of dictionaries for the class and a function constructing a dictionary containing

the default methods, to be used in instance declarations. Three environments are

https://doi.org/10.1017/S0956796802004380 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004380


A static semantics for Haskell 329

GE , IE ,VE
ctDecl` ctDecl  typeDecls; binds : FE

CE , {u : α}, h context` cx : θ

IE ′
sup = vs :̃ θ

IEsup = ∀α .Γ α ⇒̃ IE ′
sup

〈CE ,TE ∪ {u : α},DE 〉 sigs` sigs : VEsigs

i ∈ [1 , n] : GE , IE ⊕ {vd : Γ α},VE
method` bindi  fbindi : VEi

VE1 ⊕ . . . ⊕ VEn ⊆ VEsigs

α = uκ

Γ = Bκ

CE ′ = {B : 〈Γ, h , vdef , α, IE
′
sup〉}

VE ′ = ∀α.Γ α ⇒̃c VEsigs

GE = 〈CE ,TE ,DE 〉
Jdict, vs, vdef fresh

GE , IE ,VE
ctDecl` class cx =>B u where sigs; bind1 ; . . . ; bindn

 



data Γ̂ α = Jdict {IE ′

sup ,VEsigs};
vdef : (∀α. Γ̂ α → Γ̂ α)

=Λα.λvd : (Γ̂ α).Jdict α {fbind1, . . . , fbindn}




: 〈CE ′, { }, { }, IEsup ,VE ′〉

class decl

Fig. 23. Class declarations

also returned: A class environment containing information about the defined class,

an instance environment indicating how superclasses may be accessed and a value

environment giving types to the class operations.

The context cx in a class declaration gives the (immediate) superclasses of the

class. The class assertions in cx all have the form C u where u is the class variable

(no type name or other type variable is included in the type environment used to

check cx ). The superclass relation must be acyclic, a requirement enforced by the

integer h in the context judgment; all classes mentioned in cx must have h′ < h

recorded in the class environment.

The instance environment IE ′
sup associates a fresh target variable with each super-

class. These variables (vs) become the field names for the superclass fields in

dictionaries for the class, as IE ′
sup is used in the generation of the new type dec-

laration. The returned instance environment IEsup is formed by adding the context

Γ α (where Γ is the semantic name of the declared class) to every item in IE ′
sup and

quantifying over α. Since the class variable u is included in the type environment

used to check the superclass context cx , α can occur free in θ.

The class operations and their types are given by the signatures in the class declar-

ation. These are checked by the sigs judgment which returns a variable environment,

the semantic counterpart to a set of type signatures. This premise also ensures that

the class variable u (α) must occur in the type part of each signature but not in any
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GE
sigs` sigs : VE

i ∈ [1 , n] : GE
sig` sigi : VEi

GE
sigs` sig1 ; . . . ; sign : VE1 ⊕ . . . ⊕ VEn

sigs

GE
sig` sig : VE

KE = kindsOf (TE ,CE )

{u1 : κ1 , . . . , uk : κk } = min{KE ′ | KE ⊕ KE ′ kctx` cx ∧ KE ⊕ KE ′ ktype` t : ∗}
CE ,TE ⊕ {u1 : u

κ1
1 , . . . , uk : u

κk
k }, context` cx : θ

TE ⊕ {u1 : u
κ1
1 , . . . , uk : u

κk
k }, type` t : τ

fv (cx ) ⊆ fv (t)

{u | u ∈ dom(TE )} ⊆ fv (t) \ fv (cx )

〈CE ,TE ,DE 〉 sig` v::cx => t : {v : 〈v , ∀u
κ1
1 . . . u

κk
k . θ ⇒ τ〉}

sig

Fig. 24. Type signatures.

context part, and that it may not be generalized over in VEsigs . The requirement

that the class variable must occur in the types disallows class operations which can

not be used without causing ambiguity.

The algebraic datatype declaration generated introduces the the type of dictionar-

ies of the class. Explicitly defining such a type has the advantage that types in the

target program become similar to the types in the source program. For instance, the

elem function from the Haskell Prelude has the type ∀a. Eq a ⇒ a → [a] → Bool

whereas its translation will have type ∀a∗. EqD∗→∗ a∗ → a∗ → [a∗] → Bool∗ where

EqD is the name of the type for Eq dictionaries (ignoring original names).

The declaration uses the labelled field syntax of the target language, which carries

over from that of the source. The methods of the class become field labels for the

corresponding fields of the dictionary. Occurrences of the methods will be translated

to applications of these selector functions to dictionaries. The superclasses will also

be associated with field labels, but these labels (vs) are fresh and do not occur in

the source program. The association between field label and superclass is recorded

in IEsup and IE ′
sup .

The bindi part of a class declaration gives default implementations of the class

methods, to be used when an instance declaration does not give implementations

for all class methods. These default methods are collected in a default dictionary

function vdef which, given a dictionary for a particular instance of the class, returns
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CE ,TE , h
context` cx : θ

i ∈ [1 , n] : CE ,TE , h
class` classi : Γi τi

CE ,TE , h
context` (class1 , . . . , classn) : Γ1 τ1 , . . . ,Γn τn

context

CE ,TE , h
class` class : Γ τ

C : 〈Γ, h ′, x, α, IEsup〉 ∈ CE

h ′ < h

TE ,
type` u t1 . . . tk : τ

CE ,TE , h
sclass` C (u t1 . . . tk ) : Γ τ

class

Fig. 25. Validation of contexts used in class and instance declarations.

a dictionary containing the default methods. The bindings are typed in an instance

environment associating the formal parameter of this dictionary function with Γ α.

See also the discussion of the use of this function in the code produced from an

instance declaration.

6.2 Type signatures

The judgment for type signatures, given in figure 24, is used when typing class

declarations and binding groups. For its former use, it has extra functionality for

checking that the class variable is handled in the right way. It must occur in the

type but may not occur in the context. Any variable in the domain of the type

environment TE is considered to be the class variable; when typing bindings, the

type environment will only contain information about type names.

Type signatures also require kind inference since they introduce new type variables

by quantification. These type variables can be defaulted independently for each

signature, except for the class variable, which already is associated with a kind in

the type environment.

