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Abstract. The braking of stellar rotation in the wholly convective phase in the pre-main sequence is 
numerically discussed. The structure of stars in that phase is expressed by a rotating polytrope with an 
index of 1.5 and the Schatzman-type mechanism is used as the means of loss of angular momentum. 
The magnetic energy is assumed to change with evolution as Ho2IS7i(R/Ro)s, where Ho and i?o are 
initial magnetic field and radius, and s is a free parameter. The changes of angular momentum, 
rotational velocity, etc. with contraction are calculated from the initial state, which is taken to be the 
state when the stars flared up to the Helmholtz-Kelvin contraction. It is shown that the exponent s 
must be in the range from — 1 to — 3 so that the stars with adequate strength of the initial magnetic 
field may lose almost all of their angular momenta in a suitable rate if they are initially in the state of 
rotational instability. 

Stellar rotation from the time of star formation to the main sequence stage is discussed. Also, the 
formation of the solar system and other planetary systems is discussed, with respect to the braking. 

1. Introduction 

It is well known that the axial rotation of the main sequence stars stops quite abruptly 
at about F5. Schatzman (1962) suggested an efficient mechanism due to mass loss 
through stellar magnetic activity related to the surface convection zone. Mestel 
(1968a, b) constructed an elaborate theory about magnetic braking by a stellar wind. 
Nariai (1968) discussed braking of stellar rotation in terms of acoustic energy supplied 
tocoronae. Huang (1965b, 1967) investigated rotational behavior of the main sequence 
stars and its plausible consequences concerning formation of planetary systems. 

It was shown by Hayashi (1961) that the stars in the pre-main sequence contraction 
stage are wholly-convective and contract downward almost vertically on the H-R 
diagram until the radiative core develops appreciably. Poveda (1964) presented a 
theory of flare stars on the basis of Schatzman's theory and calculations of stellar 
evolution by Hayashi and his collaborators (1962, 1963). Huang (1965a) considered 
the sequence of events in the early phase of the solar system and suggested that 
Schatzman's mechanism operated in the wholly convective phase and the sun thereby 
lost its angular momentum. 

We connect Schatzman's loss mechanism to the theory of evolution of Hayashi 
et al. and calculate numerically the variation of angular momentum of the sun and 
stars with their evolution. 

2. The Rotation of Stars in the Wholly Convective Phase 

The angular momentum and equatorial velocity of a wholly convective star with the 
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polytropic index of 1.5 are expressed by the following relations; 

fflC = {mC)A JGM3R 
and 

vcq = m(A) 
GM 

V R ' 

(1) 

(2) 

where A = co1/SnGQc (see Okamoto (1969) (Paper I) for the derivation of Equations (1) 
and (2)). The dimensionless quantities a>(A) and (coC)A are functions of A only and 
shown in Figure 1. The rotation equation which contains both terms of gravitational 
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Fig. 1. C (A), Pc{A), co(A), (IDC)A and x (A) are plotted as functions of A for the polytrope with 
n = 1.5. The values multiplied by a factor 10 are plotted for C (A) and (COC)A. 

contraction and magnetic braking is obtained, by equating the time derivative of mC 
to the magnetic torque, as follows; 

d , N AA , 1 / 1 dR\ 1 I f 
— (a>C)A—=(a>C)A- + - / V s i n O ( H d S ) . 
dA dt 2\ RdtJ jGM^RAn] 

(3) 

The Helmholtz- Kelvin contraction time is expressed in terms of the stellar luminosity; 
1 d « \ _ 1 3 y - 4 3 GM2 3 GM2 

= — = , (4) 
R dt) 3 ( y - 1) 5 - n RL 7 RL v 

where the values n = 1.5 and y = -f are inserted. For the mechanism of magnetic braking 
we use a modified form of the Schatzman-type. Then, we can equate approximately 
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the second term of Equation (3) in the following way; 

\ H+r s i n 0 ( H d S ) = — c o r 2 (g-cm2-sec"1 /years), (5) 
4ll J dt 

where mass loss dM/dt and critical distance rc are given by the following Equations 
(6) and (7) respectively. 

