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Recent studies indicate that the transition from sheet to cloud cavitation depends on
both cavitation number and Reynolds number. In the present paper this transition is
investigated analytically and a physical model is introduced. In order to include the
entire process, the model consists of two parts, a model for the growth of the sheet
cavity and a viscous film flow model for the so-called re-entrant jet. The models
allow the calculation of the length of the sheet cavity for given nucleation rates and
initial nuclei radii and the spreading history of the viscous film. By definition, the
transition occurs when the re-entrant jet reaches the point of origin of the sheet cavity,
implying that the cavity length and the penetration length of the re-entrant jet are
equal. Following this criterion, a stability map is derived showing that the transition
depends on a critical Reynolds number which is a function of cavitation number and
relative surface roughness. A good agreement was found between the model-based
calculations and the experimental measurements. In conclusion, the presented research
shows the evidence of nucleation and bubble collapse for the growth of the sheet
cavity and underlines the role of wall friction for the evolution of the re-entrant jet.
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1. Introduction
Cavitation is enormously rich in its forms of appearance including single bubble

cavitation, streak cavitation, tip vortex cavitation, free jet cavitation etc. with the two
manifestations: (i) sheet; and (ii) cloud cavitation – that are of interest here – joining
each other. Depending on the operation point of a hydraulic device such as a pump,
a turbine or a propeller, i.e. depending on cavitation number σ and Reynolds number
Re, there might be a transition from sheet to cloud cavitation. It is of practical
importance to understand and predict this transition, since sheet cavitation is in
general harmless whereas cloud cavitation has a high potential to damage material
and produce noise and vibration, see Buttenbender & Pelz (2012) and Kim et al.
(2014). Knapp (1955) was the first to study sheet and cloud cavitation extensively
although he did not use today’s terminology. He described his observations in detail
and provided an explanation for the detachment of a cavitation cloud from a sheet
cavity that is still valid today and that we will pick up in the following.
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Following the established theory, cloud detachment is caused by a liquid film
flow, the so-called re-entrant jet, that flows upstream beneath the sheet cavity. The
re-entrant jet finally breaks through the sheet cavity and cuts of the cavitation cloud.
The cavitation cloud is then carried downstream by the fluid flow and collapses. Lange
& Bruin (1997), Kjeldsen, Arndt & Effertz (2000) and Kawanami et al. (2002) also
made important contributions to the study of this complex phenomenon.

Recent research activities show that there is still a lack of knowledge and that
there are still questions to be answered. The recent works of Ceccio (2015), Ganesh
(2015), Ganesh, Mäkiharju & Ceccio (2016) show that, alternatively to the re-entrant
jet, a shock propagation in the sheet cavity may play a role in the dynamics of cloud
shedding in some cases. Using high-speed visualisation and time-resolved X-ray
densitometry they observed that the cloud shedding can be caused by the collapse of
a cavitation cloud downstream of a growing sheet cavity. After the detachment, the
cloud is carried downstream by the fluid flow, collapses and causes the detachment
of the next cavitation cloud. In this way the cyclic process is maintained.

Numerous recent computational fluid dynamics (CFD) studies on sheet and cloud
cavitation demonstrate the relevance of the topic treated here. Worthy of mention in
this respect are the works of Chahine and his group (e.g. Hsiao, Ma & Chahine
2014; Chahine 2015; Ma, Hsiao & Chahine 2015). By using an Euler–Lagrange model,
single cavitation nuclei and their bubble dynamics are considered. Thus the model
works without any empirical mass exchange models that are non-physical and need to
be calibrated. Although this approach is computationally expensive in comparison to
other cavitation models (Schnerr & Sauer 2001; Singhal et al. 2001), it is physically
more consistent for representing the processes of sheet and cloud cavitation.

The present research is founded on the results obtained by the detailed experiments
which were aimed at determining the critical Reynolds number Rec = Rec(σ , k+)
in a convergent–divergent nozzle where k+ := k̂/B (height k̂, typical length of the
device B) is the relative height of an artificial roughness (see Keil & Pelz 2012; Keil
2014; Pelz, Keil & Ludwig 2014). For Re < Rec(σ , k+) sheet cavitation occurs, for
Re > Rec(σ , k+) one observes cloud cavitation. The shape of the curved wall of the
nozzle is completely described by the dimensionless pressure distribution cp(x) along
the wall with wall coordinate x. For a hydrofoil of chord length l in an unbounded
flow, l would be the typical length of the problem.