6.3 Contexts

Figure 25 shows the rules for validating contexts. The integer h in the judgments is

used to express the acyclicality of the superclass relation.
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GE , IE ,VE
instDecls` instDecls  binds : IE ′

i ∈ [1 , n] : GE , IE ,VE
instDecl` instDecli  bindsi : IEi

GE , IE ,VE
instDecls`




instDecl1 ;

. . . ;

instDecln


 




binds1;

. . . ;

bindn


 : IE1 ⊕ . . . ⊕ IEn

inst decls

GE , IE ,VE
instDecl` instDecl  binds : IE ′

T : χ ∈ TE

i ∈ [1 , k ] : αi = u
κi
i

C : 〈Γ, h , xdef , α, IEsup〉 ∈ CE

CE , {u1 : α1 } ⊕ . . . ⊕ {uk : αk }, context` cx : θ

i ∈ [1 ,m] : GE , IE ⊕ vs :̃ θ,VE
method` bindi  fbindi : VEi

VEops [χ α1 . . . αk/α] = VE1 ⊕ . . . ⊕ VEm

(∀α.Γ α ⇒̃cVEops ) ⊆ VE

(x1, . . . , xn) :̃ θsup = IEsup

IE ⊕ vs :̃ θ
dict` (e1 , . . . , en ) : θsup[χ α1 . . . αk/α]

GE = 〈CE ,TE ,DE 〉
IEinst = {vdict : ∀α1 . . . αk . θ ⇒ Γ (χ α1 . . . αk )}
vs, vdict fresh

GE , IE ,VE
instDecl` instance cx =>C (T u1 . . . uk ) where bind1 ; . . . ; bindm

 




vdict :∀α1 . . . αk . θ̂ → Γ̂ (χ α1 . . . αk )

=Λα1 . . . αk . λvs :̂ θ .

let rec vd : Γ̂ (χ α1 . . . αk )

= (xdef (χ α1 . . . αk) vd) {x1 = e1, . . . , xn = en,

fbind1 , . . . , fbindm}
in vd




: IEinst

inst decl

Fig. 26. Instance declarations.

6.4 Instance declarations

An instance declaration is translated into a binding for a dictionary function which,

given dictionaries as defined in the context of the instance declaration, constructs

a dictionary for the declared instance. An instance environment associating this

function with the class and type of the instance declaration is also returned.

The rule for instance declarations is one of the most complex rules in the system.

The first premise validates the instance type T u1 . . . uk , checking that T is not a
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type synonym. The instance type also defines which type variables may appear in

the instance context cx , which is validated, ignoring the height part of the judgment

which is only interesting in class declarations. The method bindings are typed in

an extended instance environment which also includes the assertions about the ui
expressed by cx . The dictionary function vdict produced from the instance declaration

should be passed dictionaries corresponding to these assertions.

Because of selective import of class operations, some operations of an imported

class may not be visible, or only visible in qualified form. Since an instance dec-

laration may only provide bindings for in-scope methods, the method bindings are

checked against the global variable environment. This checking is accomplished

in two steps: First, the information derived from the method bindings is checked

against an instantiation of a hypothetical variable environment VEops which gives

the same types to the methods as VEsigs does in the class decl rule on page 329.

Second, a generalization of VEops is required to be included in the global variable

environment VE just like VE ′ is formed from VEsigs in the class decl rule. Note

that VEops associates the the class operations with type schemes, so that adding the

extra quantification ∀α.Γ α brings the types in VEops into the same form that types

of class operations have in the global variable environment.

The dictionary function produced by an instance declaration of class C must also

construct dictionaries for the corresponding instance of the immediate superclasses

of C . These are listed in IEsup , associated with the names of the fields they are to be

stored in in the dictionary. The same extended instance environment that was used

for the method bindings is used to construct dictionary expressions corresponding

to the context part of IEsup , yielding the required superclass dictionaries. In contrast

to the method fields, all of the superclass fields in a dictionary will always be

defined.

The dictionary function produced from an instance declaration takes a tuple of

dictionaries corresponding to a particular instance of the instance context and returns

an appropriate dictionary. This dictionary is built using a circular binding where the

resulting dictionary is passed to the default dictionary function produced from the

class declaration. The result of that application is updated with the information from

the instance declaration, the fbindi of the methods and the ei of the superclasses.

In this way references in the default method bindings to class operations defined in

the instance declaration are directed to the correct bindings.

6.5 Method bindings

Method bindings (figure 27) occur in both class declarations (giving default methods)

and instance declarations. They are the only forms of nonrecursive bindings in

Haskell in that occurrences of the bound variables in the right hand sides do not

refer directly to the bindings of those variables (after dictionary conversion, they

may of course refer to those bindings indirectly). Rather, they are considered bound

by the corresponding class declaration.

Method bindings are translated to fbinds since dictionaries are implemented as

constructors with labelled fields. These fbinds are used in constructions (class dec-
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GE , IE ,VE
method` bind  fbind : VE ′

GE , IE ⊕ vs :̃ θ,VE
bind` bind  bind : {x :〈 , τ〉}

{α1 , . . . , αk } ∩ (fv (IE ) ∪ fv (VE )) = ∅
vs fresh

GE , IE ,VE
method` bind  




x =Λα1 . . . αk . λvs :̂ θ.

let bind′
in unQual (x)


 : {x :〈x, ∀α1 . . . αk . θ ⇒ τ〉}

method

Fig. 27. Method bindings.

IE
dict` e : (Γ1 τ1 , . . . ,Γn τn )

i ∈ [1 , n] : IE
dict` ei : Γi τi

IE
dict` (e1 , . . . , en) : (Γ1 τ1 , . . . ,Γn τn )

dict tuple

v : Γ (α τ1 . . . τk ) ∈ IE

IE
dict` v : Γ (α τ1 . . . τk )

dict var

x : ∀α1 . . . αk . θ ⇒ Γ (χ α1 . . . αk ) ∈ IE IE
dict` e : θ[τ1/α1 , . . . , τk/αk ]

IE
dict` x τ1 . . . τk e : Γ (χ τ1 . . . τk )

dict inst

x : ∀α .Γ′ α ⇒ Γ α ∈ IE IE
dict` e : Γ′ τ

IE
dict` x τ e : Γ τ

dict super

Fig. 28. Dictionary construction.

larations) and updates (instance declarations). The returned variable environment

must agree with that derived from the signatures in the class declaration; in particu-

lar, the original name of the method, which becomes the field name in the returned

fbind, is obtained in that way.
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GE , IE ,VE
binds` binds  binds : VEbinds

GE , IE ,VE
bindG` sigs; bindG  binds : VEbindG

GE , IE ,VE~⊕VEbindG

binds` binds  binds′ : VEbinds

GE , IE ,VE
binds` sigs; bindG then binds  binds; binds′ : VEbindG ⊕ VEbinds

binds

GE , IE ,VE
binds` ε ε : { } empty binds

Fig. 29. Bindings, part 1 (dependency analysis).

6.6 Dictionary construction

Dictionaries are built where they are needed, at occurrences of overloaded variables

and constructors. Dictionary building is formalized in figure 28 using judgments of

the form

IE
dict` e : (Γ1 τ1 , . . . ,Γn τn )

where IE is an instance environment, e is an expression evaluating to the required

dictionary tuple, the Γi are the classes of the dictionaries and the types τi give the

required instances. This judgment closely parallels the entailment judgments found

in more theoretical accounts such as Jones (1995).

The dict tuple rule builds a tuple of dictionaries, one for each component of

the context. In the rule dict var there is a variable (v) that is already bound to

the right dictionary by an enclosing dictionary abstraction. In the rule dict inst

we use a dictionary function derived from an instance declaration for the class Γ

and type χ which constructs a dictionary for χ τ1 . . . τk given dictionaries for the τi
as indicated by the context in the instance declaration (these dictionaries may be

for classes other than Γ). The variable x is the dictionary function. Finally, the dict

super rule extracts a Γ dictionary for τ from a Γ′ dictionary for τ where Γ is a

superclass of Γ′. Here, x is a field name used as a selector function, defined in the

algebraic datatype for Γ′ dictionaries.

