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Counting in Ergodic Theory
Roger L. Jones, Joseph M. Rosenblatt and Máté Wierdl

Abstract. Many aspects of the behavior of averages in ergodic theory are a matter of counting the number
of times a particular event occurs. This theme is pursued in this article where we consider large deviations,
square functions, jump inequalities and related topics.

1 Introduction

A number of phenomena in ergodic theory can be understood by counting occurrences
of various events. In Section 2, counting of levels shows how large deviation theorems
immediately imply control of series like square functions. This leads to some unusual rate
results for averages somewhat like the ones in the usual ergodic theorem. In Section 3,
counting of jumps for martingales leads to a technique to show that the jump inequalities
previously obtained for ergodic averages are the best possible ones. See also Ivanov [10]
and Kachurovskii [14] for closely related results. In Section 4, counting the leading edge of
the ergodic average gives an ergodic theorem due to Assani [2, 3] in Lp for p > 1 together
with some improvements as a result of the theorems in Section 2. The theme of counting
occurrences of various sorts for ergodic averages is seen in all of the sections.

2 Square Functions Via Level Counting

Let (X, β, µ) be a probability space and τ be an invertible measure-preserving transforma-
tion of (X, β, µ). Consider a sequence of moving averages Mn f (x) = 1

Ln

∑vn+Ln

k=vn+1 f (τ kx).
It was shown by Rosenblatt and Wierdl [16] that if Ln is non-decreasing, then Mn f (x)/n
converges to 0 a.e. [µ] for any f ∈ L1(X). Various ways in which this result is best-
possible are discussed in [16], but there still remained the possibility of a result concern-
ing the rate at which Mn f (x)/n converges to 0 in the form of a series condition. For in-
stance, in Jones, Ostrovskii, and Rosenblatt [12], it was asked whether the square function
S f (x) = (

∑∞
n=1 |

Mn f (x)
n |2)1/2 is finite a.e. for any f ∈ L1(X). It turns out that by using the

large deviation results in Rosenblatt and Wierdl [16], this can be shown. Let us first state
the large deviation result in the form that we will use it. This is Theorem 3.1 in Rosenblatt
and Wierdl [16].

Theorem 2.1 Let (Ln) be a non-decreasing sequence of whole numbers. Let λ > 0. Then

∞∑
n=1

µ{x ∈ X : Mn f (x) ≥ λn|} ≤
2

λ
‖ f ‖1.
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This result gives the following theorem.

Theorem 2.2 For any sequence of moving averages Mn f (x) with non-decreasing lengths
(Ln), the operator S f is finite a.e. for all f ∈ L1(X), and is weak type (1, 1).

Proof We can assume without loss of generality that f ∈ L1(X) is positive a.e. Let us first
show that S f (x) is finite a.e. Write

S f (x)2 =

∞∑
n=1

(
Mn f (x)

n

( ∞∑
m=0

1{ 1
2m+1≤

Mn f
n < 1

2m }
(x) + 1{1≤Mn f

n }
(x)
))2

.

Because of the disjointness of the level sets for Mn f
n , we have

S f (x)2 =

∞∑
n=1

(
Mn f (x)

n

( ∞∑
m=0

1{ 1
2m+1≤

Mn f
n < 1

2m }
(x)
))2

+
∞∑

n=1

(Mn f (x)

n
1{1≤Mn f

n }
(x)
)2
.

Denote the square roots of these last two terms by S1 f (x) and S2 f (x) respectively. First,
let us consider S2 f (x). By Theorem 2.1, we know that

∑∞
n=1 µ({Mn f ≥ n}) < ∞. That

is, the series
∑∞

n=1 1{1≤Mn f
n }

is integrable and therefore finite a.e. Hence, a.e. x is in only

finitely many of the sets {Mn f ≥ n}. This means that the sum giving S2 f (x) is a.e. a finite
sum and hence S2 f (x) is finite a.e.

Second, let’s consider S1 f (x). By using the disjointness of the level sets again, we see that

S1 f (x)2 ≤
∞∑

n=1

∞∑
m=0

( 1

2m

)2
1{ 1

2m+1≤
Mn f

n < 1
2m }

(x).

Reversing the order of summation and integrating gives

∫
X

S1 f (x)2 dµ(x) ≤
∞∑

m=0

1

22m

∞∑
n=1

µ
({ 1

2m+1
≤

Mn f

n
<

1

2m

})
.

But µ({ 1
2m+1 ≤

Mn f
n < 1

2m }) ≤ µ({ 1
2m+1 ≤

Mn f
n }) and so

∫
X

S1 f (x)2 dµ(x) ≤
∞∑

m=0

1

22m

∞∑
n=1

µ
({ 1

2m+1
≤

Mn f

n

})
.

By Theorem 2.1, we have the estimate that

∞∑
n=1

µ
({ 1

2m+1
≤

Mn f

n

})
≤ 2m+1C‖ f ‖1.
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Hence,

∫
X

S1 f (x)2 dµ(x) ≤ C‖ f ‖1

∞∑
m=0

1

22m
2m+1

= 4C‖ f ‖1.

Thus, S1 f (x)2 is integrable and hence finite a.e.
The above argument for the parts S1 f (x) and S2 f (x), shows that S f (x) is finite a.e. for

any f ∈ L1(X). The weak inequality follows by a result in Assani [2] that the Stein-Sawyer
principle extends to certain sublinear operators. Alternatively, let

(
b(k) : k = 1, 2, 3, . . .

)
be a sequence dense in the unit ball of l2(Z+). Consider the linear operators

SN,k f (x) =
N∑

n=1

bn(k)
Mn f (x)

n
.

The result on S f (x) above shows that the maximal operator S∗ f (x) = supN,k |SN,k f (x)| is
finite a.e. Hence, when τ is ergodic at least, by the Stein-Sawyer principle (see Garsia [9])
S∗ f is weak type (1, 1). This shows that S f (x) is weak type (1, 1) when τ is ergodic because
for any f ∈ L1(X), S f (x) = S∗ f (x) a.e. by duality in l2(Z+). The weak type (1, 1) inequality
now follows for any τ with a constant independent of τ by the Conze principle.

One can take a larger view in the above and state generally a principle that shows how
a large deviation result always implies a companion theorem on the behavior of square
functions; this approach also avoids the use of the modified version of the Stein-Sawyer
principle. We actually will not need very much structure for the mappings Tn at all in this
result. We need only to assume that each Tn : L1(X) → L1(X) is strongly positive (in the
sense that Tn f ≥ 0 for all f ∈ L1(X)), and that each Tn is positively homogeneous (in the
sense that Tn(c f ) = cTn f for nonnegative c and f ∈ L1(X)). In this case, we say that Tn is a
strongly positive, positively homogeneous operator. For instance, Tn could be the absolute
value of some linear operator from L1(X)→ L1(X).

Theorem 2.3 Let (Tn : n ≥ 1) be a sequence of strongly positive, positively homogeneous

operators and let S f (x) =
(∑∞

n=1 Tn f (x)2
) 1

2 . Assume that for f ∈ L1(X),

∞∑
n=1

µ({|Tn f | ≥ 1}) ≤ C‖ f ‖1.

Then

µ({S f ≥ λ}) ≤
10C

λ
‖ f ‖1.