From our experiments and observations we draw an extended picture of sheet
cavitation and the origin of cloud cavitation which is consistent with the observations
and conclusions of Knapp (1955). We follow the epistemology of Hertz (1899) in
which the experience motivates pictures and those pictures motivate models. The
models have to be in agreement with the basic principles of thermo and fluid
dynamics.

With this guidance in mind, we first draw a rough picture in § 2. In § 3 we present
the idea of the growth of the sheet cavity which is based on nucleation. In § 4
we derive a model for the re-entrant jet which is treated as a viscous film flow
and validate the model with experiments. Section 5 closes the article with a final
conclusion.

2. Sheet and cloud cavitation
We consider the flow of a condensed fluid (density %, kinematic viscosity ν, surface

tension S, vapour pressure pv) along a curved solid surface as sketched in figure 1. At
x= 0 the liquids velocity is denoted U0 and its static pressure is p1. Along the convex
surface the pressure p(x) increases, reaching a value p2 far downstream. By placing
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Sheet cavitation

Transition from sheet to cloud cavitation

FIGURE 1. Sketch of sheet (a) and cloud cavitation (b).

the upper channel wall or the line of symmetry at y = B, the volume flow rate per
unit depth is U0B. In a cavitation experiment both U0B and p2 are controlled by
means of throttling and pressurising the test rig. Decreasing the pressure p2 or – in
dimensionless arguments – lowering the cavitation number σ := 2(p2− pv)/%U2

0 at the
same time constant Reynolds number Re := U0B/ν, the first phenomenon to observe
is single cavitation bubbles on the curved surface. If the cavitation number is further
decreased there will be one or several rows of bubbles originating from specific points
on the surface. In our case, an obstacle with height k̂ is the point of origin (figure 1).

It should be mentioned that the cavitation number contains the downstream pressure
p2 instead of the pressure at the smallest cross-section p1 as one might expect. Under
a choked cavitation condition, the pressure in the smallest cross-section equals the
vapour pressure or a constant pressure below the vapour pressure if the liquid can
withstand tensile stresses. A further decrease of the system pressure would not cause
a change of the pressure at the smallest cross-section, even if there is a change of the
cavitation occurrence downstream of the smallest cross-section. The outlet pressure
is a measure of the cavitation occurrence because it contains the losses that appear
between the smallest cross-section and outlet. The Reynolds number is written with
length B which is a measure of the size of the hydraulic device. In the case of a
hydrofoil, the chord length l would be a reasonable characteristic length. Of course,
one could choose the obstacle height k̂ as the characteristic length. In our study this is
not expedient with regards to the stability maps we will discuss in § 4. The length of
the sheet cavity, which is also a measurable length, is not suitable as the characteristic
length since it depends on the flow and is not freely adjustable.

There is one fundamental similarity one observes in cavitation experiments
independent of the cavitation regime: the smallest elements of cavitating flows are
cavitation nuclei. Basically, cavitation nuclei are small amounts of non-condensable
gas that work as weak spots in the liquid and allow its rupture under technically
relevant pressures. The well-known experiments of Briggs (1950) demonstrate the
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ability of liquids to withstand high tensile stresses if the presence of such nuclei
is avoided, e.g. a tensile strength of 280 bar in water for a temperature of 10 ◦C.
In cavitation research, a distinction is made between nuclei that freely float in the
liquid (free stream nuclei) and nuclei that are attached to walls or particles. The
latter are often referred to as Harvey nuclei. In their study on bubble formation in
animals Harvey et al. (1944) postulated the existence of minute gas nuclei attached to
(hydrophobic) cracks in surfaces. The nuclei grow due to mass transfer of gas out of
the supersaturated liquid and finally free nuclei detach. This process is called bubble
nucleation. Compared to homogeneous and heterogeneous nucleation the described
process is diffusion driven and much smaller supersaturations are needed. In the case
of homogeneous and heterogeneous nucleation the liquid has to be ruptured to create
the gas phase. High supersaturations are needed to overcome the nucleation energy
barrier. The theory of nuclei found its way to standard literature (Knapp, Daily &
Hammitt 1970; Franc & Michel 2004) and is widely accepted in the community.
Nevertheless, there are only a few studies that tackle the process of (diffusion driven)
nucleation from surfaces and roughness elements in the context of hydrodynamic
cavitation. In general, the review articles of Jones, Evans & Galvin (1999) and
Mørch (2007) provide a good overview about nuclei and nucleation.