This translation is inefficient if the same dictionary is used in several places or if

the dictionary building occurs inside a recursive binding (in which case it is executed

repeatedly). However, standard compiling techniques can be used to optimize the

code. Specifically, common subexpression elimination solves the first problem while

the full laziness transformation takes care of the second situation.
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7 Bindings

Binding sets occur at the top level of a module, in let expressions, let qualifiers

and let statements (in list comprehensions and do expressions) and finally in where

clauses in guarded alternatives (in function bindings and case expressions). Binding

sets are always recursive in Haskell; the bindings shadow all outer bindings of the

same variable also in the right hand sides of the bindings.

The typing rules for bindings deal with the generalization aspects of polymorphism

and overloading. The rules are complicated by the interaction of polymorphism and

recursion. This interaction is treated rather briefly in the Report, and implementa-

tions differ in the programs they consider legal.

7.1 Dependency analysis and polymorphism

The Report states (section 4.5.1) that dependency analysis should be used prior

to type checking. Type inference is then applied to one strongly connected group

of mutually recursive bindings at a time. The order in which the bindings are

type checked influence the degree of polymorphism in references to the bound

variables. A slightly simplified rule is that references to variables bound in the same

binding group (recursive references) have a monomorphic type, whereas references

to variables defined in earlier binding groups can be polymorphic.

We express this nesting in the traditional way, as in Peyton Jones & Wadler (1991),

for example, by using a language where the dependency analysis is made explicit. A

set of bindings (binds), which occur in the let and where constructs as well as on the

top level of a module, consists of a sequence of binding groups (bindG). The nesting

of binding groups correspond to the result of dependency analysis. The front end of

the compiler is responsible for performing the dependency sort of the source-level

binding set.

When typing a bindG, using the bindg rule on page 337, we use the polymorphic

types given by type signatures for those of the bound variables that have type

signatures and monomorphic types for the rest of the bound variables. Using these

assumptions we derive monomorphic types for the bindings and hence for the bound

variables. Finally, we generalize the derived types, checking that we get what we

expected from the signatures.

7.2 Typing binding groups

The typing rule for binding groups is fairly complicated, mainly due to the interaction

between polymorphism and overloading on the one hand and recursion on the other.

The result of this interaction is that it is difficult to separate polymorphism from

recursion, so the traditional division into three different judgements, one dealing

with recursion, one with overloading and the last with generalization, becomes fairly

contorted. Instead we have a single rule which we will now discuss part by part.
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GE , IE ,VE
bindG` sigs; bindG  binds : VEbindG

GE , IE ⊕ OE ,VE~⊕(VEsigs ⊕ VErec)
monobinds` bindG  binds : VEmonobs

GE
sigs` sigs : VEsigs

VEsigs ⊆ VEbindG

VErec = VEmonobs \ dom(VEsigs )

{α1 , . . . , αm} ∩ (fv (IE ) ∪ fv (VE )) = ∅
MonoRes(bindG , dom(VEsigs ), {α1 , . . . , αm} ∩ fv (OE ))

VEbindG = ∀α1 . . . αm . θ ⇒̃ VEmonobs

OE = vs :̃ θ

VEmonobs = {v1:〈v1 , τ1 〉, . . . , vn:〈vn , τn〉}
VErec = {v ′

1:〈v′
1 , τ

′
1 〉, . . . , v ′

k:〈v′
k , τ

′
k 〉}

vs, vbinds fresh

GE , IE ,VE
bindG` sigs; bindG

 




vbinds : ∀α1 . . . αm . θ̂ → (τ1 , . . . , τn)

=Λα1 . . . αm . λvs :̂ θ .

let v′
1 :τ′

1 = v′
1 α1 . . . αm vs;

. . . ;

v′
k :τ′

1 = v′
k α1 . . . αm vs

in let binds

in (v1 , . . . , vn);

v1 : ∀α1 . . . αm . θ̂ → τ1

=Λα1 . . . αm . λvs :̂ θ . case vbinds α1 . . . αm vs of

(v1 :τ1, . . . , vn :τn) -> v1;

. . . ;

vn : ∀α1 . . . αm . θ̂ → τn

=Λα1 . . . αm . λvs :̂ θ . case vbinds α1 . . . αm vs of

(v1 :τ1, . . . , vn :τn) -> vn;




: VEbindG

bindg

Fig. 30. Bindings, part 2 (generalization and recursion).

7.2.1 Overloading

Binding groups and method bindings introduce overloading in Haskell. The over-

loading is expressed by typing the bindings in the instance environment IE extended

with an overloading environment OE where the context part θ will become the con-

text part of the type schemes in the returned variable environment VEbindG . Looking

at the translation we see that the variable part of OE becomes lambda bound. In the

translated program, the variables bound in the bindG are bound to functions taking

dictionaries corresponding to the context θ above. Since this context also occurs in

the type schemes for the variables, the correct dictionaries will always be passed at

occurrences of the variables.
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The restricted form of the entries in OE force the eager context reduction man-

dated in Haskell (section 4.5.3 of the Report).

7.2.2 Recursion

Binding groups are always recursive in Haskell. Thus, we type the bindings in a

variable environment extended with information about the variables bound in the

group. For variables with explicit type signatures, we can assume polymorphic types

when typing the bindings (if the types attributed by the signatures are polymorphic,

of course). The use of explicit signatures makes polymorphic recursion decidable,

something it in general is not (Kfoury et al., 1993). The types given in the signatures

(VEsigs ) are checked against the types derived after generalization (VEbindG ).

For variables lacking explicit type signatures we assume monomorphic types

which we check against the types derived from the bindings before generalization

(VEmonobs ). It is evident from the typing rules for the bind judgement that these types

are monomorphic. Since VErec contains information about all variables lacking type

signatures, outer bindings of these variables are completely hidden.

7.2.3 Generalization and the monomorphism restriction

As in all systems based on Hindley-Milner polymorphism, we are not allowed

to generalize over type variables free in the variable environment VE . Since the

instance environment IE plays a similar role, we are not allowed to generalize over

type variables free in IE either. We may however generalize over variables free in the

overloading environment OE since (the context part of it) will end up inside the type

schemes after generalization. Since it is not forbidden to generalize over variables

not occurring in the variable environment VEmonobs derived from the bindings, it is

possible to construct ambiguous type schemes. This is one place where the inference

rules presented in this paper clearly deviates from the (informal) specification in the

Report (section 4.3.4). Ambiguity is further discussed in section 10.2.

One further limitation on generalization comes from Haskell’s monomorphism

restriction (section 4.5.5 in the Report). This rule restricts the amount of overloading

that is allowed for variables bound in a declaration group in order to preserve

sharing and avoid spurious ambiguity errors. Overloading is controlled on a per-

bindG basis. If a bindG only contains function bindings and pattern bindings binding

single variables, and if there is a type signature for each of the latter variables, then

overloading is allowed. Otherwise, the type schemes formed by generalization must

have empty contexts. This condition is checked by the MonoRes predicate, defined

below.