Hence, for any f ∈ L1(X), we have S f (x) <∞ a.e.
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Proof We can assume that λ = 2 and that f is positive. Let us estimate as

S f (x) ≤
( ∞∑

n=1

(
Tn f (x)

)2
1{Tn f<1}(x)

) 1
2

+
( ∞∑

n=1

(
Tn f (x)

)2
1{Tn f≥1}(x)

) 1
2

= S1(x) + S2(x).

We need to prove the inequalities

µ
(
{x : S1(x) ≥ 1}

)
≤ C‖ f ‖1, and(2.1)

µ
(
{x : S2(x) ≥ 1}

)
≤ 4C‖ f ‖1.(2.2)

The proof of (2.2) is immediate because S2(x) = 0 if
∑∞

n=1 1{Tn f (x)≥1} = 0. So we can
estimate using Chebychev’s inequality and the assumption of the theorem that

µ({x : S2(x) ≥ 1}) ≤ µ(
{ ∞∑

n=1

1{Tn f≥1} ≥ 1
}

)

≤
∞∑

n=1

µ({Tn f ≥ 1})

≤ C‖ f ‖1.

As for proving (2.1), let us estimate first by

S1(x) =
( ∞∑

n=1

(
Tn f (x)

)2
·
∞∑

k=0

1{ 1
2k+1≤Tn f< 1

2k }
(x)
) 1

2

≤
( ∞∑

k=0

1

22k
·
∞∑

n=1

1{ 1
2k+1≤Tn f< 1

2k }
(x)
) 1

2
.

It follows again by Chebychev’s inequality and the assumption of the theorem that

µ({S1 ≥ 1}) = µ({S2
1 ≥ 1})

≤ µ
({ ∞∑

k=0

1

22k
·
∞∑

n=1

1{ 1
2k+1≤Tn f< 1

2k }
≥ 1
})

≤
∞∑

k=0

1

22k
·
∞∑

n=1

µ({Tn f ≥
1

2k+1
})

≤
∞∑

k=0

1

22k
·C · 2k+1‖ f ‖1

= 4C‖ f ‖1.
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Hence,

µ({S f ≥ 2}) ≤ µ({S1 f ≥ 1}) + µ({S2 f ≥ 1})

≤ 5C‖ f ‖1.

This proves the theorem.

Remark 2.4 a) Theorem 2.1 can be used together with Theorem 2.3 to give the previous
result Theorem 2.2.

b) There is no assumption about the operators commuting with a mixing family of
transformations. For these reasons, this argument will apply in cases where the Stein-
Sawyer principle does not apply. But also, large deviation results can never be the only
route to square functions inequalities. For instance, let An f (x) = 1

n

∑n
k=1 f (τ kx) be the

usual average in ergodic theory. Then by the result in Jones, Ostrovskii and Rosenblatt [12],
there is a weak inequality in L1(X) for the square function

S f (x) =
( ∞∑

n=1

∣∣∣A2n+1 f (x)− A2n f (x)
∣∣∣2)1/2

.

However, also in [12] it is shown that the operators Tn = |A2n+1 − A2n | do not satisfy the
large deviation inequality in the assumption of Theorem 2.3.

The argument in the proof of Theorem 2.2 can be used to prove a result for functions
more general than the square function. The precise result is as follows.

Theorem 2.5 Assume that φ is a positive function defined on the positive real numbers which
is increasing near zero. Assume

∑∞
n=1 φ( 1

n ) < ∞. For any sequence of moving averages
Mn f (x) with non-decreasing lengths (Ln), the series

∞∑
n=1

φ

(∣∣∣∣Mn f (x)

n

∣∣∣∣
)

is finite a.e. x for any positive f ∈ L1(X).

Remark 2.6 Here if φ(x) = xp for some p > 1, then actually the argument of Theo-
rem 2.3 would work.

Proof As part of the large deviation result Theorem 2.1, we know that |Mn f (x)
n | converges

to 0 a.e. for any f ∈ L1(X). Hence, to prove the result, it suffices to consider only the series

∞∑
n=1

φ

(∣∣∣∣Mn f (x)

n

∣∣∣∣
)

excluding the terms n for which |Mn f (x)
n | ≥ 1. For the same reason, there is no harm in

assuming that φ is increasing on [0,∞).

https://doi.org/10.4153/CJM-1999-044-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-044-2


Counting in Ergodic Theory 1001

Now, for a.e. x, we can take some n(x) ≥ 1 such that for any n ≥ n(x), |Mn f (x)
n | < 1.

Now as in Theorem 2.2,

∞∑
n=n(x)

φ

(∣∣∣∣Mn f (x)

n

∣∣∣∣
)
=

∞∑
n=n(x)

φ

(∣∣∣∣Mn f (x)

n

∣∣∣∣
) ∞∑

m=0

1{ 1
2m+1≤|

Mn f
n |<

1
2m }

(x)

≤
∞∑

m=0

∞∑
n=n(x)

φ
( 1

2m

)
1{ 1

2m+1≤|
Mn f

n |<
1

2m }
(x).

Thus, by Theorem 2.1 once more,

∫ ∞∑
n=n(x)

φ

(∣∣∣∣Mn f (x)

n

∣∣∣∣
)

dµ(x) ≤
∞∑

m=0

∞∑
n=1

φ
( 1

2m

)
µ
({ 1

2m+1
≤
∣∣∣Mn f

n

∣∣∣})

≤ C
∞∑

m=0

2m+1φ
( 1

2m

)
‖ f ‖1.

The condensation principle for series is the elementary fact that if (an) is a decreasing
sequence of positive real numbers, then the series

∑∞
n=1 an converges if and only if the

condensed series
∑∞

n=1 2na2n converges. This applies to the convergent series
∑∞

n=1 φ( 1
n ),

showing that
∑∞

m=0 2m+1φ( 1
2m ) is also convergent. This means that

∑∞
n=n(x) φ(|Mn f (x)

n |)
is integrable and hence finite a.e. for any positive f ∈ L1(X). Hence, the entire series∑∞

n=1 φ(|Mn f (x)
n |) is convergent a.e.

Under the type of assumptions on (Tn) as in Theorem 2.3, and with some additional
assumptions about φ, we can actually get a result that generalizes Theorem 2.3 to include
Theorem 2.5, strengthened to give a weak (1, 1) estimate too. Instead, let us just observe
two similar versions of this type of theorem.

Corollary 2.7 Let p > 1. For moving averages Mn f (x) with non-decreasing lengths (Ln),
the operator

Sp f (x) =

( ∞∑
n=1

∣∣∣∣Mn f (x)

n

∣∣∣∣
p)1/p

is finite a.e for any f ∈ L1(X), and satisfies a weak type (1, 1) inequality on L1(X).

Proof The finiteness of the series a.e. is just Theorem 2.5. The weak estimate follows as in
Theorem 2.2 or in Theorem 2.3 .

In the particular case where the lengths (Ln) for the moving averages are all 1, Corol-
lary 2.7 gives this next result, that also appears when p = 2 and vn = n in Jones [11].
Actually, the argument in Jones [11] can be seen to give this more general result too. The
proof here is the same as the one just given for Corollary 2.7.
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Corollary 2.8 Let (vn) be any sequence in Z. Then for any p > 1,

Sp f (x) =

( ∞∑
n=1

∣∣∣∣ f (τ vn x)

n

∣∣∣∣
p)1/p

is finite a.e for any f ∈ L1(X), and satisfies a weak type (1, 1) inequality on L1(X).

A standard argument with series which is even easier here because the terms are positive
shows that we have the following corollary which is interesting even in the case that all
vn = n.