High-speed visualisations of cavitating flows show a nucleation rate f of the order of
1 kHz in the case of travelling bubble cavitation that fluctuates only a little over time
(Guennoun et al. 2003). Figure 2 is a single high-speed photograph of a NACA0009
hydrofoil in top view perspective taken by the authors together with Dr Mohamed
Farhat at the test rig of the Laboratory for Hydraulic Machines (EPFL Lausanne).
The bubbles are lined up like a string of pearls with an origin at a specific point
on the surface. Experiments by van Rijsbergen & van Terwisga (2011) showed that
such processes are activated by single nuclei passing by or hitting a roughness element
on a surface. The authors of this paper have investigated the nucleation rate and its
dependence on flow velocity and supersaturation of the liquid by generic experiments
(Groß, Ludwig & Pelz 2015, 2016). In the CFD studies of Hsiao et al. (2014) and
Ma et al. (2015) referred to above, nucleation from surfaces plays a crucial role for
the simulation of cavitating flows with an Euler–Lagrange model. In the simulations
a nucleation rate of 22 kHz is assumed, which seems to be reasonable and consistent
with our findings as will be seen later.

In our picture a sheet cavity consists of a large number of parallel streaks all
originating either from a line of roughness, an edge of a hydrofoil, the point of
laminar separation or an artificial roughness as seen in figure 3(b). This picture will
guide us in developing a physical model which serves to determine the sheet length a
from t= 0 to its asymptotic maximum length a→ â for t→∞ for a given nucleation
rate f and a nucleus radius R0.

The opponent of the sheet cavity is the so-called re-entrant jet. It is more precise to
call it an upstream spreading thin viscous film moving over the curved surface reverse
to the sheet movement. Since the pressure along the free streamline is approximately
constant – provided the transient inertial forces are small – the jet starts to spread
with the initial conditions ξ̇ (t = 0) = U0 and ξ(t = 0) = 0. The initial thickness h0
of the jet can be determined either applying potential flow theory or performing a
momentum balance. Measurements and calculations of Michel (1978) and Callenaere
et al. (2001) show that the thickness of the re-entrant jet ranges between 15 % and
35 % of the cavity thickness. The maximum film length ξ̂ is given by the balance of
stagnation pressure %U2

0/2 which is the driving potential and viscous friction at the
wall.
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10 mm

FIGURE 2. Streak cavitation on NACA0009 hydrofoil. The flow is from left to right with
a frequency of bubble generation of 1000 Hz. The image was taken with an exposure
time of 55 µs. The cavitation number is σ = 5.4 and the Reynolds number is Re =
1.1× 105. The image was taken at the cavitation tunnel of the Laboratory for Hydraulic
Machines/École polytechnique fédérale de Lausanne by the authors.

Single bubble
cavitation

Smooth surface Smooth surface with obstacle at smallest cross section

10 mm 10 mm

Sheet Cloud

Roughness  

Sheet
front

(a) (b)

FIGURE 3. Single bubble cavitation (a) and transient cloud cavitation (b) in convergent–
divergent nozzle from top view perspective. The flow is from left to right. The image
shows a section of the divergent part of the nozzle. The surface bounded obstacle (k̂ =
1 mm) is positioned 5 mm to the right of the left edge of picture (b). The cavitation
number is σ = 0.228 and the Reynolds number is Re= 4.2× 106.

There are two situations. The first situation, which corresponds to ξ̂ � â, is
sketched schematically in figure 1(a). The sheet cavity appears to be stationary. Only
at the cavity closure are small bubbly vortices continuously peeled off by the film
flow which comes to rest. This situation is called sheet cavitation. According to
the described mechanism it is clear that the flow is never stationary. In the second
situation, ξ̂ = â, the film peels off the complete sheet and a large cavitation cloud
with a circulation of the order of magnitude of 2U0â is formed. The value of 2U0â
can be understood as an upper bound. Due to Helmholtz vortex theorem a vortex
cannot end somewhere in the fluid. Thus it must extend to walls of the flow area or
form a closed path. In most cases the cavitation cloud will form a cylindrical vortex
which turns into a horseshoe vortex (see Kawanami et al. 2002). The horseshoe
vortex is excited by two mechanisms: the first is a dynamic mechanism which acts
by increasing the ambient pressure and the second, which is a kinematic mechanism,
acts by stretching the vortex ring as indicated by Buttenbender & Pelz (2012). They
showed that the cloud collapse is largely intensified by the latter situation. For the
sake of completeness it should be mentioned that ξ̂ > â is not possible.