Definition 2 (Monomorphism restriction)

MonoRes(bindG , sigvs , congenvs) is satisfied iff either the set congenvs (the con-

strained generic type variables) is empty or bindG only contains function bindings

and pattern bindings where the pattern is a single variable included in the set sigvs

(the set of variables with type signatures).
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f :: Show a => a -> String

f x = show x ++ g x

g x = f (show x)

 

v: ∀a. P!ShowD a → (a → [P!Char], a → [P!Char])

= Λa. λd : P!ShowD a.

let g : (a → [P!Char]) = g a d

in let f : (a → [P!Char]) (x : a) = (P!++) P!Char (P!show a d x) (g x);

g : (a → [P!Char]) (x : a) = f [P!Char] (P!showListD P!Char P!showCharD)

(P!show a d x)

in (f,g);

f: ∀a. P!ShowD a → a → [P!Char]

= Λa. λd : P!ShowD a. case v a d of

(f : a → [P!Char], g : a → [P!Char]) -> f;

g: ∀a. P!ShowD a → a → [P!Char]

= Λa. λd : P!ShowD a. case v a d of

(f : a → [P!Char], g : a → [P!Char]) -> g

Kind annotations are omitted and the module name Prelude has been abbreviated to P.

Fig. 31. Example of translation by the bindG judgement.

7.2.4 The translation

The translation part of the rules is quite involved because of the interaction between

the explicit type and dictionary abstractions in our target language and the fact

that we generalize over binds rather than over expressions. We could of course have

added generalization over binds to the target language, but that would simply move

the problem to that of giving the construct a semantics.

Therefore, we have chosen a translation which only needs abstraction over ex-

pressions. Figure 31 shows an example which involves most of the features of this

translation. In this example we have omitted all kind annotations and we have

abbreviated the name of the Prelude module to P. The basic strategy is to bind a

fresh variable vbinds (v in the example) to a type and dictionary abstraction which,

when applied, yields a tuple of the values of the bound variables (f and g) of the

bindG . Each of the bound variables is then bound to an overloaded and polymorphic

function which instantiates the tuple (v) and extracts the appropriate component. In

this way we avoid duplicating the entire target binds. This set of bindings, one for

each bound variable and one for vbinds, will be wrapped in a rec wherever it is used

(in the let rule on page 344, the gdes rule on page 343, the qlet rule on page 348

and the slet rule on page 349). In the target program, all references, recursive as

well as nonrecursive, will go through these bindings since the lets inside the tuple

function are nonrecursive.

To construct the tuple, we wrap the translated bindings obtained from the
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f1: ∀a. P!ShowD a → a → [P!Char]

= Λa. λ (d : P!ShowD a) (x : a) . (P!++) P!Char (P!show a d x) (g2 a d x);

g1: ∀a. P!ShowD a → a → [P!Char]

= Λa. λ (d : P!ShowD a) (x : a) .

f [P!Char] (P!showListD P!Char P!showCharD) (P!show a d x)

g2: ∀a. P!ShowD a → a → [P!Char]

= Λa. λ (d : P!ShowD a) . g a d

v : ∀a. P!ShowD a → (a → [P!Char], a → [P!Char])

= Λa. λ (d : P!ShowD a) . (f1 a d, g1 a d);

f : ∀a. P!ShowD a → a → [P!Char]

= Λa. λ (d : P!ShowD a) . case v a d of

(f : a → [P!Char], g : a → [P!Char]) -> f;

g : ∀a. P!ShowD a → a → [P!Char]

= Λa. λ (d : P!ShowD a) . case v a d of

(f : a → [P!Char], g : a → [P!Char]) -> g

Fig. 32. Example of optimization of the translation.

monobinds judgement in a let expression, the body of which is the tuple. Because

of polymorphic recursion, some of the bound variables may be polymorphically

typed (f is, in this case), so occurrences of these variables in the source bindG (there

is one in the body of g) are translated to type applications in the target binds.

This agrees with the bindings of these variables to type and dictionary abstractions.

Variables lacking type signatures (like g) are associated with monomorphic types

during typing of the bindG and their occurrences are therefore not translated to type

applications even though they are also bound to type and dictionary abstractions

in the outer bindings. The let expression containing the translation of the bindG

is therefore wrapped in an outer let which binds these variables to monomorphic

values, shadowing the outer, polymorphic, bindings.

This translation is reasonable in that it avoids code duplication, but it is not ideal

in that it requires construction of the tuple for every reference to one of the bound

variables. If the monomorphism restriction applies to the bindG, so that the variables

bound in the bindG have non overloaded types, the problem is solved, at least for an

implementation which at some point switches to an untyped intermediate language.

This is the case since the type abstraction and application disappears at that point

and there were no dictionary abstractions to begin with. Otherwise, there is still the

dictionary abstractions and applications to take care of. Fortunately, there are some

relatively simple optimizations which can be used.

For instance, lambda lifting (Johnsson, 1985) can be used to move the dictionary

abstractions into the right hand sides of each of the bindings. Since the monomor-

phism restriction did not apply, all of these are either function bindings or simple

pattern bindings, guaranteeing that the transformation is type correct. Each of the
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f: ∀a. P!ShowD a → a → [P!Char]

= Λa. λ (d : P!ShowD a) (x : a) . (P!++) P!Char (P!show a d x) (g a d x);

g: ∀a. P!ShowD a → a → [P!Char]

= Λa. λ (d : P!ShowD a) (x : a) .

f [P!Char] (P!showListD P!Char P!showCharD) (P!show a d x)

Fig. 33. Example of optimization of the translation; the final code.

bindings, which no longer have free dictionary variables, can then be lifted out of

the tuple function which becomes small and is subsequently inlined and simplified

away. Figure 32 shows the result of applying this transformation to the example.

The situation just after lifting (and renaming) the nested definitions is shown, with

f1 and g1 being the lifted versions of the original bindings and g2 being the lifted

conversion for g. Note that v can now be inlined since the tuple is exposed, and so

can f1, g1 and g2, leaving the rather reasonable code in figure 33.

Note that this lambda lifting is unusual in that it may lift bindings which are not

function bindings, like the conversion for g, leading to a potential loss of sharing.

The requirement that variables bound in pattern bindings must have explicit type

signatures serves to make the programmer aware of this fact. Effectively, by supplying

a signature with a non-empty context, the programmer has sanctioned this loss of

sharing.

7.3 Function and pattern bindings

Figures 34 and 35 give the rules for function and pattern bindings. These rules are

fairly uncomplicated. One thing to note, though, is that in the funbind rule on

page 342, the function variable x might be qualified (hence an x rather than a v)

since this judgment is used to process bindings in instance declarations (the method

judgement on page 334). The translation always binds the unqualified version of the

name, and that version is also used in the method rule on page 334.

8 Expressions

The typing judgement for expressions has the form GE ,VE , IE
exp` e  e : τ. As

discussed earlier, generalization is done in connection with bindings rather than with

expressions, hence the monotype τ. The rules for this judgement are syntax directed

in that there is only one rule which can apply in each situation (although there are

two rules for variable references in figure 36, only one can be used depending on

the form of the type for the variable). Instantiation is built into the rules that need

it (var-i and var-ii in figure 36 and con, upd and labcon in figure 39).

