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Abstract. Let w0 be a reduced expression for the longest element of the Weyl
group, adapted to a quiver of type An. We compare Lusztig’s and Kashiwara’s (string)
parametrizations on canonical basis associated with w0. Crystal operators act in a
finite number of patterns in Lusztig’s parametrization, which may be seen as vectors.
We show that this set gives the system of defining inequalities of the string cone
constructed by Gleizer and Postnikov (O. Gleizer and A Postnikov, Littlewood–
Richardson coefficients via Yang–Baxter equation, IMRN 14 (2000) 741–774). We
use combinatorics of the Auslander–Reiten quivers, and as a by-product we get an
alternative enumeration of a set of inequalities defining the string cone based on
hammocks.

AMS Mathematics Subject Classification. 17B37, 05E10, 16G70.

1. Introduction. Let Uq(g) be the quantized enveloping algebra corresponding to
a Dynkin diagram D of type An, Dn, En, defined over C(q), q being an indeterminate.
There is a braid group action on Uq(g) which enables to construct Poincaré–Birkhoff–
Witt (PBW) bases [15] of the positive part Uq(n+) of Uq(g). Such a basis Pw0 depends
on the choice of a reduced expression w0 of the longest element w0 of the Weyl group
W associated with D. However, it was observed by Lusztig that the Z[q−1]-module
L generated by Pw0 is independent of w0. Furthermore, the image of Pw0 under the
projection π : L −→ L/q−1L is a Z-basis B of L/q−1L, which is again independent
of w0. There is a unique basis of L, which is invariant under the C-algebra involution
of Uq(n+) preserving the generators of Uq(n+), and sending q to q−1, and whose image
under π is B. This is the canonical basis Bcan of Lusztig and Kashiwara [15, 12]. This
basis is in one-to-one correspondence with any PBW basis Pw0 , yet is independent of
the choice of w0. It has with many remarkable properties. The basis Bcan is, however,
difficult to compute for arbitrary Dynkin diagrams.

Let I denote the set of vertices of D. Kashiwara introduced crystal operators
ẽi, f̃i, i ∈ I on Uq(n+). These allow to construct the crystal graph B(∞) which serves
as a combinatorial skeleton of Bcan. Its vertices are the elements of B, and its edges are
induced by the action of crystal operators on Bcan. The crystal limit b �→ b mod q−1L
establishes a one-to-one correspondence between Bcan and vertices of B(∞), which
allows to extract important combinatorial information from Bcan to the level of B(∞).
The crystal graph B(∞) may be defined by purely combinatorial means, and provides
important data for the study of finite-dimensional representations of Uq(g).
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The crystal limit also establishes a one-to-one correspondence between members
of a basis Pw0 and the vertices of B(∞). A PBW monomial is defined by an N-tuple of
positive integers, where N is the number of positive roots in the root system associated
to D. One thus gets an indexation of B by N

N . This is the Lusztig parametrization with
respect to w0.

Its advantage lies in the simple indexing set for B. The action of a crystal operator
ẽi is easy to describe when the reduced expression w0 starts with the simple reflection si.
It is however difficult to give, for a fixed w0, the action of all the operators ẽi, i ∈ I in the
same time, due to the complexity of the passage formulas [4] between different Lusztig
parametrizations. This was done by Reineke [18] for reduced expressions w0 adapted
to quivers Q of ADE type verifying a particular homological condition (L) (detailed
in Section 2). The Hall algebra construction [20] of Uq(n+) allows Reineke to study
the crystal operators ẽi, i ∈ I using the representation theory of finite-dimensional
algebras.

Kashiwara showed [13] that given w0, there is an elementary construction of B(∞)
depending on w0, known as Kashiwara’s embedding. The vertices B of B(∞) are
indexed a set Sw0 of specific N-tuples of integers, known as string parameters. The
action of crystal operators on B is easy to describe, as it depends only on the Cartan
matrix of D. However, it is a complex problem to describe the parameter set Sw0 . It
is the set of integer points of a polyhedral cone Cw0 [14, 4]. A system of inequalities
defining Cw0 was given by Littelmann [14] for particular reduced expressions with a
good structure. Such a set of inequalities, for arbitrary w0, was given by Gleizer and
Postnikov [10] in An case, and Berenstein and Zelevinsky [4] for all finite Dynkin types.

Any cone inequality may be seen as a · x ≥ 0 where a ∈ R
N is a vector orthogonal

to the hyperplane of the inequality. Thus, a polyhedral cone may be seen as being
defined by a finite set of vectors. The methods of [10] and [4] construct respectively sets
of vectors KGP

w0
and KBZ

w0
with integer coordinates, defining Cw0 . A move associated to a

crystal operator ẽi in a given parametrization is a vector v appearing as the difference
between t and ẽit for some N-tuple t. We shall denote by Lw0 the set of all possible
moves, for all ẽi, i ∈ I , in the Lusztig parametrization with respect to w0. Reineke’s
construction allows, for the reduced expressions w0 for which it is valid, to describe the
set Lw0 in terms of the Auslander–Reiten quiver �Q of Q.

The main result of this paper (Theorem 2.4) is that for w0 adapted to a quiver
Q of type An, one has KGP

w0
= Lw0 . Thus, the problem of constructing the cone Cw0

seems to be the the same as the one of describing action of operators ẽi in the Lusztig
parametrization for w0. We conjecture that the set of Lusztig moves Lw0 defines Cw0

for reduced expression adapted to quivers Q of ADE type, under the assumption that
condition (L) required by Reineke on Q is verified. We give in the last section a Dn

example.
A by-product of the main theorem is that the Auslander–Reiten quivers allow to

compute a set of defining inequalities of Cw0 . The combinatorics involved is that of
hammocks, introduced by Brenner [6]. This provides an alternative to methods given
in [10, 4].

We would like to thank Bernard Leclerc for many helpful remarks.

2. Combinatorial models of the canonical basis. Let � be the root system
corresponding to the Dynkin diagram D and ( , ) the Cartan scalar product over R�.
We shall denote by αi, i ∈ I the set of simple roots, ωi, i ∈ I the set of fundamental
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weights and by si, i ∈ I the simple reflections inside W . We shall fix all through this
section, a reduced expression w0 = si1 si2 · · · siN of the longest element w0 of W . This
expression induces the reflection ordering �w0 on the set of positive roots �+, a total
ordering given by β1 = αi1 , β2 = si1 (αi2 ), . . . , βN = si1 si2 · · · siN−1 (αiN ).

We shall use here the conventions of [4], concerning the quantized enveloping
algebra Uq(g) associated to D. It is generated by the set ei, fi, k±1

i , i ∈ I subject to
relations derived from the Cartan matrix C. The reader may find details of the defining
relations in [4, Section 3.1]. We recall in particular that [n]q! denotes the q-factorial of
n, and that the nth divided power of an element x ∈ Uq(g) is given by x(n) = xn/[n]q!.

The positive part Uq(n+) is the subalgebra generated by the ei, i ∈ I . It admits a
grading by Q+ = ⊕

Nαi obtained by putting deg(ei) = αi. Given an arbitrary γ ∈ Q+,
the weight space Uq(n+)γ is the C(q)-vector space of elements of degree γ . All weight
spaces of Uq(n+) are finite-dimensional.

The braid group acts on Uq(g) by automorphisms Ti, i ∈ I (noted T ′
i,−1 in

[16, part VI]). We refer again to [4, Section 3]for a detailed definition. For every
k = 1, 2, . . . , N, Eβk := Ti1 Ti2 · · · Tik−1 (Eik ) is an element of Uq(n+) of weight βk. Any
given N-tuple t = (t1, . . . , tN) of positive integers defines the PBW monomial

pw0 (t) := E(t1)
β1

E(t2)
β2

. . . E(tN )
βN

.

The set of all such monomials,Pw0 := {pw0 (t) | t ∈ N
N}, forms the PBW-basis of Uq(n+)

associated to the reduced expression w0.

THEOREM 2.1 ([15]). For every monomial pw0 (t), there is one and only one b ∈ Bcan

such that b = pw0 (t) mod q−1L.

The crystal operators ẽi, f̃i, i ∈ I were introduced by Kashiwara [12] for the
negative part Uq(n−) of Uq(g). As Uq(n−) and Uq(n+) are isomorphic as algebras,
this construction may be carried over to Uq(n+).