dM „ Hi (L\I2(M0 

= - 4 . 9 3 x 1032 x * ' » ' ° 

and 

dt 4nV2 \L0J \M, JQ 

n \ 27/24 / M \ - 5/24 / „ \ 53/24 

R0\ M\ R\ , , v 3 , 4 x\i UJ UJ W(A) (8,years) (6) 

R 
1 

^ 
/2co(A)\VJ _ 

2-11/3 

(7) 

The velocity of ejected matter and its change along the evolutionary path cannot 
be definitely determined from observations and theory. Therefore, for simplicity, we 
take the escape velocity of the star for the ejection velocity of matter; 

[2GMV12 (M\12 ( RY1'2 

V = Kesc = - - - = 617.7 ••, — km/sec. (8) CD-'" (0(s)' 
The initial radii of stars when they flare up from the pre-opaque dynamical con­

traction and reach the state of quasi-static contraction are given by the relation 

1 3 GM2 M 
= 1 

2 5 — n R mH 

where mH is the mass of the hydrogen atom and %= 15.84^+19.75 Y, X and Y being 
the concentrations by mass of hydrogen and helium. If we take the stars of Population 
I, putting X=Q.6\ and F=0.37, we obtain the initial radii in terms of stellar mass as 
follows; 

RjRQ =49.88 (MIMe). (9) 

Then, from Equation (2) the rotational velocity at the initial radius (9) depends only 
upon A and not upon the stellar mass. The radius given by Equation (9), however, 
corresponds to the non-rotating state. In order to carry out the integration of Equa­
tions (3) and (4), we must know the initial value of A also. But we are not able to 
determine both R0 and A0 at the same time. Thus, we assume the value of 1.069 x 10~2 

for A0, at which stars are near to the limit of rotational instability. 
The path of the evolution from the initial state (9) is approximated by the following 

relation 
L/LG = e ( K / R 0 ) 1 5 , (10) 

where Q = 0.154,0.269,0.624 and 1.161 for stars of 0.4,0.6,1.0 and 2.0 M 0 , respectively. 
The radii where radiative cores just begin to grow at the centers are 0.776, 1.318, 

https://doi.org/10.1017/S025292110002707X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110002707X


76 ISAO OKAMOTO 

2.570 and 11.75 in units of the solar radius for stars of these masses (see Table I in 
Okamoto (1967)). Though Iben (1965) has calculated the evolutionary paths of the 
pre-main sequence stars in detail, the paths themselves do not have an important 
effect upon the present calculations. Also, the effects of rotation and the magnetic 
field are not taken into account in his calculations. Thus, the approximate relation (10) 
is sufficient for our purpose. 

Since the magnetic energy appears in the equations for dM/dt and rc, we need 
knowledge of the change of stellar magnetic field with evolution. But we do not know 
accurately the origin of the stellar magnetic field and its change with evolution at 
present. Here we consider the dynamo mechanism in the stellar convection zone 
(Parker, 1955) and assume for the change with evolution the following: 

H* H0 RV 

Ro) 
(11) 

8TI 871 

where H0 is the initial field at R = R0. If the magnetic field is frozen in the stellar 
material during the contraction, we should take s= - 4 . Provided that the primordial 
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Fig. 2. The change of angular momentum coC, equatorial velocity Keq, critical distance r c and the 
parameter A with the contraction of the stars of 0.4 and 0.6 MQ for Ho = 300 and 400 G, respectively( 

when s = — 1 . 
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field decays with contraction, s is positive. We take - 4 < 5 < 1 in the following nu­
merical calculations. 