There are many rules spread over four figures, and we will not comment extensively

on all of them. Some comments are in order, however, and we will organize them in

one subsection for each figure.
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GE , IE ,VE
monobinds` bindG  binds : VEbinds

i ∈ [1 , n] : GE ,VE , IE
bind` bindi  bindi : VEi

GE , IE ,VE
monobinds`




bind 1;

. . . ;

bind n


 




bind1;

. . . ;

bindn


 : VE1 ⊕ . . . ⊕ VEn

monobinds

GE , IE ,VE
bind` bind  bind : VEbind

funbind

i ∈ [1 , n] : GE , IE ,VE
match` matchi  matchi : τ

GE , IE ,VE
bind`




x match1

[] . . . []

matchn


 




unQual (x ) match1

[] . . . []

matchn


 : {x : 〈x , τ〉}

GE , IE
pat` p  p : VEp , τ

GE , IE ,VE
gdes` gdes  gdes : τ

GE , IE ,VE
bind` p gdes  p gdes : VEp

patbind

Fig. 34. Bindings, part 3.

8.1 Expressions part one: Variables

Variables are either class methods or ordinary variables. The two forms are dis-

tinguished by the form of typing information in the variable environment. Both

variable rules instantiate any polymorphism and the translations show the explicit

type and dictionary applications.

In the rule var-ii, the substitution [τ/α] is not applied to θ since α is not allowed

to occur in θ by the rules for class declarations in section 4.3.1 of the Report. The

last premise of the sig rule on page 330 formalizes this requirement.

8.2 Literals

Literals are overloaded in Haskell, and are translated to applications of the over-

loaded conversion functions fromInteger for integer literals and fromRational for

floating point literals. These choices of types for literals enable very large integers

and very precise floating point numbers to be written in the code, but since such
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GE , IE ,VE
match` match  match : τ

i ∈ [1 , k ] : GE , IE
pat` pi  pi : VEi , τi

GE , IE ,VE~⊕(VE1 ⊕ . . . ⊕ VEk )
gdes` gdes  gdes : τ

GE , IE ,VE
match` p1 . . . pk gdes  p1 . . . pk gdes : τ1 → . . . → τk → τ

match

GE , IE ,VE
gdes` gdes  gdes : τ

i ∈ [1 , n] : GE , IE ,VE~⊕VEbinds

gde` gdei  gdei : τ

GE , IE ,VE
binds` binds  binds : VEbinds

GE , IE ,VE
gdes` gde1 . . . gden where binds  gde1 . . . gden where rec binds : τ

gdes

GE , IE ,VE
gde` gde  gde : τ

GE , IE ,VE
exp` e1  e1 : Prelude!Bool∗

GE , IE ,VE
exp` e2  e2 : τ

GE , IE ,VE
gde` | e1 = e2  | e1 = e2 : τ

gde

Fig. 35. Pattern matches and guarded expressions.

conversions are expensive, there are programs where the bulk of the execution

time is spent in constructing literals. Augustsson gives examples and suggests some

improvements in Augustsson (1993).

8.3 Expressions part two

In lambda expressions (rule lambda), the bound variables must have monomorphic

types. This is ensured by the pat judgement on pages 351 and 352 which always

returns monomorphic types. The information from the pattern hides any outer

bindings for the same variables; hence the use of ~⊕.

In the let rule, the translated bindings are wrapped in a rec as discussed

elsewhere, and the bindings hide outer bindings.
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GE , IE ,VE
exp` e  e : τ

x : 〈x, ∀α1 . . . αn .θ ⇒ τ〉 ∈ VE

IE
dict` e : θ[τ1/α1 , . . . , τn/αn ]

GE , IE ,VE
exp` x  x τ1 . . . τn e : τ[τ1/α1 , . . . , τn/αn ]

var i

x : 〈x, ∀α.Γ α ⇒c ∀α1 . . . αn .θ ⇒ τ〉 ∈ VE

IE
dict` e1 : Γ τ

IE
dict` e2 : θ[τ1/α1 , . . . , τn/αn ]

GE , IE ,VE
exp` x  x τ e1 τ1 . . . τn e2 : τ[τ/α, τ1/α1 , . . . , τn/αn ]

var ii

Fig. 36. Expressions, part 1.

The case rule uses the match judgement on page 343. The same judgement is

used in the rule for function bindings in figure 34 on page 342. From the point of

the case rule alone, there is nothing that prohibits the matchi to have more than

one pattern each. Since this does not correspond to legal Haskell syntax, such case

expressions do not occur in practice, but the prohibition lies outside this semantics.

8.4 Expressions part 3

List comprehensions are translated to target list comprehensions; we do only that

desugaring which is directly related to resolution of overloading or to modules. The

expression part of a comprehension is typed in a variable environment extended

with the types derived from the qualifiers. Looking at the typing rules for qualifiers

in figure 40 on page 348, we see that the types derived for variables bound in

let qualifiers (in the qlet rule) have polymorphic types, both in the rest of the

qualifiers and in the expression. The types of variables bound in generators (qgen)

are monomorphic, however. Since the qgen rule uses ~⊕ to combine environments,

later qualifiers hide earlier.

In the do rule, the requirement that its type be monadic is enforced in the typing

rules for statements. The same rules for polymorphism and monomorphism as for list

comprehensions apply to do expressions. Note that the rule for typing an expression

statement, sthen, is very different from the qfilter rule for typing an expression in

a qualifier list. The similarities between list comprehensions and do expressions are

somewhat misleading; the qualifier is a boolean whereas the statement is monadic.

A related syntactic difference is that a statement list must always be terminated by

an expression. In particular, it may not be empty.

In the con, upd and labcon rules, the dictionaries derived are not used in the
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IE
literal` literal  e : τ

IE
literal` char  char : Prelude!Char∗ lit char

IE
literal` string  string : [Prelude!Char∗] lit string

IE
dict` e : Prelude!Num∗ τ

IE
literal` integer  Prelude!fromInteger τ e integer : τ

lit integer

n/d = float

IE
dict` e : Prelude!Fractional∗ τ

IE
literal` float  Prelude!fromRational τ e ((Ratio.%) n d) : τ

lit float

Fig. 37. Literals

translation. The only reason to derive them is to force the instance environment to

entail the context from the data type declaration. Thus constructors from types with

nonempty contexts are not overloaded in any semantic or operational sense. Their

overloading is closer to an assertion about their intended use, with a type error

signaled if the assertion is invalidated. The value of this feature is dubious and the

price in terms of spurious complexity is rather high, as especially the rules for typing

labeled updates show.

The upd rule mimics the translation of the update construct. The fields used in

the expression are looked up in the data constructor environment DE to find their

label environments which for each field name lists all constructors which have a field

of that name. Thus the Kj are the constructors which occur in all of the LE i. For

each of these constructors, its associated ϕ will be used with the lcon judgement to

find the relation between τnew and τold and the τi. The condition that k > 0 ensures

that there is some constructor which has all of the fields mentioned in the update. In

the labcon rule, there is no τold since the value constructed is new. The constructor

K is looked up in DE to find its original name, which must be in the domain of the

intersection of the LE i, ensuring that K has all of the required fields.