Given i ∈ I , there is a locally nilpotent action θi over Uq(n+) defined by

θi(1) = 0, ∀x ∈ Uq(n+) : θi(ejx) = q(αi,αj)ejθi(x) + δi,jx.

One has Uq(n+) = ⊕
n∈N

e(n)
i ker θi, and ker θi is compatible with the weight graduation

of Uq(n+). One chooses a weight vector basis �i of ker θi, and defines for each v ∈ �i

and any n ∈ N:

ẽi(e
(n)
i v) := e(n+1)

i v,

f̃i(e
(n)
i v) :=

{
e(n−1)

i v if n ≥ 1

0 if n = 0
.

This leads to well-defined operators ẽi, f̃i over Uq(n+), which do not depend on the
initial choice of �i.

The crystal operators ẽi, f̃i, i ∈ I preserve L, and hence induce an action over
L/q−1L. A key feature of the canonical basis is its good behaviour under this action.
For any b ∈ Bcan, ẽib = b′ mod q−1L, and f̃ib is either 0 mod q−1L or f̃ib = b′′

mod q−1L, where b′, b′′ are other elements of Bcan. We see that the image B of Bcan
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insideL/q−1L becomes endowed with a structure of a coloured graph, the arrows being
valuated by the operators ẽi, f̃i, i ∈ I . This is the crystal graph B(∞) of Kashiwara
[12].

Our discussion in the Introduction and Theorem 2.1 above lead to a one-to-
one correspondence ϕw0 : N

N −→ B, t �→ pw0
(t) mod q−1L. This is the Lusztig

parametrization with respect to w0. Under this identification, we may consider the
crystal operators ẽi, f̃i as acting on N

N . We shall call a vector l ∈ Z
N the Lusztig move

of type i with respect to w0 if there exists t ∈ N
N such that ẽit = t + l. Recall Lw0 denotes

the set of all possible Lusztig moves for all types i ∈ I .

EXAMPLE. Consider A2 case, w0 = s1s2s1. For a given t = (t1, t2, t3) one has:

ẽ1(t1, t2, t3) = (t1 + 1, t2, t3),

ẽ2(t1, t2, t3) =
{

(t1 − 1, t2 + 1, t3) if t1 > t3

(t1, t2, t3 + 1) if t1 ≤ t3
.

One sees that there is only one Lusztig move of type 1, l1 = (1, 0, 0)
and two Lusztig moves of type 2, l2 = (−1, 1, 0), l3 = (0, 0, 1). We get
Lw0 = {(1, 0, 0), (−1, 1, 0), (0, 0, 1)}.

Let Q be a fixed quiver obtained by orienting the Dynkin diagram D. Following
[5], we call a vertex i of Q a sink if there are only arrows entering it. We denote in that
case by siQ the quiver obtained by reversing the arrows whose end is i, into arrows
with exiting i, thus transforming i into a source. A reduced expression w0 = si1 si2 · · · siN
is adapted to Q if and only if i1 is a sink of Q, i2 is a sink of si1 Q, i3 is a sink of si2 si1 Q
and so on. Such an expression always exists for a given Q.

Let us denote by CQ the path algebra of Q over C. The category mod CQ of
finite-dimensional left modules has simple objects Si which are indexed by I . We
shall say, following Reineke [18], that the quiver Q verifies condition (L) if for every
indecomposable module X ∈ mod CQ, and every i ∈ I , one has dim Hom(X, Si) ≤ 1.

This condition is verified for any quiver of type An, and at least one quiver each of
types Dn, E6, E7 [18, Appendix]. Under this condition, the action of crystal operators
in the Lusztig parametrization with respect to w0 adapted to Q may be described in
terms of the category mod CQ, and the set Lw0 may be obtained [18]. We postpone the
details to Section 3.

We continue to fix the same w0 = si1 , . . . siN . We refer the reader to Kashiwara [13]
and [11, Chapter 5] for details on crystal theory. Kashiwara’s elementary construction
of B(∞) uses the Cartan matrix C = (ci,j) in order to define operators ẽi, f̃i, i ∈ I acting
over N

N as below [11, 5.2.5, 6.1.15]:
Fix a = (a1, . . . , aN) ∈ N

N . For k = 1, 2, . . . N, define rk := ak + ∑
1≤j<k

cij,ik aj.

Given i ∈ I , consider ξi = maxik=i rk. Let k1 be the first position where this maximum
is attained, k2 is the last. Then

ẽi(a) = (a1, . . . , ak2−1, ak2 + 1, ak2+1, . . . , aN).

f̃i(a) =
{

(a1, . . . , ak1−1, ak1 − 1, ak1+1, . . . , aN) if ak1 ≥ 1

0 if ak1 = 0
.
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THEOREM 2.2 (Kashiwara’s embedding [12]). Let N denotes N
N with the action of

operators ẽi, f̃i, i ∈ I given above.
(a) There is an embedding ψw0 B ↪→ N

N, sending the graph B(∞) isomorphicaly onto
the subgraph of N generated out of u∞ := (0, 0, . . . 0) by applying the operators
ẽi, i ∈ I.

(b) The image of B(∞) consists of those a = (a1, a2, . . . , aN) ∈ N
N that verify

∀k = 1 . . . N : f̃ik

(
ẽak−1

ik−1
ẽak−2

ik−2
. . . ẽa1

i1 u∞
) = 0.

Elements a := (a1, a2, . . . aN) in b) above are called string parameters [3]. The
parametrization of set B of vertices B(∞) obtained through Theorem 2.2 is Kashiwara’s
parametrization with respect to w0. Recall its indexing set Im ψw0 is denoted by Sw0 .

REMARKS.
(i) Kashiwara works with the negative part Uq(n−) of Uq(g). The above definition

is the transfer of his construction to Uq(n+), which amounts to exchanging the roles
of ẽi and f̃i at the level of B(∞).

(ii) The definition of Kashiwara’s embedding imposes a reversal of order in
the definition of a string, namely (a1, a2, . . . aN) in our convention, corresponds to
(aN, aN−1, . . . a1) in [3].

THEOREM 2.3 ([14, 10, 4]). The set Sw0 is the set of integer points of a polyhedral
cone Cw0 , that is, there exists a finite set of vectors Kw0 ⊂ Z

N such that

Sw0 = {
a ∈ N

N | ∀k ∈ Kw0 , a · k ≥ 0
}
.

EXAMPLE . Consider type A2, and w0 = s1s2s1. It is easy to compute the image of
Kashiwara’s embedding directly out of its definition above. One obtains the well-known
result

Cw0 = {(a1, a2, a3) | 0 ≤ a1 ≤ a2, 0 ≤ a3}.
One may choose as a defining set for Cw0 , the set Kw0 = {(1, 0, 0), (−1, 1, 0), (0, 0, 1)},
which is equal to both KGP

w0
and KBZ

w0
.

MAIN THEOREM 2.4. Let w0 be a reduced expression adapted to a quiver of type An,
and KGP

w0
the set given by Gleizer and Postnikov [10, Section 5]. Then

KGP
w0

= Lw0 .

Let us observe that in the Lusztig parametrization, the parameter set is the set of
integer points of the cone (R+)N , consisting of vectors with positive coordinates. This
cone may be seen as being defined by the natural basis E = {e1, e2 . . . eN} of R

N . It is
easy to see, by the definition of Kashiwara’s embedding, that the set E is the set of of
moves of crystal operators ẽi, i ∈ I in Kashiwara’s parametrization according to w0. We
have therefore a full symmetry between Lusztig’s and Kashiwara’s parametrizations,
the set of vectors defining the parameters set in one picture being equal to the set of
moves occurring in crystal operators action in the other.
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CONJECTURE . Let Q be a quiver of type ADE satisfying Reineke’s condition (L).
Let w0 be adapted to it. Then Lw0 is a defining set for Cw0 .

We state this conjecture on the basis of some computer testing with GAP4 [8], using
the set KBZ

w0
. We give in Section 7 a detailed D4 example. The conjecture might be valid

in a larger scope, even beyond reduced expressions adapted to quivers. However, one
faces a breakdown of many nice properties, enjoyed by reduced expressions adapted
to quivers verifying condition (L).