Corollary 2.9 Let (vn) be any sequence in Z. Let p > 1 and let f ∈ L1(X). Then

lim
n→∞

1

np

n∑
k=1

| f (τ vk x)|p = 0 a.e.

Remark 2.10 Assume that vn = n for all n ≥ 1 in the above. Then the result is not
immediate from the Pointwise Ergodic Theorem because just knowing that f is in L1(X) of
course does not guarantee that | f |p is in L1(X). But this is also why one has to divide the
sum by np and not just by n as in the Pointwise Ergodic Theorem.

Because any positive function h ∈ L1(X) is of the form h = f p for the positive function
f = h1/p ∈ Lp(X) ⊂ L1(X), Corollary 2.9 gives this result.

Corollary 2.11 Let (vn) be any sequence in Z. Let p > 1 and let h ∈ L1(X). Then

lim
n→∞

1

np

n∑
k=1

|h(τ vk x)| = 0 a.e.

This is not a difficult fact to see by other means. Indeed, the series
∑∞

k=1
|h(τ vk x)|

kp is
integrable for any p > 1 and f ∈ L1(X). Thus, the series also converges absolutely a.e. and
Corollary 2.11 follows immediately. The more interesting question is what can be put in
place of the factor 1

np ? Of course, generally the averages 1
n

∑n
k=1 |h(τ vk x)| do not converge

a.e., and so some extra factor is needed beyond just the factor n. The simple integration
argument here shows that any factor 1

Ln
such that

∑∞
n=1

1
Ln
< ∞ will work in place of 1

np

with p > 1. But it is not clear what the correct factor to divide by is here. This issue is
discussed further in Akcoglu, Jones, and Rosenblatt [1]. However, the next few results at
least answer the question of whether the divisor np is the correct divisor in general in the
context of Corollary 2.9.

Proposition 2.12 Assume that τ is an ergodic transformation. If (an) is any sequence with
limn→∞ an = ∞, and (vn) is a sequence in Z such that supn≥1 vn = ∞, then there exists a
positive function f ∈ L1(X) such that

sup
n

f (τ vn x)

n
an =∞ a.e.
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Proof Assume first that the vn are distinct. Assume there is a weak inequality on Z of the
form, for any λ > 0,

card

{
k ∈ Z : sup

n

anφ(k + vn)

n
≥ λ

}
≤

C

λ
‖φ‖1.

Take φ = δ0, the Dirac mass at 0. This weak inequality becomes

card
{

k ∈ Z : k = −vn for some n with
an

n
≥ λ
}
≤

C

λ
.

The left hand side of this weak inequality is then card{n ≥ 1 : an
n ≥ λ}. Suppose though

that an ≥ A for any n ≥ nA. Then for any λ > 0,

card
{

n ≥ 1 :
an

n
≥ λ
}
≥ card

{
n ≥ nA :

A

n
≥ λ
}

= card
{

n ≥ nA :
A

λ
≥ n
}

≥
A

λ
− nA.

Hence, C
λ
≥ A

λ
− nA for any λ > 0. This implies A ≤ C . But A can be as large as we like.

Hence, there cannot be a weak inequality.
When the (vn) are not distinct, then the inequality becomes a similar one with an even

larger value of an corresponding to the distinct values of vn. So again there is no weak
inequality. The Stein-Sawyer theorem, see Garsia [9], and the ergodicity of τ shows that
failure of the weak inequality implies that there exists a positive function f ∈ L1(X) such

that supn
f (τ vn x)

n an =∞ a.e.
The following is then an immediate consequence of Proposition 2.12.

Proposition 2.13 Let (an) be any sequence with limn→∞ an = ∞. Then for each p, 1 <
p <∞, there is a positive function f ∈ L1(X) such that the ratios Rn f (x) = an

np

∑n
k=1 f p(τ kx)

diverge a.e.

The result in Proposition 2.12 also shows that Corollary 2.8 cannot be improved in the
sense that if (an) is any sequence tending to∞, and τ is ergodic, then for any p, 1 < p <∞,

there exists a positive function f ∈ L1(X) such that
∑∞

n=1( f (τ vn x)
n )pan =∞ a.e.

The conclusion is also that one cannot generally improve on the results in Corollary 2.7.
One might think though, that it is possible to improve Corollary 2.7 if the lengths Ln were
tending to infinity. The next result shows that even with this additional assumption on
(Ln), one cannot improve Corollary 2.7.

Proposition 2.14 Given any sequence (an) with limn→∞ an = ∞, there exists a sequence
(Mn f ) of moving averages with non-decreasing lengths (Ln) such that limn→∞ Ln = ∞, but
such that for a generic set of functions f ∈ L1(X),

( ∞∑
n=1

∣∣∣∣anMn f (x)

n

∣∣∣∣
p)1/p

=∞ a.e.
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Proof This is immediate from the result in [16] which gives the same divergence for the
term anMn f (x)

n .
However, there is another way to describe the rate result in Corollary 2.9 that is success-

ful. We state this just for the case p = 2 to illustrate the point. The proof follows easily
from Corollary 2.8 by partial summation.

Proposition 2.15 For any positive function f ∈ L1(X), the series
∑∞

n=1

(
1
n2

∑n
k=1 f 2(τ kx)

)
1
n

converges a.e.

3 Counting Jump Oscillations

Inherent in the proofs of the main results in Section 2 are counting criteria that mea-
sure how often sums associated with ergodic transformations are in certain intervals of
the range. In the same sense, upcrossing and jump inequalities have been studied in er-
godic theory to get a better understanding of the behavior of the classical ergodic averages.
This was originally done in Bishop [4]. Recently, these issues were considered in Kalikow
and Weiss [15] and in Jones, Kaufman, Rosenblatt, and Wierdl [13]. The jump inequality
obtained in [13] is discussed in this section and it is shown that it is the best possible result
for jumps, although one can do better when dealing just with upcrossings, in both the case
of martingales and ergodic averages.

3.1 The Martingale Case

Let f = ( fn) be a martingale, and let Λ(λ, f , x) denote the number of λ jumps. That
is, let Λ(λ, f , x) = max{n : there exist s1 < t1 ≤ s2 < t2 · · · ≤ sn < tn, such that
| ftk (x)− fsk (x)| ≥ λ}.

It is well-known that

µ
(
{x : Λ(λ, f , x) ≥ n}

)
≤

C

λ
√

n
‖ f ‖1

where as usual ‖ f ‖1 = supn≥1 ‖ fn‖1. See for example Kachurovskii [14], Theorem 35, or
Jones, Kaufman, Rosenblatt, and Wierdl [13], Section 6. Also, from either of these articles
one can see this more general result.

Theorem 3.1 For 1 ≤ p <∞ we have

µ
(
{x : Λ(λ, f , x) > n}

)
≤

c

λpnp/2
‖ f ‖p

p.

Remark 3.2 a) The article Kachurovskii [14] is really worth close examination because it
contains a number of interesting theorems; in particular it contains results and questions
related to the article by Jones, Kaufman, Rosenblatt, and Wierdl [13] as well as to this
present article.
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b) The constant here in Theorem 3.1 does not depend on p.