Numerical integrations of simultaneous differential Equations (3) and (4) are carried 
out, starting from the initial radius (9) through the evolutionary path (10), where 
relations (5), (6), (7) and (8) are used. If we know R and A through integrations, we 
can know the angular momentum coC and the equatorial velocity Veq of the star from 
Equations (1) and (2). The quantities A, coC, Veq and rc are plotted in Figures 2 and 3 
as functions of the radius in terms of the solar radius. For s = - l w e take H0 = 300 G 
for 0.4 MQ, H0 =400 G for 0.6 M 0 , Ho = 400 Gfor 1.0 MQ and H0 = 600 G for 2.0 M 0 

(see Okamoto (1969) for results for other values of * and H0). Figures 2 and 3 show 
the sharp decreases of A, caC, Veq at the initial state. It is because (coC)A has the 
maximum value at the point /lmax=1.08 x 10"2 slightly smaller than A„ = 1.0906, 
where the rotational instability sets in according to James (1964), and d(a>C)yd^ = 0 
at A =v4max. If the right-hand side of Equation (3) is non-zero, we have dA/dt= ± co. 
We have avoided the maximum of (coC)A in the numerical calculation and selected 
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Fig. 3. The change of angular momentum coC, equatorial velocity Keq, critical distance re and the 
parameter A with the contraction of the stars of 1.0 and 2.0 MQ for Ho = 400 and 600 G, respectively, 

when s— —1. 
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1.069 x 10"2 instead of Acr for the initial value of A. However, d(a>C)A/dA is still so 
small that A, coC and Veq show a rapid decrease. 

In the above calculations, we have taken the escape velocity of a non-rotating star 
for the ejection velocity of matter due to flare activity. The escape velocity of a rapidly 
rotating star is considerably smaller than given by Equation (8), owing to the centri­
fugal force. Then, as we see from Equations (6) and (7), this mechanism for throwing 
out stellar angular momentum would be much more effective. 

The ratios of the total mass loss necessary to throw away almost all the stellar 
angular momenta to the stellar mass are smaller than, or at most equal to 2 x 10~4. 
This degree of mass loss lies well within the range deduced from observations of T 
Tauri stars (Kuhi, 1964, 1966). 

We can also guess the change of magnetic energy of stars in the wholly convective 
phase from the braking of stellar rotation. The protostars will have a reasonable 
strength of the initial field H0 resulting from the interstellar magnetic field. Then, from 
the calculations we know that the exponent s must be negative for protostars to be 
braked during the wholly convective phase. We suggest a value from — 1 to — 3 for s 
so that the protostars may be braked with a suitable speed. 

3. Discussion 

We now conjecture about the rotations of stars from the time of star formation to 
the main sequence stage. According to recent theories of star formation (Mestel, 1965), 
an interstellar cloud starts contracting owing to gravitational instability and protostars 
are formed by fragmentation of a collapsing cloud. The subsequent evolution is 
divided into two main phases, one is the phase of dynamical contraction which 
proceeds more or less rapidly after star formation, and the other is the following 
phase of slow contraction (Helmholtz-Kelvin contraction) toward the main sequence 
(Hayashi, 1966). 

In the previous section we assumed that stars are near the limit of rotational insta­
bility when they flare up from the state of dynamical contraction to the Hayashi phase 
and we adopted 1.069 x 10~2 for A0. At present we have little knowledge about the 
rotational state of protostars. Struve (1945) and Huang and Struve (1954), however, 
showed from a statistical study that rotating stars have not acquired their angular 
momentum from the galactic rotation of the prestellar gaseous medium and their 
angular momenta must have been derived from a random process, such as a random 
spin in fragmentation of a collapsing cloud. The angular momentum and the magnetic 
field may be formidable obstacles for condensation of new stars. Here we assume that 
protostars may succeed in evolving into the pre-opaque dynamical contraction stage. 
The magnetic energy of a gravitationally-bound condensation can never exceed the 
gravitational energy. Thus, the interstellar magnetic field will not be able to become 
strong enough to transfer all of the stellar angular momentum. As the contraction 
proceeds, the rotational instability may take place in this stage and break up equato-
rially to shed the stellar matter. Therefore, when the protosun and protostars flare up 
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to the stage of quasihydrostatic equilibrium, they will be at least nearly rotationally 
unstable. 