3. Auslander–Reiten quivers and Lusztig’s moves. Fix Q a quiver of type
ADE satisfying condition (L), w0 adapted to it and β1, β2, . . . , βN the reflection
ordering it defines. The category mod CQ is equivalent to that of finite-dimensional
representations of Q. A module M in mod CQ may be seen as a family (Vi)i∈I

of finite-dimensional C-vector spaces, together with linear mappings fi,j : Vi −→ Vj

corresponding to the arrows i −→ j of Q. The dimension vector of M is the element of
Q+ given by dM := ∑n

i=1(dim Vi)αi. A simple object Si has a dimension vector equal
to αi.

Let Ind Q denote the set of isomorphism classes of indecomposable objects of
mod CQ. The theorem of Gabriel states that for each β ∈ �+ there is a unique class
[M] ∈ Ind Q with dM = β, and that all indecomposable objects of mod CQ are
obtained this way. There is, therefore, a one-to-one correspondence between Ind Q and
�+, and we shall denote by [β] the class [M] in Ind Q whose dimension vector is β.

The Auslander–Reiten quiver �Q ([1, Chapter VII] and [9, Section 6]) has a set of
vertices Ind Q, and its arrows are irreducible morphisms between objects of Ind Q. It
has a rigid mesh structure, as given in [9, Figure 13, p. 49]. The quiver �Q is endowed
with the translation τ [1, p. 225], which sends non-projective modules of Ind Q onto
non-injective modules of Ind Q. The translation τ stratifies �Q into levels. The ith level
is the orbit under τ of the injective envelope of Si∗ , where ∗ denotes the Dynkin diagram
automorphism induced by w0. This level ends in the projective cover of Si.

There is a natural order on the vertices of �Q, given by [β1] ≤Q [β2] if and only
if there is a path from [β1] to [β2] in �Q. This induces a partial order �Q on �+ by
putting β1 �Q β2 whenever [β1] ≤Q [β2]. The reflection ordering �w0 is then a linear
refinement of �Q.

The path algebra CQ is an hereditary algebra. The Euler–Poincaré characteristic
〈M1, M2〉 := dim Hom(M1, M2) − dim Ext1(M1, M2) depends only on the dimension
vectors dM1 and dM2 of M1 and M2, respectively. One has 〈[β1], [β2]〉 = (β1, β2)R, where
(, )R is the Ringel form upon the Euclidean space R�. The matrix R = (ri,j) of this form,
on the basis of simple roots, is given by

ri,j := (αi, αj)R =

⎧⎪⎨
⎪⎩

1 if i = j

−1 if i −→ j is in Q

0 otherwise

.

THEOREM 3.1 ([21]).
(i) Suppose β1 �Q β2, then dim Ext1([β1], [β2]) = 0 and therefore

dim Hom([β1], [β2]) = (β1, β2)R.
(ii) Suppose β1 �Q β2, then dim Hom([β1], [β2]) = 0 and therefore

dim Ext1([β1], [β2]) = −(β1, β2)R.
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Theorem 3.1 reduces the testing of condition (L) for a quiver Q, to computations
in terms of �+.

We refer to Section 2 of [18] for a concise description of the Hall algebra
construction [19, 20] of Uq(n+) and its link to PBW bases. The C(q) vector space
with formal base vectors u[M] indexed by isomorphism classes of mod CQ may be
endowed with a product linked to the module structure. This defines the Hall algebra
H(Q). Ringel’s main theorem [20] states that sending the generators ei to u[Si ] establishes
an isomorphism ηQ : Uq(n+)

∼−→ H(Q).

Let [M] =
N⊕

j=1
[βj]⊕tj be an isoclass with multiplicities of indecomposables given by

tM := (t1, t2, . . . tN). The PBW monomial pw0 (tM) with w0 adapted to Q is recovered
up to a multiplication by a well-defined power of q as the inverse image under ηQ of
u[M]. Crystal operators in the Lusztig parametrization of w0 may therefore be seen as
acting upon isomorphism classes of mod CQ. One has ẽi[M1] = [M2] if and only if
ẽipw0 (tM1 ) = pw0 (tM2 ) mod q−1L.

Let us fix i ∈ I . The description of the action of ẽi is given in terms of the set
[18, p. 711]:

Pi(Q) := {[X ] ∈ IndQ | dim Hom(X, Si) > 0}.

The set Pi(Q) has a poset structure [X ] ≤ [Y ] whenever there is a path from [X ] to
[Y ] inside Pi(Q). It is the same as the order induced by ≤Q [18, Proposition 4.3]. Recall
that an antichain A of a Pi(Q) is a set of mutually non-comparable elements. It defines
the order ideal J(A) := {[X ] ∈ Pi(Q) | ∃[Y ] ∈ A, [X ] ≤ [Y ]}. The correspondence
A �→ J(A) is one-to-one, and inclusion between order ideals induces a natural poset
structure upon the set Ai(Q) of all antichains of Pi(Q).

Given A ∈ Ai(Q), let CA be the set of minimal elements of Pi(Q)\J(A), and define

[VA] := ⊕
[M]∈A

[M],

[UA] := ⊕
[M]∈CA

[τM].

The Lusztig move corresponding to A is then lA := tVA − tUA .
Each A ∈ Ai(Q) also defines a function FA : N

N −→ Z given by

FA(t) :=
∑

X∈J(A)

�X (t),

where for X = [βk] with τX = [βk′ ], �X (t) = tk − tk′ (with the convention that the
second term is 0 if translation is not defined on X).

THEOREM 3.2 ([18, Theorem 7.1]). Let [M] be an isomorphism class of mod CQ. Put
ζi([M]) := maxA∈Ai(Q) FA(tM). Then the subset {A | FA(tM) = ζi([M])} of Ai(Q) admits
a unique maximal element Amax. There is an isoclass [X ] such that [M] = [X ] ⊕ [UAmax ],
and the action of ẽi is then given by ẽi[M] = [X ] ⊕ [VAmax ].

In terms of the Lusztig parameters, ẽitM = tM + lAmax .
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COROLLARY 3.3. Consider the Lusztig parametrization corresponding to w0. The set
of Lusztig moves of type i is given by

L(i)
w0

= {lA | A ∈ Ai(Q)}.

Proof. In view of Theorem 3.2, given A ∈ Ai(Q), we need to exhibit a module
on which ẽi acts according to the move defined by A. Such a module is UA. One has
�X (tUA ) ≥ 0 for any [X ] ∈ J(A), where as �X (tUA ) = −1 for any [X ] ∈ CA. These two
properties ensure that for UA, Amax of Theorem 3.2 is A. �

EXAMPLE . Let Q be the quiver
1·←−2·−→3· of type A3 with adapted reduced

expression
w0 = s1s3s2s1s3s2. The Auslander–Reiten quiver �Q is

[α1]

������������� [α2 + α3]

�����������

[α1 + α2 + α3]

�������������

������������� [α2]

[α3]

�������������
[α1 + α2]

�����������

Let us study the action of ẽ2. Using ( , )R and Theorem 3.1, one gets
P2(Q) = {[α2], [α1 + α2], [α2 + α3], [α1 + α2 + α3]}. A2(Q) consists in five antichains:

Antichain A UA VA lA
A1 = {[α1 + α2 + α3]} [α1] ⊕ [α3] [α1 + α2 + α3] (−1,−1, 1, 0, 0, 0)
A2 = {[α2 + α3]} [α3] [α2 + α3] (0,−1, 0, 1, 0, 0)
A3 = {[α1 + α2]} [α1] [α1 + α2] (−1, 0, 0, 0, 1, 0)
A4 = {[α1 + α2], [α2 + α3]} [α1 + α2 + α3] [α1 + α2] ⊕ [α2 + α3] (0, 0,−1, 1, 1, 0)
A5 = {[α2]} 0 [α2] (0, 0, 0, 0, 0, 1)

The set A2(Q) has the following poset structure:

A1

A2������

A4						

A1

A3						

A4������

A5

Considering the structure of �Q and the order ideals defined by members ofA2(Q),
we get the F-functions data.
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Antichain J(A) FA

A1 {[α1 + α2 + α3]} t3

A2 {[α1 + α2 + α3], [α2 + α3]} t3 + (t4 − t1)
A3 {[α1 + α2 + α3], [α1 + α2]} t3 + (t5 − t2)
A4 {[α1 + α2 + α3], [α1 + α2], [α2 + α3]} t3 + (t4 − t1) + (t5 − t2)
A5 P2(Q) (t4 − t1) + (t5 − t2) + t6

Take tM = (3, 2, 1, 1, 2, 0). One has t3 = 1, t4 − t2 = −2, t5 − t2 = 0, t6 = 0. Repla-
cing each antichain A by the value of FA(tM) gives the following diagram:

1

−1�������

−1						

1

1							

−1�������

−1

This pinpoints A3 as Amax for [M]. Thus, ẽ2tM = tM + lA3 = (2, 2, 1, 1, 3, 0).