For our purpose the condition for the transition from sheet to cloud cavitation is
given by ξ̂ = â which can, at least in most cases, be determined easily in experiments.
In other words, the transition occurs if the viscous film reaches the point of origin
of the sheet cavity. Operation points where it is not clear whether the re-entrant jet
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reaches the point of origin of the sheet cavity or not are categorised as transition
operation points. In the following we introduce physical models for the growth of the
sheet cavity and for the flow of the viscous film that allow for a determination of â
and ξ̂ and thus help us to predict the cavitation regime.

3. Asymptotic sheet growth
In the following two sections we will derive the transition criteria Rec=Rec(σ , k+)

according to the critical condition ξ̂ = â introduced above. Hence, a model for the
sheet growth and the history of the re-entrant jet is needed. The principle idea is based
on our experimental findings (Pelz et al. 2014; Groß et al. 2015, 2016).

The picture of the growth of the sheet cavity consists of three parts, which are at
the same time the three phases of the bubble: (i) birth, i.e. nucleation, (ii) midlife, i.e.
advection and (iii) death, i.e. collapse.

(i) Birth, i.e. nucleation: as the observations indicate (cf. figures 2 and 3b) the sheet
cavity is composed of parallel streaks consisting of a large number of bubbles all
originating from a line of roughness, an edge of a hydrofoil, the point of laminar
separation or an artificial roughness. The experiments of Guennoun et al. (2003), as
well as our own experiments and the recent findings from a very generic experiment
(Groß et al. 2015, 2016), indicate a bubble nucleation rate f of the order of 1–10 kHz
depending on the supersaturation of the fluid, shear rate and size of the surface bound
nuclei. The nucleation process itself is a mass transfer problem which has hardly
been investigated even if its importance for the understanding of cavitating flows is
apparent. Even though there has been only little experimental evidence, Hsiao et al.
(2014) and Ma et al. (2015) used the idea of nucleation in their numerical calculations.
As mentioned before, the nucleation rates they assume, i.e. 22 kHz, are reasonable and
consistent with our findings presented here. In a first (and rough) approximation we
assume that the size of the produced nuclei R0 is of the same order of magnitude as
the surface roughness k̂. In fact k̂ is an upper bound to R0. The initial bubble radius
R0 is stable, i.e. the bubble is in an equilibrium at the ambient pressure p1 but will
cavitate if it is exposed to a pressure higher than p1.

(ii) Midlife, i.e. advection: as soon as a bubble detaches it is transported downstream
from x = 0 with a velocity which is approximately the velocity of the flow U0.
Although Khlifa et al. (2012) and Mäkiharju et al. (2012) observed a slip between
bubbles and free flow, this effect is only of minor importance for the sheet growth,
as we learned. As our experiments show, the sheet cavity is formed by the numerous
bubbles that nucleate from the different nucleation spots, cf. figure 3(b). There are
several studies, e.g. Stutz & Reboud (1997), reporting a clear and glossy surface of
the sheet cavity. This is an indication of large vapour filled areas. In our experiments
we do not observe a single operation point where such structures occur. Hence we
refer only to the case of a sheet cavity which appears as a bubbly mixture. A uniform
constant pressure equal to p1 holds within the sheet cavity providing a stable midlife
phase of the bubble.

(iii) Death, i.e. collapse: a bubble located in the front row of the sheet cavity is
exposed to the pressure outside of the sheet p(x)> p1 and collapses. After the collapse
of the leading bubble, i.e. the first bubble, the former second bubble enters the front
row and is affected by a higher pressure itself. During its collapse the first bubble
moves a distance U0 τ(x) with collapse time τ(x). The distance between the first and
the second bubble is U0/f . If the travelling distance of the collapsing (first) bubble is
larger than the distance between the two bubbles the sheet increases its length with a
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sheet growth velocity that is smaller than the advection velocity of the bubbles, ȧ<U0.
The second bubble will start its collapse further downstream than the first bubble. The
sheet cavity will reach its maximum lengths a(t→∞)→ â when both distances are
equal which is equivalent to the critical condition f = 1/τ . As long as the collapse
rate 1/τ is smaller than the nucleation rate f the sheet is still growing, i.e. the front
moves downstream with speed ȧ.