Rewriting this result for p = 1, we see that

λ
√

nµ
(
{x : Λ(λ, f , x) ≥ n}

)
≤ C‖ f ‖1.(3.1)

For upcrossings, there is a similar inequality. For any α < β, let N(α, β, f , x) denote the
number of upcrossings between α and β. That is, we take N(α, β, f , x) to be the maximum
value of n such that there exists s1 < t1 ≤ s2 < t2 · · · ≤ sn < tn for which ftk ≤ α and
fsk ≥ β}. Then it has been shown that

(β − α)nµ
(
{x : N(β, α, f , x) ≥ n}

)
≤ C‖ f ‖1.(3.2)

This can be found in Doob [8] or in Bishop [4, 5].

It is natural to ask if the inequality for jumps can be improved, and in particular, can
√

n
in inequality (3.1) be improved to obtain n as in (3.2). In fact we will show that Theorem 3.1
is a sharp result by proving the following.

Theorem 3.3 Let Φ(n) denote any strictly increasing function with limn→∞ Φ(n) = ∞.
Then for each p, 1 ≤ p < ∞, there is a martingale f = ( f1, f2, . . . ) such that f ∈ Lp, but
such that we have

sup
n

np/2Φ(n)µ
(
{x : Λ(1, f , x) > n}

)
=∞.(3.3)

Remark 3.4 Take for instance p = 1 and Φ(n) =
√

n to see that the analog of (3.2) does
not hold for jumps. Indeed, nothing faster than

√
n by itself will work on L1(X).

Proof For a given pair of increasing sequences (Nk) and (nk) of positive integers, we define
a dyadic martingale f as follows. Let s1 = 0, and for k > 1, define sk to be the maximum of
{sk−1 + Nk−1, nk}. Define dk =

∑Nk

j=1 r j+sk where as usual, rk denotes the kth Rademacher

function. Note that since sk ≥ nk, all dk will be periodic with period 1
2nk .

Define

f (t) =
∞∑

k=1

dk(t)1[0,1/2nk )(t).

Then, using the fact that the Lp-norms of Rademacher sums are all equivalent, we get
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for a suitable constant cp,

‖ f ‖p =
(∫ 1

0

∣∣∣
∞∑

k=1

dk(t)1[0,1/2nk )(t)
∣∣∣p dµ(t)

) 1
p

≤
∞∑

k=1

(∫ 1

0
| dk(t)1[0,1/2nk )(t)|p dµ(t)

) 1
p

≤
∞∑

k=1

( 1

2nk

∫ 1

0
| dk(t)|p dµ(t)

) 1
p

≤
∞∑

k=1

( 1

2nk

) 1
p
‖dk‖p

≤ cp

∞∑
k=1

( 1

2nk

) 1
p
‖dk‖2

≤ cp

∞∑
k=1

( 1

2nk

) 1
p√

Nk.

Fix p, 1 ≤ p <∞. For each integer k > 0 select Nk so thatΦ(Nk) ≥ k2k. Now generally

µ
(
{x : Λ(1, f , x) > Nk}

)
≥ µ
(
{x : Λ(1, dk1[0,1/2nk ), x) > Nk}

)
≥

1

2nk
.

Consequently, if we take nk such that we have N p/2
k 2k ≤ 2nk ≤ 2N p/2

k 2k, then we have

N p/2
k Φ(Nk)µ

(
{x : Λ(1, f , x) > Nk}

)
≥ N p/2

k k2k 1

2nk
≥

k

2
.

Hence if we could show that f ∈ Lp, we would be done. However, using the estimate above,
and since our choice of nk implies

√
Nk ≤ (2nk/2k)1/p, we see that

‖ f ‖p ≤ cp

∞∑
k=1

( 1

2nk

) 1
p
(2nk

2k

) 1
p
≤ cp

∞∑
k=1

1

2k/p
<∞.

Remark 3.5 a) The argument did not depend on the fact that we used the Rademacher
functions in the natural order. We could start at any Rademacher function we like, and as
long as all the Rademacher functions are different, we could use any subsequence of them
to complete the construction. All we really used was that the Rademacher functions are in-
dependent, and take only the values±1. By repeating the argument with later Rademacher
functions at each stage, and adding the results with suitable normalizations, we can create
a bounded function f such that

sup
λ,n

λ
√

nφ(n)µ
(
{x : Λ(λ, f , x) ≥ n}

)
=∞.(3.4)
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To get this unboundedness for bounded functions does require though that one vary the
scale factor λ, otherwise it would be contradicting Theorem 3.1.

b) Theorem 3.1 also shows that the Lp function constructed in Theorem 3.3 cannot be
in any Lr , for r > p. Hence neither Theorem 3.3 nor Theorem 3.1 can be improved for any
finite p.

3.2 The Integer Case

We want to establish the above result in the ergodic theory setting, but before we do that
we need to establish the analogous result on Z. On Z we will consider the analog of the
Rademacher functions. For each n ≥ 0 we define φn : Z → {±1} by φn(k) = 1 if 0 ≤ k <
2n, φn(k) = −1 if 2n ≤ k < 2n+1, and φn is periodic with period 2n+1.

We also use the “density measure” D, defined as follows. Let ψ be a function from Z to
R. Let

D̄(ψ) = lim sup
L→∞

1

2L + 1

L∑
x=−L

ψ(x)

and

D(ψ) = lim inf
L→∞

1

2L + 1

L∑
x=−L

ψ(x).

Let D(ψ) = D(ψ) when D(ψ) = D̄(ψ). While D(ψ) may fail to be defined, D̄(ψ) and
D(ψ) will always exist, although they may not be finite. For a set B, let D(B), D̄(B) and
D(B) denote D(1B), D̄(1B) and D(1B) respectively. Also, for 1 ≤ p < ∞, let ‖ψ‖p denote(
limL→∞

1
2L+1

∑L
x=−L |ψ(x)|p)1/p when this limit exists.

With this notation, we have the following version of the Weak Law of Large Numbers.

Proposition 3.6 Let ψ1, ψ2, . . . satisfy the following:

1. There is a finite constant µ such that D(ψi) exists and D(ψi) = µ for each i.
2. There is a finite constant σ2 such that D([ψi −µ]2) exists and D([ψi −µ]2) = σ2 for each

i.
3. For all i 6= j we have D(ψiψ j) exists and D

(
(ψi − µ)(ψ j − µ)

)
= 0.

Then limN→∞
1
N

∑N
i=1 ψi(x) = µ in the sense that for each ε > 0,

lim
N→∞

D̄
(
{x :
∣∣∣ 1

N

N∑
i=1

ψi(x)− µ
∣∣∣ > ε}

)
= 0.
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Proof For fixed N > 0 we have

D̄
{∣∣∣ 1

N

N∑
i=1

ψi − µ
∣∣∣ > ε

}
= lim sup

L→∞

1

2L + 1

L∑
x=−L

1{| 1
N

∑N
i=1 ψi−µ|>ε}(x)

≤ lim sup
L→∞

1

2L + 1

L∑
x=−L

1

ε2

( 1

N

N∑
i=1

ψi(x)− µ
)2

=
1

ε2

1

N2
lim sup

L→∞

1

2L + 1

L∑
x=−L

N∑
i=1

N∑
j=1

(
ψi(x)− µ

)(
ψ j(x)− µ

)

≤
1

ε2

1

N2

N∑
i=1

N∑
j=1

lim sup
L→∞

1

2L + 1

L∑
x=−L

(
ψi(x)− µ

)(
ψ j(x)− µ

)

=
1

ε2

1

N2

N∑
i=1

N∑
j=1

D
(
(ψi − µ)(ψ j − µ)

)

≤
1

ε2

1

N2

N∑
i=1

σ2

=
σ2

ε2

1

N
.