8.5 Expressions part four: Sequences

The rules for arithmetic sequences translate these to applications of methods of the

Enum class from the Prelude.
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GE , IE ,VE
exp` e  e : τ

IE
literal` literal  e : τ

GE , IE ,VE
exp` literal  e : τ

literal

i ∈ [1 , k ] : GE , IE
pat` pi  pi : VEi , τi

GE , IE ,VE~⊕(VE1 ⊕ . . . ⊕ VEk )
exp` e  e : τ

GE , IE ,VE
exp` \ p1 . . . pk -> e  \ p1 . . . pk -> e : τ1 → . . . → τk → τ

lambda

GE , IE ,VE
exp` e1  e1 : τ′ → τ

GE , IE ,VE
exp` e2  e2 : τ′

GE , IE ,VE
exp` e1 e2  e1 e2 : τ

app

GE , IE ,VE
binds` binds  binds : VEbinds

GE , IE ,VE~⊕VEbinds

exp` e  e : τ

GE , IE ,VE
exp` let binds in e  let rec binds in e : τ

let

GE , IE ,VE
exp` e  e : τ′

i ∈ [1 , n] : GE , IE ,VE
match` matchi  matchi : τ′ → τ

GE , IE ,VE
exp` case e of match1 [] . . . [] matchn  case e of match1 [] . . . [] matchn : τ

case

Fig. 38. Expressions, part 2.

9 Patterns

Type checking a pattern yields a variable environment giving the types of the

variables in the pattern and a type for the pattern itself. This type should match the

type of whatever the pattern is matched against.

For the benefit of method bindings in instance declarations, the abstract syntax

of patterns and the pvar rule allow single variables to be qualified. The translated

pattern is still unqualified but the returned environment associates the type with

the qualified name since it is checked against the (possibly imported) variable
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GE , IE ,VE
exp` e  e : τ

GE , IE ,VE
quals` quals  quals : VEquals

GE , IE ,VE~⊕VEquals

exp` e  e : τ

GE , IE ,VE
exp` [e | quals] [e | quals] : [τ]

list comp

GE , IE ,VE
stmts` stmts  e : τ

GE , IE ,VE
exp` do stmts  e : τ

do

K : 〈K, χ, ∀α1 . . . αn .θ ⇒ τ〉 ∈ DE

GE = 〈CE ,TE ,DE 〉
IE

dict` e : θ[τ1/α1 , . . . , τn/αn ]

GE , IE ,VE
exp` K  K τ1 . . . τn : τ[τ1/α1 , . . . , τn/αn ]

con

i ∈ [1 , n] : GE , IE ,VE
exp` ei  ei : τi

i ∈ [1 , n] : xi : 〈xi , χ,LEi 〉 ∈ DE

{K1 : ϕ1 , . . . , Kk : ϕk } = LE1 ∩ . . . ∩ LEn

i ∈ [1 , k ] : IE , ϕi

lcon` τold , {x1 : τ1 , . . . , xn : τn}, τnew

k > 0

GE , IE ,VE
exp` e  e : τold

GE = 〈CE ,TE ,DE 〉

GE , IE ,VE
exp` e ⇐ {x1 = e1 , . . . , xn = en} e ⇐ {x1 = e1 , . . . , xn = en} : τnew

upd

i ∈ [1 , n] : GE , IE ,VE
exp` ei  ei : τi

i ∈ [1 , n] : xi : 〈xi , χ,LEi 〉 ∈ DE

K : 〈K, χ, σ〉 ∈ DE

K : ϕ ∈ LE1 ∩ . . . ∩ LEn

IE , ϕ
lcon` , {x1 : τ1 , . . . , xn : τn}, τ

τ = χ τ′
1 . . . τ

′
k

GE = 〈CE ,TE ,DE 〉

GE , IE ,VE
exp` K {x1 = e1 , . . . , xn = en} K τ′

1 . . . τ
′
k {x1 = e1 , . . . , xn = en} : τ

labcon

Fig. 39. Expressions, part 3.
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GE , IE ,VE
quals` quals  quals : VEquals

GE , IE ,VE
exp` e  e : [τ]

GE , IE
pat` p  p : VEp , τ

GE , IE ,VE~⊕VEp

quals` quals  quals : VEquals

GE , IE ,VE
quals` p <- e, quals  p <- e, quals : VEp~⊕VEquals

qgen

GE , IE ,VE
binds` binds  binds : VEbinds

GE , IE ,VE~⊕VEbinds

quals` quals  quals : VEquals

GE , IE ,VE
quals` let binds , quals  let rec binds, quals : VEbinds~⊕VEquals

qlet

GE , IE ,VE
exp` e  e : Prelude!Bool∗

GE , IE ,VE
quals` quals  quals : VEquals

GE , IE ,VE
quals` e, quals  e, quals : VEquals

qfilter

GE , IE ,VE
quals` ε ε : { } qempty

Fig. 40. Qualifiers.

environment in the inst rule on page 332. Variables also occur in as-patterns (v@p)

and n+k patterns where only unqualified variables are allowed.

9.1 Overloaded patterns

Literal patterns and n+k patterns are overloaded in Haskell, and in the Report (sec-

tion 3.17.3) they are translated to conditional expressions as part of the translation

of pattern matching. Since we do not want to give that translation, which entails a

fair amount of desugaring and has little to do with the type system, in this paper, we

have invented alternative constructs in the target language into which overloaded

literals and n+k patterns can be translated.

• A pattern of the form {e} matches values z for which f z is True where f is

the semantics of e.

• Similarly, patterns of the form v :τ{e1, e2} match values z such that f z is true

where f is the semantics of e1, binding v to g z where g is the semantics of e2.
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GE , IE ,VE
stmts` stmts  e : τ

GE , IE ,VE
exp` e  e1 : τ τ1

GE , IE
pat` p  p : VEp , τ1

GE , IE ,VE~⊕VEp

stmts` stmts  e2 : τ τ2

IE
dict` ed : Prelude!Monad∗→∗ τ

GE , IE ,VE
stmts` p <- e; stmts  



let x p = e2

[] = Prelude!fail τ ed " . . . "

in (Prelude!>>=) τ ed τ1 τ2 e1 x


 : τ τ2

sbind

GE , IE ,VE
binds` binds  binds : VEbinds

GE , IE ,VE~⊕VEbinds

stmts` stmts  e : τ

GE , IE ,VE
stmts` let binds; stmts  let rec binds in e : τ

slet

GE , IE ,VE
exp` e  e1 : τ τ1

GE , IE ,VE
stmts` stmts  e2 : τ τ2

IE
dict` ed : Prelude!Monad∗→∗ τ

GE , IE ,VE
stmts` e; stmts  (Prelude!>>) τ ed τ1 τ2 e1 e2 : τ τ2

sthen

GE , IE ,VE
exp` e  e : τ τ1

IE
dict` : Prelude!Monad∗→∗ τ

GE , IE ,VE
stmts` e  e : τ τ1

sret

Fig. 41. Statements.