As for negligible surface tension S, i.e. large Weber number We := %U2
0 B/S→∞

and negligible viscous stresses, i.e. large Reynolds number Re := %U0 B/µ→∞ the
collapse time is derived from the Rayleigh–Plesset equation (cf. Franc & Michel 2004)
as

τ(x)≈ 0.915
R0

U0

√
2

σ + cp(x)
, (3.1)

with cp(x) := 2(p(x) − p2)/%U2
0 . As a result, the maximum sheet length is given

implicitly as an argument of the pressure distribution with the important condition
f = 1/τ(â):

cp(â)≈ 1.67
(

f R0

U0

)2

− σ . (3.2)

In cases where the conditions Re→∞ and We→∞ are not met, the well-known
Rayleigh–Plesset equation or the Keller–Miksis equation has to be solved numerically
to calculate the collapse time τ .

The nucleation rate f together with the initial bubble radius R0 are the crucial
parameters of the model. In the following we present two approaches that show how
(3.2) helps to gain insights into the physics of sheet and cloud cavitation.

First: equation (3.2) can be used for an order of magnitude estimation of the
nucleation rate. In our experiments (Pelz et al. 2014) we see that cp(â) + σ ranges
between 0.29 and 0.66. A typical velocity of the flow is U0 = 10 m s−1. With
cp(â)+ σ = 0.5 and the assumption that the detaching bubbles are of the same order
of magnitude as the obstacle height, R0 ∼ k̂ = 0.5 mm, we end up with a nucleation
rate of f ≈ 11 kHz which is of the same order of magnitude as the nucleation rates
assumed by Hsiao et al. (2014), Chahine (2015) and Ma et al. (2015). Of course, the
assumption R0 ∼ k̂ has to be treated with some reservation. As already mentioned k̂
is more likely to be an upper bound for the initial bubble radius R0: the experiments
conducted by the first and third author of this manuscript indicate that there is a
strong dependence of the bubbles radius on the flow parameters (cf. Groß et al.
2016).

Second: the model can be used to calculate the sheet length and to compare the
results with experimental data, see figure 4. With (3.2) it can be concluded that
( f R0/U0)

2 has to be of the same order of magnitude as the sum of cavitation number
σ and the pressure distribution cp which is of the order of 0.1–1, as previously
mentioned. In general, the nucleation rate f and the size of the detaching free nuclei
R0 depend on surface tension and viscosity, as well as on the size and shape of
the nucleation site that is located on the rigid surface. Since nucleation is a mass
transfer problem the nucleation rate also depends on the diffusion coefficient D, or in
dimensionless arguments on the Schmidt number Sc := ν/D, and the supersaturation
of the liquid ζ . The supersaturation is defined as ζ := c/cN − 1, where c is the
measurable concentration of gas in the liquid and cN is the equilibrium saturation
concentration at the nucleation site which is determined by the local pressure due
to Henry’s law. Physical modelling and experiments indicate that the nucleation rate
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Equation (3.2)

FIGURE 4. Sheet cavity length a+ plotted against cavitation number for four Reynolds
numbers and three obstacle heights (experimental data by Pelz et al. 2014). The solid
lines are calculated with (3.2) using the approach ( f R0/U0)

2 = 0.97 k0.3
+ .

depends linearly on the supersaturation, f ∝ ζ (Groß et al. 2016). Thus we obtain
f R0/U0 = ζ fn(Re, We, Sc, k+). In the experiments the supersaturation has not been
measured but it is likely that it only varies within a small range. For a constant
supersaturation of the liquid ζ ≈ const., Re→∞, Sc→∞, We→∞ it is reasonable
to assume f R0/U0 to be only dependent on the obstacle height k+ in a first step. The
investigation of the dependence of the nucleation rate f and the initial bubble radius
R0 on the flow parameters is part of current research and not known so far.