Since ε and σ2 are fixed, we see that the limit as N goes to∞ will be zero.
We can now use Proposition 3.6 to derive a result similar to Theorem 3.3 for for func-

tions on Z. We need here the analogue of Λ(λ, f , x). Let Anψ( j) = 1
n

∑n
k=1 ψ( j + k). Let

Λ(λ, ψ, j) denote the number of λ jumps of the averages Anψ( j). That is, let Λ(λ, ψ, j) =
max{n : there exist s1 < t1 ≤ s2 < t2 · · · ≤ sn < tn, such that |Atkψ( j)− Askψ( j)| ≥ λ}.

Theorem 3.7 If Φ(n) denotes any strictly increasing function with limn→∞ Φ(n) = ∞,
then for each p, 1 ≤ p <∞, and each β > 0, there is a function φ with ‖φ‖p ≤ 1 such that
we have

sup
n

np/2Φ(n)D
(
{ j : Λ(1, φ, j) ≥ n}

)
> β.(3.5)

Proof Fix d and L, positive integers to be determined later, and let ∆`φ( j) = A2d`φ( j) −
A2d`−1φ( j). We will make some preliminary observations concerning the averages of the
functions φn introduced above.

First, for m < k, ∆kφdm( j) = 0 for all j, since we are taking long averages compared
to the period of φdm, each average covers an integer multiple of a full period of φdm, and
φdm has mean value zero. Also a simple computation shows that |∆`φd`| ≥

1
2 on a set

B`, with B` periodic, and D(B`) ≥
1
4 . We can take B` to be the second quarter of each

dyadic interval of length 2d`. Here D(B`) exists because Bell is periodic. But also for m > `,
∆`φdm( j) can be as large as 1, yet can be non-zero only at the last 2d` points at the ends of
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dyadic intervals of length 2dm. Hence if E(`,m) denotes the set where∆`φdm( j) 6= 0, then
D
(
E(`,m)

)
≤ 2d(`−m).

The sets B` are independent in the sense that

D(B` ∩ B j) = D(B`)D(B j),

so the functions 1B`−D(B`) are orthogonal with respect to D. Thus, Proposition 3.6 implies
that if N is large enough, then 1

N

∑N
k=1 1B` >

1
8 on a set B, with D(B) > 7

8 . Let E` =⋃L
m=`+1 E(`,m). Then

D(E`) ≤
L∑

m=`+1

D
(
E(`,m)

)

≤
∞∑

m=`+1

1

2d(m−`)

≤
2

2d
.

We are now ready to define our function φ. As in the proof of the martingale case, we will
need two increasing sequences, (Nk) and (nk). Define s1 = 0 and select sk ≥ sk−1 + dNk−1.
We will impose additional conditions on (sk) later, but for now note that it can grow as fast
as we like. Let dk =

∑Nk

j=1 φsk+d j . Let χk = 1[0,8d×2dNk+sk ) on [0, nk× d× 2dNk+sk ) and extend
χk to be periodic on Z. Here we can assume without loss of generality that nk > 8 for all k.
Define φ =

∑L
k=1 dkχk.

Since φ is periodic, ‖φ‖p is well-defined. As before, we need to check

‖φ‖p =
(
D(|φ|p)

) 1
p

=
(

lim
R→∞

1

2R + 1

R∑
j=−R

|φ( j)|p
) 1

p

= lim
R→∞

( 1

2R + 1

R∑
j=−R

|
L∑

k=1

dk( j)χk( j)|p
) 1

p

≤ lim
R→∞

L∑
k=1

( 1

2R + 1

R∑
j=−R

|dk( j)χk( j)|p
) 1

p

≤
L∑

k=1

( 8

nk

) 1
p

lim
R→∞

( 1

2R + 1

R∑
j=−R

|dk( j)|p
) 1

p

≤ cp

L∑
k=1

( 1

nk

) 1
p

lim
R→∞

( 1

2R + 1

R∑
j=−R

|dk( j)|2
) 1

2

≤ cp

L∑
k=1

( 1

nk

) 1
p√

Nk,
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where in the next to the last step we used a version of Khinchine’s inequality, and in the
final step, the orthogonality of the sequence (φ j).

Next select Nk so that Φ(Nk) > k2kp/cp
p , and then select nk such that N p/2

k 2kp ≤ cp
pnk ≤

2×N p/2
k 2kp. The remainder of the proof involve making estimates of D on various periodic

sets obtained from φ, and so at least the value of D will always be well-defined. First, we
want to show that

D

({
j : Λ
(1

4
, φ, j
)
>

Nk

16

})
≥ D

({
j : Λ
(1

2
, dkχk, j

)
>

Nk

16

})
≥

1

nk

Then we will have as before

N p/2
k Φ(Nk)D

({
j : Λ
(1

4
, φ, j
)
> Nk

})
≥ N p/2

k (k2kp/cp
p)

1

nk
≥

k

2
.

Taking L > 2β will allow us to obtain the conclusion of inequality (3.5). Our choices of
(Nk) and (nk), and the computation of ‖φ‖p, allow us to conclude that ‖φ‖p ≤ 1. Hence
we just need to obtain the desired estimate for D({ j : Λ( 1

4 , φ, j) > Nk
16 }).

For sk ≤ ` ≤ sk + Nk, we have |∆`(dk)( j)| ≥ 1
2 1Bk\Ek

( j), since |∆`(φd`)( j)| ≥ 1
2 on B`,

and∆`(φdm)( j) = 0 if k 6= m and j /∈ Ek. Therefore,

Λ
(1

2
, dk, j

)
≥

sk+Nk∑
`=sk

1B`\E`( j)

≥
sk+Nk∑
`=sk

1B`( j)−
sk+Nk∑
`=sk

1E`( j)

= G( j)−H( j).

From Proposition 3.6, we know that if Nk is chosen large enough, G( j) is at least 1
2

Nk
4

on the set B, with D(B) ≥ 7
8 . If we could show that H( j) is at most Nk

16 on a set C , with
D(C) > 7

8 , then we would have Λ( 1
2 , dk, ·) >

Nk
16 on the set B ∩C , with D(B ∩C) > 3

4 .
We have

D
({

j : H( j) >
Nk

16

})
≤

16

Nk
D(H)

≤
16

Nk
D
(sk+Nk∑
`=sk

1E`

)

≤
16

Nk
Nk ×

2

2d

≤
32

2d
.

Taking d = 8 shows D({ j : H( j) > Nk
16 }) ≤

1
8 .
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Let C = { j : H( j) ≤ Nk
16 }. If j ∈ B ∩ C , then G( j) − H( j) ≥ Nk

8 −
Nk
16 =

Nk
16 , and we

know D(B ∩C) ≥ 3
4 . Hence Λ( 1

2 , dk, ·) >
Nk
16 on the set B ∩C , with D(B ∩C) > 3

4 , which
implies D

(
{Λ( 1

2 , dk, j) > Nk
16 }
)
≥ 3

4 .
We now need to use our result about dk to imply a result about φ. This is not difficult.

First note that for any `, sk ≤ ` ≤ sk + Nk, we have∆`

(
dk( j)χk( j)

)
= ∆`dk( j) if j is in the

second 2dNk+sk steps of a period of χk. This follows because with ` in the given range, if we
start in the second block of length 2dNk+sk , the operator∆` only averages over points which
are in the support of χk. Hence D

(
Λ( 1

2 , dkχk, ·) ≥
Nk
16

)
≥ 1

nk
.