4. Wiring diagrams and string cones. We shall restrict ourselves from now on
to An type. The positive roots are β = αi + αi+1 + · · · + αj, 1 ≤ i ≤ j ≤ n. They are
in a one-to-one correspondence with pairs (i, j), 1 ≤ i < j ≤ n + 1, β above being
sent to (i, j + 1). The fundamental representation E(ω1) of sln+1 has weights given by
νj = −ωj−1 + ωj, j = 1 · · · n + 1 (with the convention that ω0 = ωn+1 = 0). The weight
νj may be seen as the weight of a one-box Young tableau j . The weights of fundamental
representations E(ωk) for 2 ≤ k ≤ n correspond to strictly increasing column tableaux
of size k. The weight of a tableau is the sum of weights of its boxes. We shall therefore
identify these weights with k-tuples 1 < j1 < j2 < · · · < jk ≤ n + 1. The action of W on
roots or on weights identifies with that of the symmetric group Sn+1 on the respective
multi-indices that we considered.

The wiring diagram WD(w0) of a reduced expression w0 = si1 si2 · · · siN consists in
encoding w0 as an arrangement of pseudo-lines L1, . . . , Ln+1 drawn inside a vertical
strip of R

2. The respective crossing points of these strands occur in levels according to
the indices of w0. Figure 1 gives a self-explaining example of the procedure in type A3.

Each strand Li crosses another strand Lj once and only once. The order of the
strands Li, i = 1, . . . n + 1 gets inverted while following WD(w0) from left to right.
Sending the crossing vi,j (i < j) of lines Li and Lj onto the couple (i, j) establishes a
one-to-one order preserving correspondence between these crossings enumerated from
left to right and the reflection ordering �w0 of �+. If βk is the kth root in that order,
with ik = i, then the kth crossing of WD(w0), which we denote by vβk , is on level i.

Let G◦(w0) be the non-oriented graph obtained from WD(w0), whose vertices are
the crossing points of pseudolines, and whose edges are given by pseudoline segments
linking two crossing points. Likewise, let us denote by G(w0) the non-oriented graph
obtained in a similar way by considering the vertices of G◦(w0) as well as the vertices
l1, . . . , ln+1, r1, . . . rn+1 on the border of WD(w0).
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v34

v14

v24

v13

v23

L1

L2

L3

L4

l1

l2

l3

l4

r4

r3

r2

r1

1 3 2 1 3 2

·

·

·

·

·

·

·

·

Figure 1. Wiring diagram of w0 = s1s3s2s1s3s2 of type A3.
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·

·
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·

·
·

·

·

·

·

·

·

L1

L2

L3

L4

l1

l2

l3

l4

r4

r3

r2

r1·

·

·

·

·

·

·

·
1 2 4

12 24 34

123 124 234

Figure 2. Chamber system of WD(w0) for w0 = s1s3s2s1s3s2 of type A3.

Two vertices vβk and vβk′ with k < k′, ik = i and ik′ = j are adjacent in G◦(w0)
if one of the two cases occur. The adjacency is diagonal if one has | i − j |= 1 and
il �= i, il �= j for any l satisfying k < l < k′. The adjacency is horizontal when i = j and
either il < i − 1 for all k < l < k′ or il > i + 1 for all k < l < k′. We see in Figure 1 that
v12 and v14 are diagonally adjacent, whereas v12 and v24 are horizontally adjacent.

The wiring diagram WD(w0) defines a set of bounded chambers. Such a chamber
may be indexed by a set of indices of pseudolines passing above it. This set may be seen
as indices of a column Young tableau. One gets a one-to-one correspondence between
these chambers and a set of weights inside

⋃n
k=1Wωk.

A vertex vβ of G◦(w0) may be assigned either the weight λ−(vβ) of the chamber
left to it or the weight λ+(vβ) of the chamber right to it. It is well known that if
β = si1 si2 · · · sik−1 (αik ), then

λ−(β) = si1 si2 · · · sik−1 (ωik ), λ+(β) = si1 si2 · · · sik−1 sik (ωik ).

Figure 2 gives the example of the chamber system for w0 = s1s3s2s1s3s2 of type A3.
The vertex v14 is between the chamber labelled 12 to the left, and that labelled 24 to
the right. One has λ−(v14) = ν1 + ν2, λ+(v14) = ν2 + ν4.

Gleizer–Postnikov [10, Section 5] obtain a system of defining inequalities for the
string cone Cw0 by transforming for every i ∈ I the graph G(w0) into an oriented graph
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r3

r2

r1·

·

·

·
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·

·v12

v34

v14

v24

v13

v23

Figure 3. G(w0, 2), w0 = s1s3s2s1s3s2, type A3.

G(w0, i). The pseudolines L1, L2, . . . Li are oriented backwards, and the pseudolines
Li+1, . . . Ln+1 are oriented forwards. The resulting graph is acyclic.

Let π be a path inside G(w0, i). We shall qualify the two configurations below as
forbidden crossings:

·								
��

·

								
��

·�
�

�
�

		

·

·�
�

�
�

		

Li

Lj

·��������




·

��������




·	
	

	
	

��

·

	
	

	
	

��

Li

Lj

(path π in plain line)

A Gleizer–Postnikov path (GP-path) of type i is a path of G(w0, i) starting from
li+1 on the left border and ending at li, and it does not contain forbidden crossings.

An example of such a path in Figure 3 is l3 −→ v34 −→ v13 −→ v14 −→ v24 −→
v12 −→ l2. There are five such paths inside G(w0, 2).

REMARK. Gleizer–Postnikov paths were called rigorous paths in [10]. We have
translated the vertical setting of [10] to an horizontal one, which is more natural when
comparing wiring diagrams to Auslander–Reiten quivers.

Let π be a GP-path. If π enters a vertex vβj following the line Lh, and leaves it
following Ll, then assign to it the value

kj :=

⎧⎪⎨
⎪⎩

1 if h > l

−1 if h < l

0 if h = l
.

If vβj is not a vertex of π , put kj := 0. The coordinates kj, j = 1, . . . , N define a vector

kπ of Z
N .

Take as an example the GP-path above, π = l3 −→ v34 −→ v13 −→ v14 −→
v24 −→ v12 −→ l2. The path π starts on strand L3, changes to strand L1 at v13 (hence a
positive contribution), then passes from strand L1 to strand L4 at v14 (hence a negative
contribution) and finally its last change of strands occurs at v24, where π passes from
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L4 to L2 (hence a positive contribution). The vertices v13, v14, v24 occur respectively
in positions 5, 3 and 4, while we follow WD(s1s3s2s1s3s2) from left to right. We get
kπ = (0, 0,−1, 1, 1, 0).

As G(w0, i) is acyclic, there are only finitely many different GP paths of type i.

THEOREM 4.1 ([10, Corollary 5.8]). Let KGP
w0

be the set of all vectors kπ , where π

varies over all possible GP-paths of all possible types i ∈ I. Then KGP
w0

defines the string
cone Cw0 . One has

Sw0 = {
t ∈ N

N | ∀kπ ∈ KGP
w0

, kπ · t ≥ 0
}
.

Fix i ∈ I , and consider G(w0, i). Let us denote by δ>
i the segment of Li+1 starting

from the left border on li+1 up to its intersection vαi with Li. In a similar way, we
denote by δ<

i the segment of Li starting from vαi and going back to li on the left border
following Li. The concatenation δi := δ>

i ∗ δ<
i is then a path starting from li+1 and

ending in li. We shall call it the limiting path of type i.
Observe δi serves as a boundary of a set of chambers Zi(w0). These chambers are

those that lie below Li, above Li+1 and left of vαi . Let us denote by Zi(w0) the set of
vertices of G◦(w0), which are the rightmost vertices of chambers of Zi(w0).