Figure 4 shows the dependency of the length of the sheet cavity a+ on the
cavitation number σ for different Reynolds numbers Re and three obstacle heights
k+. The symbols are experimental data (cf. Pelz et al. 2014) and the solid lines
represent the results of calculations with (3.2). First of all we want to summarise
the main findings of the experiments. The experiments illustrate that: (i) the sheet
cavity length a+ does not depend on the Reynolds number Re; (ii) it increases
with decreasing cavitation number σ ; and (iii) it increases with increasing obstacle
height k+. Looking at the experimental results one might think that there is a linear
dependency a+ = a+(σ ). Since cp(a+) is nonlinear for the examined nozzle, this
assumption is unlikely to be true. In addition, for σ →∞ we expect a+→ 0 which
cannot be met by a linear relation. Furthermore it should be mentioned that the sheet
length seems to be independent of the obstacle height for small cavitation numbers.
In the case of small cavitation numbers, pronounced cloud cavitation complicates
the determination of the sheet length. General statements regarding the length of the
sheet cavity are reliable only to a limited extent if the sheet cavity is altering its
length very fast, i.e. if high cloud detachment frequencies occur. The measured points
on the far left (σ ≈ 0.7) demonstrate this uncertainty.

The solid lines in figure 4 are the results of (3.2) with ( f R0/U0)
2 = 0.97 k0.3

+ ,
which is a result of a parameter variation. In particular, the calculated curves for
k+ = 0.05 and k+ = 0.0375 match the experimental data quite well, keeping in
mind the simplicity of the model. Indeed, the proposed model captures the basic
physical content of the phenomenon. The calculated sheet length a+ is (i) of course
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Sheet cavity

Main flow

Re-entrant jet
y

FIGURE 5. Sketch of a re-entrant jet modelled as a spreading film. The main flow is
from left to right while the re-entrant jet flows in the opposite direction. The coordinate
x′ starts at the end of the sheet cavity.

independent of the Reynolds number Re as assumed, (ii) increases with increasing
cavitation number σ and (iii) increases with increasing obstacle height k+.

In conclusion, we have two manifestations for the proposed model based on f =
1/τ . The model assumptions are certainly worth discussing: the interaction between
bubbles, different bubble sizes, turbulence and pressure fluctuations are all neglected
and influence the results to a certain degree. Moreover, the two-way interaction of
the sheet cavity with the main flow is not taken into consideration. In particular, the
size of the nuclei is an important parameter. In the case of small nuclei (e.g. R0 =
1 µm) the resulting collapse times are of the order of micro seconds and smaller,
which result in high nucleation rates due to (3.2). In these cases it is conceivable that
nucleation sites close to each other produce bubbles that are laterally displaced. In
this way the required nucleation rates per nucleation site are much lower. The model
should be seen as a new picture of sheet cavitation preparing the ground for further
investigations. There is no doubt that further experiments are needed to gain a better
understanding of the nucleation process.

4. Re-entrant jet as an upstream spreading thin viscous film
On the one hand, viscosity, hence Reynolds number, influence the dynamics of sheet

growth to a minor extend. Only the bubble dynamics is damped by viscous stresses
but this is of minor importance: viscosity does not enter the approximation of the
collapse time, equation (3.1). On the other hand, the transition from sheet to cloud
cavitation is influenced by viscous effects as experiments show (Pelz et al. 2014).
Hence, the viscous effect comes into the picture by means of the re-entrant jet. In fact,
the viscous wall shear stress causes the dissipation within the film and the deceleration
of the film.

In figure 5 the re-entrant jet is sketched as a spreading film with a distribution of
film thickness h(x′, t) with x′ = â − x. The first and main source of rotation is the
generation and diffusion of vorticity within the film. The second source of rotation in
cavitating flows, i.e. second source of vorticity ∇%×∇p, is of minor importance and
is thus not considered in the presented model. Since p = p1 = const. along the free
streamline the initial condition ξ̇ (t= 0)=U0 is derived. The second initial condition
h(x′ = 0, t = 0) = h0 is derived either by a potential flow solution or a momentum
balance. As already mentioned, the initial thickness ranges between 15 % and 35 %
of the cavity thickness (Michel 1978; Callenaere et al. 2001).
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It is assumed that the liquid film starts to evolve upstream when the growth of the
sheet cavity stagnates. The initial conditions are the initial film velocity ξ̇0 and the
initial height of the liquid film h0. The pressure in the liquid film is predetermined
by the pressure in the sheet cavity which is approximately equal to p1. The continuity
equation for the spreading film, cf. figure 5, can be written in an integral form as∫ x′

0

∂h
∂t

dx′ −Q0 +Q= 0. (4.1)

The volume flow Q0 = U0 h0 is prescribed as a boundary condition whereas Q =
Uh is unknown. U and U0 are the mean velocities within the film. This equation is
equivalent to