Finally, if we select (sk) increasing rapidly enough, and if m 6= k, then for sk ≤ ` ≤ sk+Nk

we will have∆`dm( j) as close to zero as we want, and in particular, less than 1
4 , for j in the

second 2dNk+sk steps of a period of χk. To see this, observe that the length of the blocks
we are averaging over are either much shorter than the period associated with dk, or so
much longer that we average over a full period, and get zero. Hence, since for such j we
have ∆`φ( j) =

∑L
k=1∆`dk( j)χk( j). We now use the above estimates, and the proof is

complete.

3.3 The Ergodic Case

We can now state the same result for the ergodic case. Let (X,Σ, µ) denote a proba-
bility space, and τ : X → X a measurable measure preserving ergodic transformation.

For f : X → X, define the operators Ak f (x) = 1
k

∑k−1
n=0 f (τ nx). As in the martingale

case, define Λ(λ, f , x) to be the number of λ jumps taken by the process Ak f (x). That
is, Λ(λ, f , x) = max{n : there exist s1 < t1 ≤ s2 < t2 · · · ≤ sn < tn, such that
|Atk f (x)− Ask f (x)| ≥ λ}.

We first state the following proposition which is almost immediate from the proof of
Theorem 3.7.

Proposition 3.8 If Φ(n) denotes any strictly increasing function with limn→∞Φ(n) = ∞,
then for each p, 1 ≤ p < ∞, any ε > 0, and any constant K, there is a function f such that
‖ f ‖p ≤ ε such that we have

sup
n

np/2Φ(n)µ
(
{x : Λ(1, f , x) ≥ n}

)
≥ K.

Proof Initially, choose k sufficiently large so that cp( 1
2

1
2k )1/p ≤ ε and such that k > 2(4p)K.

Here k is chosen so that with λ = 1
4 , we have k

2λ
p > K. Also, consider the function

dkχk constructed in the proof of Theorem 3.7. Let pk denote the period of χk. Form a
Rokhlin tower of height pk, and with error less than 1

pk
. Copy the function dkχk to the

tower, and define f to be this function on the tower, and zero off the tower. The condition
that cp( 1

2
1
2k )1/p ≤ ε guarantees that ‖ f ‖p ≤ ε. Hence, the desired conclusion follows from

the properties of the function dkχk and the choice that k > 2(4p)K once k is sufficiently
large to allow for the effect of the error 1

pk
.

This result certainly denies the possibility of there being an Lp-norm inequality that
bounds supn λ

pnp/2Φ(n)µ
(
{x : Λ(λ, f , x) ≥ n}

)
. But with a little more work we can

construct a single function in the spirit of Theorem 3.7.
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Theorem 3.9 If Φ(n) denotes any strictly increasing function with limn→∞ Φ(n) = ∞,
then for each p, 1 ≤ p <∞, there is a function f with ‖ f ‖p <∞, such that we have

sup
n

np/2Φ(n)µ
(
{x : Λ(1, f , x) ≥ n}

)
=∞.

This result is typical of a corollary of a result like the one in Proposition 3.8 that of-
ten needs to be proved. It is like what one gets when applying the method of Sawyer
to an unbounded maximal function. However, here the quantities in question are not
quite subadditive. For this reason, it is perhaps worthwhile to formulate a general prin-
ciple which gives Theorem 3.9. Suppose that G(λ, n) : Lp(X) → R for each value of λ
and n. Here we take λ > 0 and n > 0. We say G(λ, n) is continuous on Lp(X) when
G(λ, n) f tends to 0 as ‖ f ‖p tends to 0. We say that {G(λ, n) : λ > 0, n > 0} is quasi-
subadditive if 1) for any f ∈ Lp(X), any λ and any n, G(λ, n)(− f ) = G(λ, n) f , and
2) there is a constant C > 0, such that for any f1, f2 ∈ Lp(X), any λ and any n, we have
G(2λ, 2n)( f1 + f2) ≤ C

(
G(λ, n) f1 + G(λ, n) f2

)
.

Proposition 3.10 Suppose that {G(λ, n) : λ > 0, n > 0} is a family of continuous functions
on Lp(X) for some p, 1 ≤ p ≤ ∞, which is quasi-subadditive. Suppose that for some fixed
λo, for any K, ε > 0, there exists f ∈ Lp(X) such that ‖ f ‖p < ε and supn>0 G(λo, n) f ≥ K.
Then there exists γo > 0 and f ∈ Lp(X) such that supn>0 G(γo, n) f =∞.

Proof We will choose a sequence ( fm) in Lp(X) such that ‖ fm‖p ≤ εm where each εm > 0
and
∑∞

m=1 εm <∞. Then the series
∑∞

m=1 fm converges in Lp(X). The choice of the func-
tions is made inductively. Fix a sequence (Km) such that limm→∞ Km =∞. The conditions
needed on (εm) and (Km) for this construction to work are also described inductively.

Let ε1 > 0 be arbitrary and choose f1 such that ‖ f1‖p ≤ ε1 and for some n1, we have
G(λo, n1) f1 ≥ K1. Assume now that we have chosen fm, εm, and nm,m = 1, . . . ,M, such
that ‖ fm‖p ≤ εm ≤

1
2m and G(λo, nm) fm ≥ Km, for all m = 1, . . . ,M. Let SM =

∑M
m=1 fm

with S0 = 0. It is possible that we have supn>0 G(λo
4 ,

n
4 )SM = ∞. If so, with γo =

λo
4 ,

there is nothing left to prove. If not, let CM = supn>0 G(λo
4 , n)SM and continue with the

inductive construction. Let f =
∑∞

m=1 fm. Also, let TM+1 =
∑∞

m=M+1 fm.
Now the quasi-subadditivity of the G(λ, n) shows that for any λ and n, if M ≥ 1,

G(4λ, 4n) fM ≤ C
(
G(2λ, 2n) f + G(2λ, 2n)(SM−1 + TM+1)

)
≤ C G(2λ, 2n) f + C2

(
G(λ, n)SM−1 + G(λ, n)TM+1

)
.

By choosing the values of (εm) appropriately, the continuity hypothesis guarantees that we
can arrange for G(λo

4 ,
nM
4 )TM+1 ≤ 1. Hence, we have for any M ≥ 2,

G
(λo

2
,

nM

2

)
f ≥

G(λo, nM) fM

C
−C CM−1 −C.

Hence, for any M ≥ 2, we have

G
(λo

2
,

nM

2

)
f ≥

KM

C
−C CM−1 −C.
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Therefore, with an appropriate inductive choice of (KM), we can guarantee that
supn>0 G(γo, n) f =∞ with γo =

λo
2 .

Proof of 3.9 By replacing Φ(n) by a more slowly growing increasing function, we can
assume without loss of generality that Φ(2n) ≤ 2Φ(n). It is also not hard to see that
G(λ, n) = µ

(
{x : Λ(λ, f , x) ≥ n}

)
is quasi-subadditive with the constant C = 1.