LEMMA 4.2. Consider v a vertex of δi other than li, li+1, vαi . Suppose this vertex is
a crossing of δi with a line Lk (k �= i, i + 1). We have then the following two cases:
(i) If v ∈ δ>

i , then Lk crosses δi going inside Zi(w0).
(ii) If v ∈ δ<

i , then Lk crosses δi going outside Zi(w0).

Proof of Lemma 4.2.
(i) We have to eliminate the possibility of Lk going out of Zi(w0) while crossing δ>

i .
By definition, Zi(w0) lies above δ>

i , hence Lk crosses δ>
i going downwards. Depending

on the orientation of Lk, we obtain the following two cases:

·		
		

		
		

��

·

		
		

		
		

��
·�

�
�

�

		

·

�
�

�
�

		

Lk

δ>
i

Zi(w0)

(a) k < i

·�
��

��
��

�

		

·

��
��

��
��

		
·	

	
	

	

��
·

	
	

	
	

��
δ>

i

Lk

Zi(w0)

(b) k > i + 1

In case (a), Lk would have to recross Li+1 in order to return to lk, which lies above
li+1 on the left border. In case (b), lk lies below li+1 on the left border, so Lk would have
to cross Li+1 for first time in order to reach the crossing point in (b) from above. Both
cases are impossible since they would imply at least two crossings of Lk and Li+1 in
WD(w0).

Statement (ii) is proved by symmetric arguments. �
COROLLARY 4.3. δi is a GP-path.

Proof. Clearly, vαi is not a forbidden crossing. The other vertices of δi belong to
the cases detailed in Lemma 4.2, none of them being forbidden. �
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PROPOSITION 4.4. Let π be a GP-path of type i. Then π stays inside Zi(w0).

Proof.
The path π starts at li+1 and ends at li, which are inside Zi(w0). Suppose it exits

Zi(w0) at some vertex v1 ∈ δi. By Lemma 4.2, one must have v1 ∈ δ<
i . The same lemma

shows π must return inside Zi(w0) through a crossing point v2 ∈ δ>
i . Now the segment

of δi between v1 and v2 goes from v2 to v1, so we can create a cycle. This is in
contradiction with the fact that G(w0, i) is acyclic. �

5. Hammocks. We continue to restrict ourselves to An case, with Q and w0 fixed.
Let us denote by [β : αi] the coefficient of αi in the expression of β. The hammock of
type i, i ∈ I [6] is Hi(Q) := {[β] | [β : αi] > 0}. The set Pi(Q) is a subset of Hi(Q), and
we shall see that the combinatorics of Lusztig moves of type i is obtained from that of
Hi(Q). The structure of Hi(Q) itself is very simple, and is deduced from the Coxeter
element c attached to Q.

Recall [5] that one may renumber the vertices of Q by a permutation i1, i2, . . . , in
of I such that for every arrow j −→ k of Q one has ij < ik. The Coxeter element is then
given by c = si1 si2 · · · sin . The action of c on �+ is the mirror image of the action of the
translation τ upon �Q: if N = τM then dN = cdM .

In type An, as W ∼= Sn+1, c is an (n + 1)-cycle. Its expression may be constructed
out of Q by the following algorithm [22, Lemma 4.2]:
� Start with just the element n + 1.
� Proceed in decreasing order i = n, n − 1, . . . , 2:

� If inside Q, one has
i−1· ←−i·, add i to the right of the indices already written.

� If inside Q, one has
i−1· −→i·, add i to the left of the indices already written.

� Finish by adding 1 to the left of the n indices already written.
The sequence of indices j1 j2 · · · jn+1 thus obtained is a (n + 1)-cycle expression of

c. The consequence of this specific algorithm is that the (n + 1)-cycle expressions of c
verify a special ‘segment’ property.

LEMMA 5.1 ([22, Proposition 4.3]).
For every i ∈ {1, . . . , n} there is a cycle expression c = (j1, . . . , ji, ji+1 · · · jn+1), where

� j1, j2, . . . ji is a permutation of 1, . . . i.
� ji+1, ji+2, . . . jn+1 is a permutation of i + 1, i + 2, . . . n + 1.

We shall refer to this cycle expression as the i-segmented expression of c, and denote
it by (j1, . . . ji | ji+1, . . . , jn+1).

EXAMPLE . Consider the quiver Q :
1·←−2·−→3·←−4· of type A4. One has c =

s2s1s4s3. The algorithm above gives

5
right−→ 54

left−→ 354
right−→ 3542

left−→ 13542.

One may verify that the obtained five-cycle expression (13542) agrees with c. The
i-segmented expressions of c are then respectively

i = 1 : (1 | 3542) i = 3 : (213 | 54)
i = 2 : (21 | 354) i = 4 : (4213 | 5)
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Figure 4. Hammock Hi(Q) of type An.

The positions of i, i + 1 in the i-segmented expression of c depend on the
neighbourhood of i in Q :

i−1· −→i· in Q : ji = i
i−1· ←−i· in Q : j1 = i

i·−→i+1· in Q : ji+1 = i + 1
i·←−i+1· in Q : jn+1 = i + 1

In the above example, the neighbourhood of vertex 2 in Q is
1·←−2·−→3· so that 2 appears

in the first position of segment 21, and 3 appears in the first position of segment 354.
Given an integer m ≥ 1, we shall denote by [m] the set {1, 2, . . . m}.
PROPOSITION 5.2. Let Q be a quiver of type An.

(a) The set Hi(Q) for i ∈ I, seen as a subgraph of �Q, has a structure isomorphic to
[i] × [n + 1 − i] as given in Figure 4, with [βmin] the isoclass of the projective cover of
the simple module Si and [βmax] the isoclass of the injective envelope of Si.

(b) If (j1j2 · · · ji | ji+1 · · · jn+1) is the i-segmented writing of c, then the vertex at position
(k, l) in the Figure 4 is [αjk + αjk+1 + · · · αjl−1].

The proposition consists in a computation well known to specialists. The reader
may consult [9, Section 6.5, pp. 52–54] for technical details. Our Figure 4 corresponds
to the first scheme in [9, Figure 15]. We provide here some guidelines for non-specialists.

The set Hi(Q) is particularly simple to compute in the case of the ‘i-regular’ quiver
1·−→2·−→ . . . −→i·←− . . . ←−n−1· ←−n· admitting i as its unique sink. The modules at
positions (1, n + 1), (2, n + 1), . . . , (i, n + 1), (i, n), . . . , (i, i + 1) in Figure 4 are the
respective projective covers of the simple modules S1, . . . , Sn. Their dimension vectors
are directly obtained from Q.

The mesh structure of �Q [9] verifies additivity for dimension vectors. For
each ‘square’ configuration of vertices [X ], [Z1], [Z2], [Y ] respectively at positions
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(k, l), (k − 1, l), (k, l − 1), (k − 1, l − 1) in Figure 4, one has dX + dY = dZ1 + dZ2 .
Thus, the knowledge of the dimension vectors for the ‘slice’ of projective modules
allows to compute the rest of Hi(Q).

An arbitrary quiver Q may be obtained from the i-regular one by a sequence
of orientation changes transforming a source vertex j, with j �= i, into a sink. The
effect of this transformation on vertices of �Q other than [αj] consists in applying the
corresponding BGP-reflection functor �j [5]. This is the case of the vertices of Hi(Q),
which never contain [αj]. In terms of dimension vectors, d�jX = sjdX . One checks this
change is coherent with the change in the Coxeter element c due to the change of
orientation.