10 A Critique of Haskell 98

Writing down these inference rules has exposed several places where the Report

has been vague but also some places where it has expressed rules which have been

very difficult to formalize. We are now also in the position to study the formal

properties of the Haskell type system, and we offer some initial comments on the

subject.
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GE , IE ,VE
exp` e  e : τ

GE , IE ,VE
exp` e1  e1 : τ

GE , IE ,VE
exp` e2  e2 : τ

GE , IE ,VE
exp` e3  e3 : τ

IE
dict` e : Prelude!Enum∗ τ

GE , IE ,VE
exp` [e1,e2..e3] Prelude!enumFromThenTo τ e e1 e2 e3 : [τ]

enum from then to

GE , IE ,VE
exp` e1  e1 : τ

GE , IE ,VE
exp` e2  e2 : τ

IE
dict` e : Prelude!Enum∗ τ

GE , IE ,VE
exp` [e1..e2] Prelude!enumFromTo τ e e1 e2 : [τ]

enum from to

GE , IE ,VE
exp` e1  e1 : τ

GE , IE ,VE
exp` e2  e2 : τ

IE
dict` e : Prelude!Enum∗ τ

GE , IE ,VE
exp` [e1,e2..] Prelude!enumFromThen τ e e1 e2 : [τ]

enum from then

GE , IE ,VE
exp` e1  e1 : τ

IE
dict` e : Prelude!Enum∗ τ

GE , IE ,VE
exp` [e1..] Prelude!enumFrom τ e e1 : [τ]

enum from

Fig. 42. Expressions, part 4 (sequences).

10.1 Principality and the monomorphism restriction

Polymorphic types are related by an instantiation ordering which tells when a

type is more general than another. For instance, ∀α α′.(α, α′) is more general than

∀α′.(Int, α′) since the latter type can be obtained by substituting Int for α in (α, α′).
The definition of the generic instance relation for Haskell is complicated by the

context parts of the type schemes and must in general be defined relative to the

class and instance declarations that are in scope. Any generic instance relation must

however insist that if σ is less general than σ′, then type part of σ must be a
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GE , IE
pat` p  p : VEp , τ

GE , IE
pat` x  unQual (x ):τ : {x : 〈x , τ〉}, τ pvar

GE , IE
pat` p  p : VEp , τ

GE , IE
pat` v@p  v:τ@p : VEp ⊕ {v : 〈v , τ〉}, τ

pas

GE , IE
pat` p  p : VEp , τ

GE , IE
pat` ~p  ~p : VEp , τ

pirr

GE , IE
pat`  : { }, τ pwild

i ∈ [1 , n] : GE , IE
pat` pi  pi : VEi , τi [τ

′
1/α1 , . . . , τ

′
k/αk ]

K : 〈K, χ, ∀α1 . . . αk . θ ⇒ τ1 → . . . → τn → χ α1 . . . αk 〉 ∈ DE

IE
dict` e : θ[τ′

1/α1 , . . . , τ
′
k/αk ]

GE = 〈CE ,TE ,DE 〉

GE , IE
pat` K p1 . . . pn  K p1 . . . pn : VE1 ⊕ . . . ⊕ VEn , χ τ

′
1 . . . τ

′
k

pcon

i ∈ [1 , n] : GE , IE
pat` pi  pi : VEi , τi

i ∈ [1 , n] : xi : 〈xi , χ,LEi 〉 ∈ DE

K : 〈K, χ, σ〉 ∈ DE

K : ϕ ∈ LE1 ∩ . . . ∩ LEn

IE , ϕ
lcon` , {x1 : τ1 , . . . , xn : τn}, τ

τ = χ τ′
1 . . . τ

′
k

GE = 〈CE ,TE ,DE 〉

GE , IE
pat` K {x1 = p1 , . . . , xn = pn} K {x1 = p1 , . . . , xn = pn} : VE1 ⊕ . . . ⊕ VEn , τ

plab

Fig. 43. Patterns, part 1.

substitution instance of the type part of σ′, in addition to any requirements on the

context parts.

Given an expression e and a typing environment E, the principal type of e in

E is a type scheme σ which is a valid type of e in E and which is more general
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GE , IE
pat` p  p : VEp , τ

IE
literal` integer  e : τ

IE
dict` eord : Prelude.Ord∗ τ

IE
dict` enum : Prelude.Num∗ τ

IE
dict` : Prelude.Integral∗ τ

x fresh

GE , IE
pat` v+integer

 v:τ {(Prelude.<=) τ eord e, λx:τ . (Prelude.-) τ enum x e}
: {v : 〈v, τ〉}, τ

pnpk

GE , IE
pat` char  char : { }, Prelude.Char∗ pchar

GE , IE
pat` string  string : { }, [Prelude.Char∗] pstring

IE
literal` integer  e : τ

IE
dict` ed : Prelude.Eq∗ τ

GE , IE
pat` integer  {(Prelude.==) τ ed e} : { }, τ

pinteger

IE
literal` float  e : τ

IE
dict` ed : Prelude.Eq∗ τ

GE , IE
pat` float  {(Prelude.==) τ ed e} : { }, τ

pfloat

Fig. 44. Patterns, part 2 (literals).

than any other type scheme that can be derived for e in E. A type system has the

principal type property if there is a principal type for every pair of program and

typing environment for which the program is well typed.

It has generally been believed that Haskell has the principal type property (for

instance, in section 4.1.4 of the Report it is stated that a Haskell type inferencer

can find the principal type of every expression). We have however encountered a

counter example involving the monomorphism restriction. Consider the following
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code:

class IsNil a where

isNil :: a -> Bool

instance IsNil [b] where

isNil [] = True

isNil _ = False

f x y = let g = isNil

in (g x, g y)

The monomorphism restriction applies to the binding of g since there is no type

signature. Thus it is not legal to derive ∀a.IsNil a ⇒ a → Bool, but two legal

possibilities are ∀b.[b] → Bool and a → Bool (without quantification and with

IsNil a in the instance environment). These two choices lead to different types for

f:

• ∀a b.[a] → [b] → (Bool, Bool), and

• ∀a.IsNil a ⇒ a → a → (Bool, Bool).

These two are incomparable since there are neither any types τ1 and τ2 such that

([a] → [b] → (Bool, Bool))[τ1/a, τ2/b] = a → a → (Bool, Bool) nor any type τ

such that (a → a → (Bool, Bool))[τ/a] = [a] → [b] → (Bool, Bool).

Although we have not formally proved so, we conjecture that there is no legal

type for g that will allow a type for f that is more general than both of the above.

One way of giving Haskell principal types (unless there are further problems)

would be to remove the monomorphism restriction. However, it serves a useful

purpose by ensuring that sharing is preserved in bindings, a property that is prag-

matically useful. One possibility would be to have two forms of binding, one which

preserves sharing but is monomorphic and one which is polymorphic but does not

necessarily preserve sharing. This has been suggested by Hughes (2001).

10.2 Ambiguity

Ambiguity is related to an important property called coherence. A type and transla-

tion system is coherent if, whenever it is possible to derive more than one translation

for a term at a certain type, all of the derivable translations have the same semantics.