Therefore, we have the function G(λ, n) = λpnp/2Φ(n)µ
(
{x : Λ(λ, f , x) ≥ n}

)
is quasi-

subadditive. Thus, Proposition 3.8 and Proposition 3.10 complete the proof.
There is another interesting fact about the jump function that the method of this sec-

tion can give us. First, recall that the upcrossing function N(α, β, f , x) actually satisfies
a type of strong (1, 1) estimate. In Bishop [4], it is shown that for any β > α, we have∫

N(α, β, f , x) dµ(x) ≤ 1
β−α

∫ (
f (x)− α

)+
dµ(x). This is a remarkable inequality because

it so much like a strong (1, 1) inequality. The same type of inequality holds for the up-
crossing function for martingales. We have seen here that the correct gauge for jumps of
martingales or ergodic averages on the other hand is

√
Λ(λ, f , x). This function is weak

(1, 1) and strong (p, p) for all p, 1 < p <∞.
These remarks derive from similar results for square functions, so it is not unreason-

able to ask if something better, like integrability, holds for
√
Λ(λ, f , x) just as it did for

N(α, β, f , x). This is the reason that the following three results are quite interesting. We
thank Don Burkholder for allowing us to include his proof of Theorem 3.11. The same
theorem is given in Kachurovskii [14], Theorem 34; see also Bourgain [6], inequality (3.5).
Using the next martingale result will allow us to obtain the same result in the ergodic set-
ting.

Theorem 3.11 There does not exist a constant C such that for all martingales f = ( fn), we
have

∫ √
Λ(1, f , x) dµ(x) ≤ C‖ f ‖1.

Proof Let (rk) be the Rademacher sequence. Let fn =
∑n

k=1 1{s≥k}rk where s is the stop-
ping time s(x) = inf{m ≥ 1 :

∑m
k=1 rk(x) = −1}. Then ( fn) is a martingale with

‖ f ‖1 = supn≥1 ‖ fn‖1 < ∞. Let S f = (
∑∞

n=1 | fn − fn+1|2)1/2 be the square function

and SN f = (
∑N

n=1 | fn − fn+1|2)1/2 be its partial sums. We have

∫ 1

0

√
Λ(1, fn, x) dx =

∫ 1

0

√
min
(
s(x), n

)
dx

=

∫ 1

0
Sn f (x) dx.

But limn→∞

∫ 1
0 Sn f (x) dx =

∫ 1
0 S(x) dx, which we claim is infinite, thus showing there

can be no inequality as above. Indeed, assume that
∫ 1

0 S(x) dx is finite. Let f ? = supn≥1 | fn|.

Then
∫ 1

0 f ? dx would also be finite, since for the type of martingale we are considering,
Burkholder and Gundy [7] have shown that for some constant C , ‖ f ?‖1 ≤ C‖S f ‖1. Note
that
∫

fn(x) dx = 0 for every n. So because f ? ∈ L1(X), we can apply the Dominated
Convergence Theorem to conclude that

0 = lim
n→∞

∫
fn(x) dx =

∫
lim

n→∞
fn(x) dx.
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Since limn→∞ fn(x) = −1 a.e., we see that 0 = −1, which is a contradiction.
By taking the martingale ( f1, . . . , fN ), the initial segment of the martingale in Theo-

rem 3.11, one can also see of course that there is no homogeneous inequality for the class
of closed martingales. But more specifically, it is also easy to see this result.

Proposition 3.12 There is a function f ∈ L1(X), some λ > 0, and an increasing sequence of
σ-algebras (Fn) such that the martingale ( fn) given by fn = E( f |Fn) has

∫ √
Λ(λ, f , x) dµ(x)

=∞.

By using the techniques in Theorem 3.7, Proposition 3.8, and Proposition 3.10, this
result for martingales can be adapted to the ergodic theory case. In particular, we have this
type of result.

Theorem 3.13 Given any ergodic transformation τ , there is f ∈ L1(X) and some
λ > 0, such that for the ergodic averages the associated jump function

√
Λ(λ, f , x) has∫ √

Λ(λ, f , x) dµ(x) =∞.

4 Counting the Trend To Zero

There is a very interesting counting problem that has been considered by Assani in As-
sani [2, 3] with some success. It is connected to some degree to the issues considered here,
especially those in Section 2. Let τ be an invertible measure-preserving ergodic transfor-
mation of a probability space (X, β, µ). Let f ∈ L1(X), f ≥ 0 and let

Nα f (x) = #

{
k ≥ 1 :

f (τ kx)

k
≥ α

}
.

The basic question is whetherαNα f (x) tends to
∫

X f dµ a.e. and in norm asα tends to 0? In
Assani [2], this is shown to be the case in Lp, 1 < p <∞; the a.e. convergence was extended
to the class L log L in Assani [3]. For positive functions f ∈ L1(X), the convergence in L1-
norm also holds. The open problem is whether a.e. convergence holds for L1. This question
reduces to the question of whether the maximal function C f (x) = supα>0 αNα f (x) is weak
type (1, 1).

Let us make one observation that may be useful in resolving this open problem, and
certainly helps in working with related counting problems. For fixed f ∈ L1(X), consider
U f = 1{0≤ f<1} +

∑∞
l=0 2l+11{2l≤ f<2l+1} and L f =

∑∞
l=0 2l1{2l≤ f<2l+1}. Then L f ≤ f ≤ U f

and 2‖L f ‖1 + µ({0 ≤ f < 1}) ≥ ‖U f ‖1. So in making estimates of C f with the intention
of getting a weak type (1, 1) inequality, we can work with either U f or L f in place of f .

Let us use this principle to arrive at several results. We want to deal also with somewhat
more general versions of Nα f . Fix a nondecreasing sequence v = (vk) and let Nv

α f =

#{k ≥ 1 : f (τ vk x)
k ≥ α}. We still use the notation Nα f in the case that vn = n for all n.

Now we can estimate that

Nv
α f (x) =

∞∑
k=1

1{ f◦τvk
k ≥α}(x) ≤

∞∑
k=1

1
{

U f ◦τ
vk

k ≥α}
(x)
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because f ≤ U f . But also, if g1 and g2 are disjointly supported functions in L1(X), then for
any k,

1
{ (g1+g2)◦τk

k ≥α}
= 1
{ g1◦τ

k

k ≥α}
+ 1
{ g2◦τ

k

k ≥α}
.

Hence, denoting {2l ≤ f < 2l+1} by El, for l ≥ 0, and E−1 = {0 ≤ f ≤ 1},

Nv
α f (x) ≤

∞∑
k=1

∞∑
l=−1

1
{

2l+11El
◦τvk

k ≥α}
(x)

=

∞∑
l=−1

#

{
k ≥ 1 :

2l+11El (τ
vk x)

k
≥ α

}

=

∞∑
l=−1

#

{
1 ≤ k ≤ 2l+1/α :

2l+11El (τ
vk x)

k
≥ α

}

=
∞∑

l=−1

#{1 ≤ k ≤ 2l+1/α : τ vk x ∈ El}.

Let Av
m f (x) denote the usual average in ergodic theory, Av

m f (x) = 1
m

∑m
k=1 f (τ vk x), and

let Am f (x) = Av
m f (x) when all vn = n. The above estimate shows that

Nv
α f (x) ≤

∞∑
l=0

b2l+1/αcAv
b2l+1/αc1El (x).

Actually, by using L f instead of U f , we can see that this overestimate for Nv
α f (x) is essen-

tially an underestimate too in the sense that

Nv
α f (x) ≥

∞∑
l=0

b2l/αcAv
b2l/αc1El (x).

Consequently, it is not hard to see that we have the following proposition.