One may verify by direct computation that Pi(Q) is the order ideal defined by [αi]
inside Hi(Q). The possible cases, according to the neighbourhood of i inside Q, are:

[αi] •

·	
	

	
	

·�
�

�
�

�
�

·	
	

	
	

•�
�

�
�

�
�

Hi(Q)

Pi(Q) = {[αi]}

(a)
i−1· −→i·←−i+1·

·

·								
•�

��
��

��
��

��
�

·		
		

		
		

·������������

Pi(Q) = Hi(Q)

[αi]

(b)
i−1· ←−i·−→i+1·

·

•								
·�

�
�

�
�

�

·	
	

	
	

·�
�

�
�

�
�

Pi(Q)
[αi]

Hi(Q)

(c)
i−1· ←−i·←−i+1·

·

·	
	

	
	

·�
�

�
�

�
�

•	
	

	
	

·������������Pi(Q)
[αi]

Hi(Q)

(d)
i−1· −→i·−→i+1·

The correspondence � : �Q −→ G◦(w0), [β] �→ vβ will allow us to transfer the
above combinatorial results to the setting of WD(w0). In particular, the translation
operation τ on �Q corresponds under � to an operation τwd on vertices of G◦(w0). It
is well known [2, Lemma 2.11] that for every i ∈ I , � establishes an order preserving
one-to-one correspondence between the ith translation level of �Q and crossings on
the ith level of WD(w0). Given k between 1 and N, let k− denote the maximal index
j such that j < k and sij = sik in w0 (if such an index exists). The isoclass [βk] is not
projective exactly when k− is defined. Then one has τwd(vβk ) = vβk− = vcβk .

Let us define Hi(w0) := �(Hi(Q)).

PROPOSITION 5.3. Fix i ∈ I and consider Hi(Q) and Hi(w0) respectively as subgraphs
of �Q and G◦(w0). Then � restricted to Hi(Q) establishes an isomorphism of non-oriented
graphs between Hi(Q) and Hi(w0).
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Proof. Let [βk] −→ [βk′ ], k < k′ be an arrow of Hi(Q). By [22, Proposition 1.2],
the vertices ik and ik′ are linked in D, and there is no occurrence either of reflection
sij = sik or reflection sij = sik′ in a position j between k + 1 and k′ − 1. This means that
vβk and vβk′ are diagonally adjacent inside Hi(w0).

Suppose now vβk and vβk′ , k < k′, are adjacent vertices of Hi(w0). A reduced
expression w0 adapted to a quiver is alternating [22, Lemma 1.4] in the sense that
if j is linked to l in D, then between two occurrences of a reflection sj, there is
one and only one occurrence of a reflection sl. This excludes the possibility of
horizontal adjacencies inside Hi(w0). We have therefore βk = si1 · · · sik−1 (αik ), βk′ =
si1 · · · sik′−1

(αik′ ), with (αik , αik′ ) = −1. One has (βk, βk′ ) = (αik , sik sik+1 · · · sik′−1
(αik′ )) by

invariance of the Cartan scalar product under action of W . Now ik+1, . . . ik′−1 are all
different from ik and ik′ , which implies that (αik , sik sik+1 · · · sik′−1

(αik′ )) = 1.
By [2, Lemma 2.11], (βk, βk′ ) = 1 means that there is a path inside �Q from [βk] to

[βk′ ]. Now this path may have only one vertex on each of the adjacent levels ik and i′k,
so it can cross them only once. In view of the mesh structure of �Q, the only possibility
is that this path is reduced to a single arrow [βk] −→ [βk′ ]. �

PROPOSITION 5.4. One has Zi(w0) = �(Pi(Q)). Furthermore, these sets, seen as non-
oriented subgraphs respectively of �Q and G◦(w0), are isomorphic.

Only the first part of the proposition needs to be proved, the second then follows,
using Proposition 5.3. We shall need two results concerning the matrix R = (ri,j) of the
Ringel form of Q. Let us define for i ∈ I , ρi := ∑n

k=1rk,iωk. The weight ρi is such that
its coordinates in the basis of fundamental weights are given by the ith column of R.
In a similar manner, let us put, corresponding to the ith line of R, ρt

i := ∑n
k=1ri,kωk.

LEMMA 5.5. The action of the Coxeter element on the vectors ρi, i ∈ I is given by
cρi = −ρt

i .

Proof. Case-by-case analysis, following the four cases for the neighbourhood of i
in Q. Our convention is ω0 = ωn+1 = 0.

Case 1. i is a source of Q
We have in this case ρi = ωi, ρt

i = −ωi−1 + ωi − ωi+1 and c = sic1, c1 being a
product of simple reflections sj with j �= i. As sj(ωi) = ωi for j �= i, we see cρi = si(ωi) =
ωi−1 − ωi + ωi+1.

Case 2. The neighbourhood of i in Q is of the form
i−1· −→i·−→i+1·

We have in this case ρi = −ωi−1 + ωi, ρt
i = ωi − ωi+1 and c = c1sic2, where c1 is a

product of simple reflections sj with j ≥ i + 1, and c2 is a product of simple reflections
sj with j ≤ i − 1. We get

c1ρi = ρi,

sic1ρi = siρi = −ωi + ωi+1,

c2sic1ρi = −ωi + ωi+1.

The other two cases follow by similar computations. �

Recall we associated to a vertex vβ ∈ G◦(w0), the weight λ+(vβ). Let ϕR be the
linear mapping of the Euclidean space R� defined by ϕR(αi) = −ρi, i ∈ I .
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THEOREM 5.6 ([22, Theorem 2.4]).

∀β ∈ �+, λ+(vβ) = ϕR(β).

The key of the theorem is [22, Lemma 2.2]: If k is a sink of an ADE quiver Q,
Q′ := skQ, and R, R′ are the respective Ringel matrices, then skϕR′ = ϕRsk. This lemma
implies that ϕR commutes with c−1, and hence with c = (c−1)n. If β ∈ �+ such that
cβ ∈ �+ (that is, if τ is defined on [β]), then cλ+(vβ) = cϕR(β) = ϕR(cβ). We have then
cλ+(vβ) = λ+(vcβ) = λ−(vβ).

Proof of Proposition 5.4. For any β ∈ �+, one has (β, αi)R = (β, ρi). This implies,
by Theorem 3.1, that [β] ∈ Pi(Q) if and only if (β, ρi) > 0.

Let us apply a similar analysis for a vertex vβ of Zi(w0). A chamber is in Zi(w0)
if the strand Li passes above it, and the strand Li+1 passes below it. This means
that the index i appears in the labelling of the chamber and the index i + 1 does not
appear. Now the index i corresponds to the weight −ωi−1 + ωi and the index i + 1 to
the weight −ωi + ωi+1. The condition above in terms of strands, translates in terms
of weights, to having ωi with coefficient 1 in λ−(vβ). Thus, vβ ∈ Zi(w0) if and only
if (αi, λ

−(vβ)) > 0.

There is only one projective indecomposable module in Pi(Q), namely the
projective cover of Si, which is on the ith translation level of �Q. Likewise, the left
border chamber of WD(w0) on level j, j ∈ I , has the weight ωj. Hence, the only
vertex on the left border of G0(w0) verifying (αi, λ

−(vβ)) > 0 is the one on the ith
level.

It remains to verify Proposition 5.4 for non-projective vertices of �Q. Lemma 5.5
gives us for all i, k that (αk, ρi) = −(αi, cρk). If β = ∑n

k=1mkαk, then

(β, ρi) =
n∑

k=1
mk(αk, ρi)

= −
n∑

k=1
mk(αi, cρk)

=
(

αi, c
(

−
n∑

k=1
mkρk

))
= (αi, cλ+(vβ))
= (αi, λ

−(vβ)).

We see that (β, ρi) > 0 if and only if (αi, λ
−(vβ)) > 0, so the first statement of the

proposition is verified. �

6. String cone inequalities and Lusztig moves. A vertex occurring in a GP-path of
type i must belong to a chamber of Zi(w0). We shall denote by Yi(w0) the set of these
vertices. We have already accounted for the set Zi(w0), which consists of rightmost
vertices of the chambers in Zi(w0). It remains to compute Yi(w0)\Zi(w0). As we shall
now see, these vertices lie on the border path δi.

PROPOSITION 6.1. Fix i ∈ I. Then the subgraph with vertices Yi(w0) is given inside
G(w0, i), according to the neighbourhood of i inside Q, by Figures 5 (with the relative
position of Zi(w0) inside Yi(w0) delimited by segmented lines):
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Figure 5. Structure of Yi(w0) inside G(w0, i).