The angular momentum of the solar system (3.156 x 1050 g-cm2/sec) is possessed 
almost entirely by the orbital motion of the giant planets, with the sun having only 
0.5% of the whole as its spin angular momentum. If the angular momentum of the 
present solar system had concentrated in the sun when it flared up, we obtain A0 = 
0.008 x 10- 2 and the ratio of the centrifugal force to gravity at the equator %(A0) = 
0.003 from Figure 1. If these values for the protosun were true, the protosun would 
have had to suffer a great degree of braking during the dynamical contraction stage. 
As discussed above, however, the magnetic field could not effectively brake the pro­
tosun to the state of such a slow rotation during this stage. Thus, from Equations (1) 
and (9) and using the value of 1.069 x 10~2 for A0, the protosun had the values of 
58 x 1050 g-cm2/sec as the angular momentum at the moment of the flare-up, which 
is about twenty times larger than the present value of the solar system. The chemical 
composition of the protoplanetary cloud would be the same as that of the sun, and 
the lower limit on the initial mass of the cloud is estimated by diluting planetary 
mater;al with volatile substances until the solar composition is reached. The extra mass 
over the present total mass of the planets would be lost out of the solar system because 
of the increasing centrifugal force that resulted as the protosun began to transfer its 
angular momentum. 

log M 

Fig. 4. The logarithm of angular momentum per unit mass versus the logarithm of stellar mass. The 
values for the main sequence stars are taken form McNally (1965) and the values for the 'planetary 

systems' from van den Heuvel (1966). 
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We plot in Figure 4 the logarithm of the stellar angular momentum per unit mass 
versus the logarithm of the stellar mass. The straight line A0 = 1.08 x 10~2 is drawn 
from Equations (1) and (9) and shows the angular momentum per unit mass at the 
limit of the rotational instability. The line Ao = 0.008 x 10~2 corresponds to the case 
where the present total angular momentum of the solar system is concentrated in the 
protosun at the flare-up. We also plot the angular momentum per unit mass for the 
main sequence stars from the calculation of McNally (1965). The line for A0= 1.08 x 
10~2 and the curve for the main sequence stars of early type are nearly parallel. The 
difference between both lines shows that even early type stars suffered a considerable 
degree of braking. Actually, as Huang (1965b) suggested, the braking is not limited 
only to stars of spectral type later than F5, but extends to O, B, A and early F stars 
as well. These early-type stars are considered to have suffered braking during the 
Hayashi phase and no braking afterwards because of the retirement of the surface 
convection zone in the succeeding post-Hayashi phase. Further contraction caused 
them to rotate rapidly because of conservation of angular momentum. The slow rota­
tion of late-type stars, including the sun, may be regarded as a result of their having 
continued to receive braking from the wholly convective phase to the main sequence. 

Finally we discuss the possible occurrence of planetary systems around stars. 
Huang (1965,1967) suggested that the formation of planetary systems is closely related 
to the braking of stellar rotation, and defined the following three characteristics for 
any planetary system; (1) a small mass ratio of the total mass of the entire planetary 
system to the mass of the central star; (2) a large angular momentum; (3) the majority 
of its members moving in nearly coplanar and circular orbits. In Figure 4 we plot the 
angular momentum per unit mass for 'planetary systems' from van den Heuvel's 
paper (1966). While more than half of them lie beyond the line for A0= 1.08 x 10~2, 
the remainder are near to that line. These facts imply that contrary to the case for the 
solar system these 'planetary systems' have a nearly equal or larger amount of angular 
momentum than the angular momentum of the central stars at their flare-up. They 
seem to have angular momentum too large for planetary systems. This is because the 
mass ratio of 'planets' to the central stars in Table I of van den Heuvel's paper are 
more than an order of magnitude larger than the mass ratio of the solar system. Also, 
Kumar (1964) and Huang (1967) emphasized that the unseen companion of Barnard's 
star inferred by van de Kamp (1963) from the proper motion should not be regarded as 
forming a planetary system, because the eccentricity is equal to 0.6, a fairly large 
value. Consequently van den Heuvel's 'planetary systems' are different from the 
definition of Huang for planetary systems. These may be regarded as intermediate 
between binary systems and planetary systems. Nevertheless we expect that planetary 
systems must be common in space. We may not as yet have discovered them with 
today's instruments. 
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