∂h
∂t
+ ∂Q
∂x′
= 0 or

DQ
Dt
= Q

U
∂U
∂t

(4.2a,b)

for the sketched infinitesimal control volume. The momentum balance in the
streamwise direction gives∫ x′

0

∂(Uh)
∂t

dx′ −Q0U0 +QU =−
∫ x′

0

τw

%
dx′. (4.3)

With the local wall friction coefficient defined by cf = 2τw/(%U2
0) this yields

DQ
Dt
+Q

∂U
∂x′
=−U2

2
cf . (4.4)

The local friction coefficient cf (k+,Re) is a function of the surface roughness and the
local Reynolds number. Inserting the continuity equation into the momentum balance
gives the expected result:

DU
Dt
= U2

2
cf

h
or

∂U
∂t
+U

∂U
∂x′
= U2

2
cf

h
. (4.5a,b)

As one can see, the pressure does not appear in the momentum balance. The pressure
in the film is determined by the pressure in the sheet cavity which is approximately
p1. This conclusion is based on the continuity of the stress vector. Nevertheless, the
pressure plays an important role. The pressure distribution which is given by cp is
of importance for length and height of the sheet cavity as Callenaere et al. (2001)
showed. Thus, the pressure gradient influences our results indirectly without being part
of the model itself.

Integrating (4.5) from x′ = 0 to x′ = ξ gives∫ ξ

0

∂U
∂t

dx′ + ξ̇
2

2
− U2

0

2
=−

∫ ξ

0

cf

2
U
h

dx′. (4.6)

The equation is nothing other than Bernoulli‘s equation. Together with the continuity
equation ∫ ξ

0

∂h
∂t

dx′ −U0 h0 + ξ̇ hξ = 0 (4.7)

we have two equations to be solved simultaneously. To solve this system of equations
we follow the linear ansatz with U ≈ U0 + (ξ̇ − U0) x′/ξ and h≈ h0 + (hξ − h0) x′/ξ .
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With the approximations

∂U
∂t
≈ x′

ξ

[
ξ̈ − (ξ̇ −U0

) ξ̇
ξ

]
, (4.8)

∂h
∂t
≈ x′

ξ

[
ḣξ −

(
hξ − h0

) ξ̇
ξ

]
and (4.9)

U2

2
cf

h
≈ R= const. (4.10)

the system of equations with the ‘excitation’ on the right-hand side reads:

1
2
ξ

[
ξ̈ − (ξ̇ −U0

) ξ̇
ξ

]
+ ξ̇

2

2
+ R ξ = U2

0

2
, (4.11)

1
2
ξ

[
ḣξ −

(
hξ − h0

) ξ̇
ξ

]
−U0 h0 + ξ̇ hξ = 0. (4.12)

This system of equations in the unknowns ξ(t) and hξ (t) with the three initial
conditions ξ(0) = 0, ξ̇ (0) = U0 and hξ (0) = h0 has to be solved numerically and
allows for the calculation of the position and the velocity of the liquid film and its
height.

The question is whether the liquid film will reach the point of origin or not. In the
first case we see cloud cavitation. To calculate the behaviour of the liquid film we
assume that the initial height of the liquid film in general is 15 % of the average height
of the sheet cavity (cf. Callenaere et al. 2001). The friction coefficient is modelled as
a turbulent flow above a plate. We use

R= U2
0

2
cf

h0
(4.13)

and

cf = 2
[

κ

ln ReJ
G(ln ReJ)

]2

, (4.14)

with the von Kármán constant κ = 0.41, the Reynolds number of the film defined by
ReJ = U0 h0/ν and coefficient G = 1.5 for 105 < ReJ < 106 to model the friction (cf.
Schlichting & Gersten 2006).

For constant R the asymptotic solution with ξ̇ = 0 and ξ̈ = 0 of (4.11) is ξ̂ =
U2

0/2R = h0/cf . A comparison of the calculated maximum length of the liquid film
with the measured sheet length gives the answer to the question above. For ξ̂ > â
the operation point is classified as cloud cavitation, for ξ̂ < â it is classified as sheet
cavitation. One has to mention that it is possible to calculate a larger penetration
length of the re-entrant jet than the actual length of the sheet cavity, ξ̂ > â. This is only
a result of the differential equation but of course cannot be seen in the experiments.
In these cases the re-entrant jet could flow upstream much further.