Proof.
The key to the proof is the combinatorics of Hi(Q) (and therefore of Hi(w0)). Let

(j1, j2 · · · ji | ji+1 · · · jn+1) be the ith segmented expression of c. The vertex of Hi(Q) at
position (k, l) in Figure 4 is mapped by � onto the intersection of the pseudolines Ljk
and Ljl , where jk ≤ i and jl ≥ i + 1. The structure of Zi(w0) inside G(w0, i) then follows
from Proposition 5.4. It remains to understand the position of the border path δi with
respect to Zi(w0).

We shall call the set of vertices vβ ∈ Zi(w0) such that either τwd(vβ) is not defined or
τwd(vβ) �∈ Zi(w0), the left border of Zi(w0). We shall call the set of vertices vβ ∈ Zi(w0),
which are not the image under τwd of another vertex of Zi(w0), the right border of
Zi(w0). We shall see that the limiting path δi consists of vertices either lying on the right
border of Zi(w0) or obtained by applying the translation τwd on a vertex lying on the
left border of Zi(w0). This ensures that vertices of Yi(w0) that do not belong to Zi(w0)
lie on δi.

Let us consider the part δ<
i of δi lying on the pseudoline Li.

Case 1. One has
i−1· −→i· inside Q.

https://doi.org/10.1017/S0017089512000432 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000432


ON CRYSTAL OPERATORS IN LUSZTIG PARAMETRIZATION 195

The i-segmented expression of c is such that ji = i. In view of Proposition 5.2 (b), Li

exits Zi(w0) on the leftmost vertex vβmin of Hi(w0). Now [βmin] is a projective isoclass of
mod CQ, hence vβmin is on the left border of G◦(w0). The pseudoline Li goes directly to
li after leaving this vertex. The segment δ<

i contains only one vertex of Zi(w0), namely
vβmin , which lies on the right border of this set.

Case 2. One has
i−1· ←−i· inside Q.

This time j1 = i, so Li leaves Zi(w0) on level 1. Recall ji+1, . . . jn+1 is a permutation
of the interval i + 1, i + 2, . . . , n + 1, so Zi(w0) contains all vertices Li ∩ Lk, k ≥ i + 1,
these vertices being on the right border of Zi(w0).

Let us fix k ≤ i − 1, and apply τwd on the leftmost vertex Ljk ∩ Ljn+1 of Zi(w0) on
level k. The result is, according to the i-segmented expression of c, the vertex Ljk+1 ∩ Lj1 .
Yet j1 = i, and j2, j3, . . . ji is a permutation of 1, 2, . . . , i − 1. We see that all vertices
Li ∩ Lk with k ≤ i − 1 lie on δ<

i . We have accounted for all vertices lying on Li so that
after leaving Yi(w0) Li goes to li.

The case of the part δ>
i of δi lying on strand Li+1 is totally symmetric, so all details

are not given. The two cases to consider correspond to the orientations of the arrow

between i and i + 1. If one has
i·←−i+1· inside Q, jn+1 = i + 1 so Li+1 enters Zi(w0) on

the first (and projective) vertex vβmin , directly from the border vertex li+1. In the other

case,
i·−→i+1· inside Q, Li+1 enters Zi(w0) on level n, and we can account for all vertices

Lk ∩ Li+1. Either these lie on the right border of Zi(w0) if k ≤ i, or are translates of
vertices at levels k = i + 2, . . . n of the left border of that set. �

Proof of the Main Theorem 2.4. We shall proceed in two steps: First, we establish
a one-to-one correspondence π �→ A(π ) between GP-paths of type i and antichains of
Pi(Q), then fixing a GP-path π , we show that the vector kπ has the same coefficients
as the Lusztig move lA(π).

A GP-path π of type i, by the oriented graph structure of Yi(w0) detailed in
Figure 5, consists of three parts: A segment of δ>

i from li+1 up to entry into Zi(w0), a
path πgrid with vertices belonging to Zi(w0) up to an exit vertex, and finally returning
to li on a segment of δ<

i . The first and last segments are uniquely defined by the first
and last vertices of πgrid , thus the segment πgrid uniquely defines the whole path π .

Let us use the coordinate system given in Proposition 5.2 for Pi(Q), which lies
inside Hi(Q). The order structure of Pi(Q) is given by (k1, l1) ≤ (k2, l2) if and only if
k1 ≥ k2 and l1 ≥ l2. All the vertices of Zi(w0) are by Propositions 5.2 and 5.4 of the same
type: a crossing of a line Ljk with jk ≤ i, which points backwards and upwards, with a
line Ljl with jl ≥ i + 1, which points forwards and upwards. The path πgrid is therefore
a staircase path. As such, it is uniquely defined by the ‘extremities’ of its steps, vertices
which are a turning point from a forward line into a backward line. The inverse image
under � of these vertices inside Pi(Q) form a set {(k1, l1), (k2, l2), . . . , (kr, lr)} whose
elements have coordinates that are pairwise disjoint: for any j �= j′, one has kj �= kj′ and
lj �= lj′ . By the nature of the order structure of Pi(Q), this set is an antichain that we
shall denote by A(π ).

Conversely, an antichain of Pi(Q) is a set of vertices {(k1, l1), (k2, l2), . . . , (kr, lr)}
that have coordinates, which are pairwise disjoint. The images of these vertices under
� form the extremities of a uniquely defined staircase path πgrid of Zi(w0). By adding
the appropriate segments of the limiting path δi, we get a path π (A) starting from li+1

and returning to li. The nature of crossings inside Zi(w0) and Lemma 4.2 exclude the
existence of forbidden crossings. The path π (A) is therefore a GP-path of type i.
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Figure 6. Antichain of Pi(Q) and corresponding GP-path of type i.

The mapping A �→ π (A) is the inverse of π �→ A(π ) and vice-versa, so we
have a one-to-one correspondence ψ between GP-paths of type i and antichains of
Pi(Q).

Let us now fix a GP-path and study its contributing vertices. Recall, a vertex vβh

contributes a term +th in kπ · t if π changes strands Lj −→ Lk at vβh with a decrease
from j to k, and a term −th if a change of strands Lj −→ Lk occurs at vβh with an
increase from j to k. If π stays on the same strand while passing through vβh , no
contribution occurs.

In view of Figure 6, a change of strands occurs at an extremal vertex vβh of πgrid .
At this vertex, the incoming strand Ljk verifies jk ≥ i + 1, while the outgoing strand Ljl
verifies jl ≤ i. We see that a decrease of indices occurs in the passage Ljk −→ Ljl , so vβh

is a positively contributing vertex.
Let us denote by Jπ the order ideally defined by the extremal vertices of πgrid

inside Zi(w0) endowed with the poset structure induced by Pi(Q). Consider a minimal
element vβh′ of Zi(w0)\Jπ , and apply translation τwd . We get a vertex τwd(vβh′ ) of π with
the following possible cases (as illustrated by Figure 7):

(i) τwd(vβh′ ) is in Zi(w0), in which case it is adjacent to three chambers of Zi(w0). A
passage from a backward-oriented line Ljk to a forward-oriented line Ljl occurs
with an increase of indices.

(ii) τwd(vβh′ ) is a vertex of δ>
i outside Zi(w0). The strand Li+1 is of minimal index

among forwardly oriented strands, so an increase of indices occurs by Proposition
6.1.

(iii) τwd(vβh′ ) is a vertex of δ<
i outside Zi(w0). The strand Li is of maximal index

among backward-oriented strands, so again by Proposition 6.1 an increase of
indices occurs.

We see in all cases, the vertex τwd(vβh′ ) produces a negative contribution −1 to kπ .
Finally, if vβh is neither maximal inside Jπ nor a translate of a minimal element

of Zi(w0)\Jπ , then π stays on the same strand while passing through it so that no
contribution occurs.
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Figure 7. Negative contributing vertices.

Comparing this discussion with the definition of the Lusztig move out of the
antichain A(π ), we see that we get exactly the same positive and negative contributions
±th in both cases. �

REMARKS.
(i) The staircase paths used in the proof seem closely related to the Le-

diagrams defined by Postnikov [17] in his study of positroids (compare Figure 6 with
[17, Figure 17.3]).