Obviously, we would like the Haskell type system to have this property. It doesn’t.

For a counterexample, consider the following situation, where we have omitted kind

annotations to reduce clutter: Let IE be an instance environment at least containing

readIntD : P!Read P!Int

showIntD : P!Show P!Int

readIntD : P!Read P!Bool

showIntD : P!Show P!Bool
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and let VE be a variable environment at least containing

read : 〈P!read, ∀a. P!Read a ⇒c [P!Char] → a〉
show : 〈P!show, ∀a. P!Show a ⇒c a → [P!Char]〉

and let GE be any global environment. Then both of the judgements below are

derivable:

GE , IE ,VE
exp` show (read "True")

 P!show P!Int showIntD (P!read P!Int readIntD "True")

: [P!Char]

GE , IE ,VE
exp` show (read "True")

 P!show P!Bool showBoolD (P!read P!Bool readBoolD "True")

: [P!Char]

but the two translations have different semantics although the derived type is

[P!Char] in both cases.

This should not come as too much of a surprise, though. If we look at the

expression show (read "True"), it is clear that, given that show is overloaded on

its argument and read is overloaded on its result, the intermediate result read

"True" could have any type whatsoever.

Fortunately, there is a simple way to detect when incoherence might occur. For a

smaller language, it is shown in Jones (1993) that if the principal type of an expression

is unambiguous, all translations of the expression have the same semantics. A type

scheme of the form ∀α1, . . . , αn. θ ⇒ τ is unambiguous if every αi occurring in θ

also occurs in τ. In the example above, the most general type of the expression is

∀a. (P!Show a, P!Read a) ⇒ [P!Char] (modulo the fact that we do not generalize

over expressions, only at bindings). The type variable a clearly makes the type

scheme ambiguous. While Jones’ result is for a simpler language (essentially the

lambda calculus with let), we conjecture that it carries over to Haskell (provided

that principal types can be recovered).

If a type inference algorithm computes principal types it is very simple to include

a check for ambiguity each time a type scheme is constructed. Unfortunately, it turns

out that it is not so easy to extend a set of inference rules in the same way. The

problem is that the check must be made on the principal type of (in our case) a set

of bindings and a set of inference rules can be used not only to derive that type, but

also every substitution instance of it. We have seen an example of this already; not

only can we derive the type ∀a. (P!Show a, P!Read a) ⇒ [P!Char] for show (read

"True"), but we can also derive just [P!Char], with several semantically different

translations.

One might think that the problem can be solved by insisting on deriving the

most general type, with type schemes ordered according to the generic instance

relation. Unfortunately, the type schemes [P!Char] (which is a type scheme with no

quantified variables and empty context) and ∀a. (P!Show a, P!Read a) ⇒ [P!Char]

are both generic instances of each other according to the standard definition of

generic instance for qualified types (Jones, 1993).
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One further complication is that ambiguity is not always illegal in Haskell. It

occurs so often in connection with numbers that Haskell includes a defaulting

mechanism used to resolve it. The programmer can provide a list of numeric types

to use for defaulting. An ambiguous type scheme ∀α1, . . . , αn.θ ⇒ τ can be defaulted

by instantiating some of the αi as follows: If αi occurs in θ but not in τ and the part

of θ which mentiones αi is Γ1 αi, . . . ,Γk αi where all of the Γj are classes defined in

the Prelude or the standard libraries, at least one of the Γj is a numeric class, and

at least one of the types in the default list is an instance of all of the Γi. If several

types satisfy that condition, the first one in the list is chosen.

We will now discuss some of the options we see for the formalization of ambiguity

detection and resolution.

10.2.1 Using an inference algorithm

The approach taken by Jones (1999) is to use a type inference algorithm as a

specification. It has the advantage that it either gives a program a unique type and

translation or rejects it, effectively sidestepping the entire issue of coherence. Since the

algorithm is the only description of the type system, the question of principal types

also becomes moot. The major disadvantage is complexity; an inference algorithm is

necessarily less abstract than a set of inference rules. In particular, it must deal with

the details of computing the types, for instance using unification and substitutions.

The description therefore becomes larger and perhaps less readable.

10.2.2 Using deterministic inference rules

Deterministic inference rules is an intriguing idea which may or may not be feasible.

It involves designing a set of inference rules such that given a global environment

GE , a variable environment VE and an instance environment IE containing only

the information from (possibly imported) class and instance declarations and an

expression e, there would only be one triple OE , e, τ such that GE , IE ⊕ OE ,VE
exp`

e  e : τ. The rules given in this paper may form a good starting point since they

are mostly syntax directed. One issue would be the dict judgement since there might

be situations where both the dict inst and the dict super rules are applicable.

The largest hurdle to overcome, however, is that some rules (e.g. the app rule)

have premises where types occur which do not occur in the conclusion. In general

these types can be chosen in different ways, yielding different translations, and some

way of picking one of the candidates is necessary. The natural choice is to pick one

that is in some sense the most general, but it is not clear how to define this formally.

If this approach is feasible, it would make it possible to outlaw ambiguity since

there would not be a way to cheat by choosing a less general derivation. In

this respect, deterministic inference rules are similar to an inference algorithm as

specification. The main difference would be that the deterministic inference rules

would not necessarily be easy to translate into an implementation which might allow

a more abstract description.
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10.3 Other issues

In this section, we will give some, necessarily somewhat subjective, comments on the

language. The greatest positive surprise was that kind defaulting (section 3.1) could

be handled in such a relatively straightforward way, and we had expected worse

problems. That said, it is clear that the choince of interpretation of the kinding

dependency relation was influenced by what was simplest to formalize. Counting

occurrences inside default methods would have lead to a large number of extra

inference rules.

The pervasive influence of the module system was also a surprise. Most of the

decisions about what information to keep in which kind of environment (section 2.7)

was motivated by issues arising from selective import of class methods, data con-

structors and field labels. On the other hand, the fine-grained scope control offered

by Haskell’s import declarations is clearly useful on occasion, especially when using

several large and independently developed libraries. We can see no easy way around

this complexity.

The ugliest part of this formalization is the rules for algebraic datatypes with

named fields (section 5.2.1). There are two sources of this ugliness, contexts in

type declarations and the indirect specification in the Report. Contexts in algebraic

datatypes play no essential role in the language, only moving type errors from one

part of the program to another. It is doubtful whether that feature is worth the

considerable added complexity. As for the other source, the inference rules would

clearly be simplified if in an expression e ⇐ {fbind1 , . . . , fbindn} the expression as a

whole always had the same type as the subexpression e.

11 Conclusions

We have presented a set of inference rules which formalize the description in the

Haskell Report. This can be used by programmers and implementors as well as

form a basis for further formal investigations into the type system of Haskell.

Such investigation is indeed needed before these inference rules can be used as a

specification of the language.

One preliminary result of such an investigation is that Haskell does not have

principal types due to a subtle problem with the monomorphism restriction. The

lack of this property is troublesome since the rules in this paper admit more than

one typing derivation for a given module while a compiler must generate only one

type for every exported identifier.
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