By plotting Reynolds number against cavitation number and using different symbols
to mark the two cavitation regimes we obtain stability maps for different heights
of the artificial roughness, figures 6–8. Every symbol in the diagrams marks one
operation point that has been measured, evaluated and analysed. Operation points
where sheet cavitation (squares) and cloud cavitation (circles) occur can be identified.
Operation points marked with diamonds could not be categorised and are interpreted
as a transition area. The larger symbols mark the experimental data, the smaller
symbols are the results of the physical model.
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FIGURE 6. Stability map for sheet and cloud cavitation for k+ = 0.025. The map shows
operation points where sheet (squares) and cloud cavitation (circles) occur. Operation
points marked with diamonds could not be categorised. The larger symbols mark the
experimental data, the smaller symbols are the results of the physical model (experimental
data by Pelz et al. 2014).
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FIGURE 7. Stability map for sheet and cloud cavitation for k+= 0.0375. The map shows
operation points where sheet (squares) and cloud cavitation (circles) occur. Operation
points marked with diamonds could not be categorised. The larger symbols mark the
experimental data, the smaller symbols are the results of the physical model (experimental
data by Pelz et al. 2014).
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FIGURE 8. Stability map for sheet and cloud cavitation for k+ = 0.05. The map shows
operation points where sheet (squares) and cloud cavitation (circles) occur. Operation
points marked with diamonds could not be categorised. The larger symbols mark the
experimental data, the smaller symbols are the results of the physical model (experimental
data by Pelz et al. 2014).

The stability maps show that there are two possible ways to avoid operation points
in which cloud cavitation occur. The first way is to increase the cavitation number
which is the most common procedure. The other possible way is to decrease the
Reynolds number. One can see that for small Reynolds numbers no cloud cavitation
exists. In these cases the film does not reach the artificial roughness since ξ̂ < â. The
stagnation pressure %U2

0/2 that drives the film flow is too small. The graphs show that
the transition from sheet to cloud cavitation can be predicted remarkably well by the
presented model.

An application of our model to real hydraulic devices is difficult because of
the complex flow conditions. Nevertheless the findings could be used to tackle
problems of technical relevance. If a hydraulic device (pump, turbine, propeller, etc.)
is usually operated in operation points where cloud cavitation occurs it would be
worth considering increasing the surface roughness in the region where the re-entrant
jet develops. Kawanami et al. (1997) showed that a small obstacle placed in that
region can stop the re-entrant jet. Callenaere et al. (2001) suspected that smaller wall
surface perturbations, such as distributed roughness, influence the cloud cavitation
instability. Our interpretation of the re-entrant jet as a viscous film supports this
hypothesis and provides an explanation. To fully understand the phenomenon of
cloud cavitation one has to consider the interaction of the re-entrant jet with the solid
wall as we addressed in this paper.

5. Conclusion
For engineers and operators dealing with cavitation in hydraulic components such

as pumps, turbines, propellers or valves it is important to know that there are various
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kinds of cavitation regimes which differ in appearance and erosive potential. Failures
of hydraulic components due to cavitation are often caused by a lack of knowledge
about the different cavitation regimes and their erosive potential. Therefore the
prediction of critical operating parameters is of great value to identify harmful
operation points already in the design process or during the operation of technical
applications.

In the present paper we investigate sheet and cloud cavitation and the transition
between these two regimes, which depends on cavitation number and Reynolds
number. It is of practical importance to understand and predict this transition, since
sheet cavitation is in general harmless whereas cloud cavitation has a high potential
to damage material and to cause noise and vibration.

For this purpose we present an analytical model that describes the two main
mechanisms: the growth of the sheet cavity and the flow of the re-entrant jet. The
asymptotic sheet growth model allows for the calculation of the length of the sheet
cavity for a given nucleation rate or vice versa. The flow of the re-entrant jet is
interpreted as a viscous film that streams upstream beneath the sheet cavity. The
film theory allows to consider viscous effects and thus an influence of the Reynolds
number. The transition from sheet to cloud cavitation occurs if the liquid film reaches
the point of origin of the sheet cavity, or in other words if the length of the viscous
film is equal to the length of the sheet cavity.

Although the models do not include the interaction between bubbles, the interaction
of the sheet cavity with the main flow and other effects, such as turbulence and
pressure fluctuations, the results fit remarkably well to experimental data and help to
gain new insights into the physics of this complex phenomenon.
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