(ii) The neat structure of Yi(w0) described in Figure 5 breaks down for reduced
expressions w0 of type An that are not adapted to a quiver. Its subset Zi(w0) may include
vertices that lie outside of Hi(w0). Furthermore, the regular grid structure of Zi(w0) is
destroyed by the appearance of horizontal adjacencies between vertices of Zi(w0).

7. A Dn example. Let us consider the D4-type quiver Q, given in the appendix of
[18] as satisfying condition (L):

·· ��·

·��������





·

·		
		

		
		

��

1

2

3 4

Let us verify the conjecture stated in Section 2. w0 = s1s2s3s1s2s4s3s1s2s4s3s4 is
adapted to Q, with reflection ordering

β1 = α1 β5 = α1 + α3 β9 = α2 + α3 + α4

β2 = α2 β6 = α1 + α2 + α3 + α4 β10 = α3

β3 = α1 + α2 + α3 β7 = α1 + α2 + 2α3 + α4 β11 = α3 + α4

β4 = α2 + α3 β8 = α1 + α3 + α4 β12 = α4

The Lusztig parametrization is given by elements t ∈ N
12 with ti corresponding

to [βi]. We shall concisely denote a vertex [β] of �Q by the indexes of the appearing
simple roots. For instance, 134 stands for [α1 + α3 + α4]. We shall denote the vertex
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[α1 + α2 + 2α3 + α4] by 1234. The Auslander–Reiten quiver is given by
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The Pi(Q) sets are:

P1(Q) = {1}
P2(Q) = {2}
P3(Q) = {123, 23, 13, 1234, 3}
P4(Q) = {1234, 1234, 134, 234, 34, 4}.

There are respectively 1, 1, 6, 7 antichains of types 1, 2, 3, 4.
The Kashiwara embedding corresponds to [4, Theorem 5.10]. The computation

of the set KBZ
w0

requires therefore, by [4, Proposition 3.3 (iii)],the use of the reduced
expression wop

0 , whose reflection ordering is reversed as compared with that of w0 (α4

occurs first, α1 occurs last), as well as a reversal in the numbering of coordinates. In
our case, the set of indices of wop

0 is iop = (4, 3, 4, 2, 1, 3, 4, 2, 1, 3, 2, 1).
Fix i ∈ I , and let E(ωi) be the corresponding fundamental representation of Uq(g)

of type D4. An iop-trail π of type i goes from ωi to w0siωi. It is given by a set of
coefficients m = (m1, m2, . . . m12) such that the monomial em1

1 em2
2 · · · em12

12 induces a non-
zero mapping from the weight space E(ωi)w0siωi to the highest weight space E(ωi)ωi .
The path π defines a sequence of weights ωi = γ0, γ1, . . . γ12 = w0siωi with

γk := γ0 −
k∑

l=1

mlαil .

The trail π defines a vector hπ ∈ Z
12 whose kth coordinate is hk := ( γk−1+γk

2 , αik ),
(k = 1, . . . , 12) [4, (2.2) p. 5]. Let us denote kπ := (h12, h11, . . . , h1). Then by
[4, Theorem 3.10], the set KBZ

w0
of all vectors kπ , where π is any iop-trail, of any

type i defines Cw0 .
Let us consider the iop-trail π of type 3 with coefficients (0, 1, 1, 1, 1, 1, 1, 0, 0,

1, 1, 1). The list of weights γk through which π passes, as well as the coordinates hk, are
given by the following table (weights are expressed by their coordinates with respect to
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the basis of fundamental weights):

k γk (γk−1 + γk)/2 αik hk

0 [0, 0, 1, 0]
1 [0, 0, 1, 0] [0, 0, 1, 0] α4 0
2 [1, 1,−1, 1] [ 1

2 , 1
2 , 0, 1

2 ] α3 0
3 [1, 1, 0,−1] [1, 1,− 1

2 , 0] α4 0
4 [1,−1, 1,−1] [1, 0, 1

2 ,−1] α2 0
5 [−1,−1, 2,−1] [0,−1, 3

2 ,−1] α1 0
6 [0, 0, 0, 0] [− 1

2 ,− 1
2 , 1,− 1

2 ] α3 1
7 [0, 0, 1,−2] [0, 0, 1

2 ,−1] α4 −1
8 [0, 0, 1,−2] [0, 0, 1,−2] α2 0
9 [0, 0, 1,−2] [0, 0, 1,−2] α1 0

10 [1, 1,−1,−1] [ 1
2 , 1

2 , 0,− 3
2 ] α3 0

11 [1,−1, 0,−1] [1, 0,− 1
2 ,−1] α2 0

12 [−1,−1, 1,−1] [0,−1, 1
2 ,−1] α1 0

We get hπ = (0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0), hence kπ = (0, 0, 0, 0, 0,−1, 1, 0, 0, 0,

0, 0), which defines the string cone inequality t7 − t6 ≥ 0. If we consider the antichain
A = {1234} of P3(Q), then VA = [β7], UA = [β6], so we get lA = kπ .

The enumeration of all possible iop-trails in our case (with the help of quagroup
package [7]) shows that there is a one-to-one correspondence between antichains A of
Pi(Q) and iop-trails π of type i, for each of the types i = 1, . . . , 4. For every antichain A
there is a unique trail π with lA = kπ . We give these correspondences in the following
table. The first column is the set of defining inequalities of Cw0 . Next to each inequality
is the antichain A defining the corresponding Lusztig move lA, and the iop-trail leading
to the corresponding vector kπ ∈ KBZ

w0
.

Type Inequality Antichain iop-trail position iop-trail coefficients m
1 t1 ≥ 0 1 4 3 4 2 1 3 4 2 1 3 2 1 (0,0,0,0,1,1,1,1,0,1,0,0)
2 t2 ≥ 0 2 4 3 4 2 1 3 4 2 1 3 2 1 (0,0,0,1,0,1,1,0,1,1,0,0)
3 t3 − t1 − t2 ≥ 0 123 4 3 4 2 1 3 4 2 1 3 2 1 (0,1,1,1,1,2,1,1,1,0,0,0)

t4 − t2 ≥ 0 23 4 3 4 2 1 3 4 2 1 3 2 1 (0,1,1,1,1,2,1,1,0,0,0,1)
t5 − t1 ≥ 0 13 4 3 4 2 1 3 4 2 1 3 2 1 (0,1,1,1,1,2,1,0,1,0,1,0)

t4 + t5 − t3 ≥ 0 13, 23 4 3 4 2 1 3 4 2 1 3 2 1 (0,1,1,1,1,2,1,0,0,0,1,1)
t7 − t6 ≥ 0 1234 4 3 4 2 1 3 4 2 1 3 2 1 (0,1,1,1,1,1,1,0,0,1,1,1)

t10 ≥ 0 3 4 3 4 2 1 3 4 2 1 3 2 1 (0,1,0,1,1,1,2,0,0,1,1,1)
4 t6 − t3 ≥ 0 1234 4 3 4 2 1 3 4 2 1 3 2 1 (1,1,0,1,1,1,0,0,0,0,0,0)

t7 − t4 − t5 ≥ 0 1234 4 3 4 2 1 3 4 2 1 3 2 1 (1,1,0,1,1,0,0,0,0,1,0,0)
t8 − t5 ≥ 0 134 4 3 4 2 1 3 4 2 1 3 2 1 (1,1,0,1,0,0,0,0,1,1,0,0)
t9 − t4 ≥ 0 234 4 3 4 2 1 3 4 2 1 3 2 1 (1,1,0,0,1,0,0,1,0,1,0,0)

t8 + t9 − t7 ≥ 0 134, 234 4 3 4 2 1 3 4 2 1 3 2 1 (1,1,0,0,0,0,0,1,1,1,0,0)
t11 − t10 ≥ 0 34 4 3 4 2 1 3 42 1 3 2 1 (1,0,0,0,0,1,0,1,1,1,0,0)

t12 ≥ 0 4 4 3 4 2 1 3 4 2 1 3 2 1 (0,0,1,0,0,1,0,1,1,1,0,0)

REMARK. The trail π of type 3 considered above in detail passes through the
weight [0, 0, 0, 0]. All other trails of the table pass only through extremal weights. The
existence of π shows that condition (L) is not strong enough to allow an analogue of
[4, Theorem 3.14]. The subexpression corresponding to π is not a reduced word.
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