Proposition 4.1 The following are equivalent in the case of an ergodic transformation:
1) For every positive f ∈ L1(X),

lim
α→0+

αNα f (x) =

∫
X

f dµ a.e.,

2) For every positive f ∈ L1(X),

sup
α>0

∞∑
l=0

2lAb2l/αc(1{2l≤ f<2l+1})(x) <∞ a.e.
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This result is dependent on the Pointwise Ergodic Theorem itself since αNα1E is asymp-
totically the averages in the Pointwise Ergodic Theorem. However, for more general se-
quences v, there may be no pointwise convergence result. But given some restricted infor-
mation about averages along v, one can deal with Nv

α f (x) for suitable functions. The next
result is along these lines and gives the result in Assani [2, 3] at least for Lp, 1 < p <∞.

Proposition 4.2 Let v = (vn) be a sequence for which one knows the following two facts:

1) limm→∞ Av
n1E exists a.e. for all E ∈ β.

2) for some p, 1 ≤ p <∞, and some constant C, one has for any λ and any set E ∈ β,

m{sup
m≥1

Av
m1E ≥ λ} ≤

C

λp
m(E).

Then for any r, p < r < ∞, and any positive function f ∈ Lr(X), limα→0+ αNv
α f (x)

exists a.e.

Proof As in Assani [2, 3], it suffices to show that for any positive function f ∈ Lr(X), we
have supα>0 αNv

α f (x) is finite a.e. We use the estimate above that gives

sup
α>0

αNv
α f ≤ C

∞∑
l=−1

2l sup
m≥1

Av
m1El .

We can see this series is finite a.e. as follows. For each l, let cl =
1

2lr/p . Then by 2) above, for
f ∈ Lr(X),

∞∑
l=0

m{sup
m≥1

Av
m1El ≥ cl} ≤ C

∞∑
l=0

2rlm(El)

≤ C‖ f ‖r
r <∞.

Hence, for a.e. x, for large enough l, supm≥1 Av
m1El (x) ≤ cl. But

∑∞
l=0 2lcl converges since

r > p. Hence,
∑∞

l=−1 2l supm≥1 Av
m1El converges a.e. too.

Remark 4.3 The question here which is analogous to Assani’s problem is whether one can
take f ∈ Lp(X) and still get a.e. convergence.

A related problem suggested by the square function results in Section 2 occurs if one
replaces the term f (τ nx) in the above by a general moving averages Mn f (x), with lengths
Ln that are non-decreasing. Indeed, for each positive f ∈ L1(X), consider the operator
Γα f (x) = α#{n ≥ 1 : Mn f (x)

n ≥ α}. Theorem 2.1 shows that ‖Γα f ‖1 ≤ C‖ f ‖1. This
fact and Assani’s result in [2] suggest the question, for Ln increasing to∞, whether Γα f (x)
converges a.e. and in norm as α tends to 0? This question remains unanswered. But
to prove the convergence in L1-norm for this quantity, a standard approach would involve
first finding an L1-norm dense subset G in the positive functions in L1(X) for which Mn f (x)
converges a.e. for any f ∈ G. It is not clear if such a set G exists.

Nonetheless, the main results of Section 2 do provide some information about the level
count in Γα f (x). Indeed, it follows directly from Corollary 2.7 that we have this rate result.
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Proposition 4.4 For any p, 1 < p <∞, and for any positive function f ∈ L1(X),

lim
α→0+

αp#

{
n ≥ 1 :

Mn f (x)

n
≥ α

}
= 0 a.e.

Proof For each fixed N ≥ 1, we have

αp#

{
n ≥ 1 :

Mn f (x)

n
≥ α

}
≤ αpN + αp#

{
n ≥ N + 1 :

Mn f (x)

n
≥ α

}

≤ αpN +
∞∑

n=N

(
Mn f (x)

n

)p

.

The proposition follows immediately from this estimate and Corollary 2.7.

The same principle can be coupled with Corollary 2.8 to get a rate result for a general-
ization of Assani’s problem, where the powers of τ are allowed to be arbitrary.

Proposition 4.5 Let (vk) be a sequence of integers and fix p, 1 < p < ∞. Then for any
positive function f ∈ L1(X),

lim
α→0+

αp#

{
k ≥ 1 :

f (τ vk x)

k
≥ α

}
= 0 a.e.

Remark 4.6 If the powers (vk) are lacunary, then even for characteristic functions

α#{k ≥ 1 : f (τ vk x)
k ≥ α} will not converge a.e. as α tends to 0. So this result gives control

of the degree of divergence for this type of level counting. It is probably best possible, but
that is not completely clear yet.

There is another interesting connection between the behavior of C| f | and the behav-

ior of the p-norms of Section 2. Consider the norms πp f (x) = (
∑∞

n=1 |
f (τ nx)

n |
p)

1
p . Let

Π f (x) = sup1<p≤2(p − 1)πp f (x). Assani in [2] and [3] considered the behavior of
(p − 1)πp f (x) as p approaches 1. He poses there the question of what happens a.e. with
L1 functions. This is not at all clear yet. In Assani [3] there is an answer to this question
in case f ∈ L log L, analogous to the results that Assani has proven about C| f |(x) in this
case. However, we can say that if C| f |(x) satisfies a weak (1, 1) estimate in L1(X), then so
doesΠ f (x). It would also then follow that for ergodic transformations and f ∈ L1(X), one
has limp→1+ (p − 1)πp f (x) =

∫
X | f | dµ in L1-norm and a.e. too. To see this we need only

observe the following result.

Proposition 4.7 If for f ∈ L1(X), C| f |(x) is finite a.e., then Π f (x) is finite a.e.
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Proof Assume that f is positive. Estimate as follows:

(p − 1)
∞∑

n=1

∣∣∣∣ f (τ nx)

n

∣∣∣∣
p

= (p − 1)
∞∑

n=1

∣∣∣∣ f (τ nx)

n

∣∣∣∣
p( ∞∑

m=0

1
{ 1

2m+1≤
f◦τn

n < 1
2m }

(x) + 1
{1≤ f◦τn

n }
(x)

)

= (p − 1)
∞∑

n=1

∣∣∣∣ f (τ nx)

n

∣∣∣∣
p( ∞∑

m=0

1{ 1
2m+1≤

f◦τn

n < 1
2m }

(x)

)

+ (p − 1)
∞∑

n=1

∣∣∣∣ f (τ nx)

n

∣∣∣∣
p

1{1≤ f◦τn

n }
(x).

Let the first sum in this last expression be denoted by Σ1(p, x) and the second sum be

denoted by Σ2(p, x). For a.e. x, we have f (τ nx)
n ≥ 1 only finitely many times. Hence

sup1<p≤2 Σ2(p, x) is finite a.e. for any f ∈ L1(X). But also

Σ1(p, x) ≤ (p − 1)
∞∑

m=0

∞∑
n=1

1

2mp
1
{ 1

2m+1≤
f◦τn

n < 1
2m }

(x)

≤ (p − 1)
∞∑

m=0

1

2mp
#

{
n :

f (τ nx)

n
≥

1

2m+1

}

≤ (p − 1)
∞∑

m=0

2m+1

2mp
C f (x).

Since
∑∞

m=0
2m+1

2mp =
∑∞

m=0
1

2m(p−1) ≤ 3 1
p−1 , this shows that sup1<p≤2 Σ1(p, x) is finite

a.e. x whenever C f (x) is finite a.e.

Remark 4.8 It is not clear whether either Π f (x) or C| f |(x) is finite a.e. for every f ∈
L1(X). However, an inspection of the proofs of the finiteness a.e. of the norms πp f (x) for
f ∈ L1(X) shows that the factor p − 1 is certainly the correct factor to use as p approaches
1.
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