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Abstract

This study starts with a simple model by which Hardy-Weinberg proportions are attained in a single generation while maintaining gene
frequencies. The question of differentiating between random and non-random mating is explored by simulation. Sample mating proportions
are generated using the model as base. The difficulty of differentiating between random and non-random mating is illustrated.
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Despite the fact that in 1988 respected geneticist C. C. Li
demonstrated that Hardy-Weinberg proportions can be main-
tained by non-random mating, and that the subject was worth
further investigation, the genetics community maintains the
pretence of ‘random mating’. This paper illustrates how a sample
generated by non-random mating frequently can be perceived as
coming from a population practising random mating.

The title of this article has been borrowed from the song in the
musical Man of La Mancha. It expresses the notion of an
unattainable ideal. Perfect random mating and Hardy-Weinberg
proportions are unattainable in practice. As an abstraction it is not
obvious how to define random mating for a finite population. This
does not exclude Hardy’s law from practical application. Weinberg
(1908) used the formulae to study the propensity to produce twins
in a segment of the German population. The textbook presentation
of the Hardy-Weinberg principle should be rewritten to include
pseudo- and quasi-random mating.

Smith (1969, p. 200) expresses the traditional view of the
Hardy-Weinberg law as follows: ‘Now married couples do not
come together on a basis of their MN blood-groups, whatever other
reasons they may have. So we may well expect that, as far as blood-
groups are concerned, mating will be at random (“panmixia”)’.
Following this assumption, Smith produces the frequency of
couple MN, MM chosen at random from the population as Pyp X
Pyiv- Smith then finds the frequencies of a child drawn at random
from the population to be the Hardy-Weinberg proportions.

Stark (2023) presents a concise genetics model that produces
Hardy-Weinberg frequencies for an autosomal locus with two
alleles, in one generation, starting from arbitrary frequencies. This
model provides some justification for the fact that approximate
Hardy-Weinberg proportions are often observed. In this model
mating proportions are controlled by a single parameter & which
allows flexibility. Setting h = 0 defines ‘random mating’. The object
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of this paper is to illustrate, by simulation, that it is difficult to
distinguish random from non-random mating in samples of
mating proportions generated by setting a non-zero value of h.

It appears that the details of Li’s paper are not well known. For
this reason a brief outline is given in the next section. This is
followed by the model of quasi-random mating, the simulation and
a section that attempts to create an impression of how the genetics
community views the Hardy-Weinberg law.

Pseudo-Random Mating

The Wikipedia version of the Hardy-Weinberg principle has
obscured the basic simplicity of G. H. Hardy’s (1908) original law.
Also, it has diverted attention from the observation by C. C. Li
(1988) that Hardy-Weinberg proportions can be maintained by
non-random mating which Li called ‘pseudo-random mating’. In
Li’s notation random mating is defined by f; = fif; and non-
random mating by f; = fif; + dj;, where dj; is the deviation from
random-mating frequency. Li (1988) says: ‘The properties of
panmixia are well known’ (p. 731).

C. C. Li (1988) defined pseudo-random mating by means of the
model shown in Table 1, with minimal explanation, except by
pointing out that the mating proportions given can be shown to
produce offspring in the same proportions as the parents. He says
that Table 1 has the ‘pseudo-random mating property’ (p. 732).
Table 1 does not have equal reciprocal mating frequencies, unlike
Hardy’s model. Later, Li reaches the symmetrical model
characterized by the condition ¢33 = 4c;,, as dealt with in the next
section. This condition reproduces any genotypic distribution.

The mating proportions given in Table 1 follow Li’s
prescription given in the first paragraph of the introduction
above. The quantity x can be varied providing it conforms to the
constraints of the table. Li considers other aspects of pseudo-
random mating that do not change the main property of Table 1,
which is that the offspring have the same genotypic proportions as
the parents. The terms involving x cancel each other as can be
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Table 1. Algebraic mating proportions reproducing Hardy-Weinberg offspring
devised by C. C. Li (1988). The order of genotypes has been rearranged.

Male\female AA BB AB Total
AA q*+x p2q® + 2x 2pq® — 3x G
BB P?q? + 3x p* + 4x 2p3q — Tx p?
AB 2pq° — 4x 2p3q — 6x 4p?q? + 10x 2pq
Total q? p? 2pq 1
Table 2. Symbolic mating proportions reproducing offspring
Male\female AA BB AB Total
AA €11 €1 Ci3 Gy
BB Cn Cn Co3 Gy
AB C31 C32 C33 G3
Total G, G, Gs 1

shown by applying Mendel’s rule to the mating proportions. The
other terms follow Hardy’s rule.

Other sets of coefficients for x can be found as explored by Li.
The details of the logic involved may be the reason why the genetics
community has not embraced Li’s findings. The other aspects of
pseudo-random mating considered by Li are parental correlation,
gametic independence and sib-sib correlation. Following Wright
(1921), Li gives values 0, 1 and 2 to genotypes. Li makes an
ambiguous comment: ‘Since there are an infinite number of
possible pseudo-random mating patterns, we cannot be sure that
none of them exists in nature’ (p. 733). Li concludes: “‘When we
observe reasonable agreement with random mating expectations
from a sample, we really could not be sure what the mating pattern
might be in the population’ (p. 737).

Quasi-Random Mating

Consider an autosomal locus with two alleles A and B and
genotypes AA, BB and AB numbered 1, 2 and 3. Mating pairs are
formed in the current generation to produce offspring in the next.
The proportions of the mating pairs are given symbolically in
Table 2. The elements c;; are non-negative and symmetrical in
value (¢; = ¢;;) and sum to 1.

Suppose that the genotypic proportions are

G, = ¢° + Fpg; G, = p* + Fpg; G3 = 2pq(1 — F),

F measures departure from Hardy-Weinberg form and the gene
frequencies are g = (2G; + G3)/2;p = (2G, + G3)/2 =1 —q¢.
The mating frequencies are

C, ij

= G,G;(1 + hee;/v) (1)
where ¢; = p(F —1)/(q + Fp);e; = q(F = 1)/(p + Fg)ses = 1;
and v = pg(1 — F?)/((q + Fp)(p + Fq)). For fixed g, v increases
monotonically from zero to 1 as F decreases from 1 to zero.

The gene frequencies are not changed through the action of (1).
Subject to constraints / can be chosen over a wide range allowing
uncountable possibilities for varying the mating regime but still
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producing, in one generation, offspring distributed according to
the Hardy-Weinberg formulae:

H, = qz;Hz ZPZ;H3 = 2pq. (2)

This can be verified by calculating the offspring frequencies by
applying Mendel’s rule to (1):

AA ¢y +ci3 + €33/4 BB ¢y + €3 + €33/4 AB 201, + €13 + 63 + ¢33/2.

A numerical example illustrating model (1) is given in Stark (2023).

The Simulation

The object of this note is to explore the question of whether a
standard statistical test is likely to be able to identify a departure
from random mating in a hypothetical collection of genetic data.

The performance of an estimator of h assuming that couples are
formed following model (1) is studied by simulation. This is done
by drawing random samples of couples and using the observed
numbers of pairs of genotypes to calculate g and F from each
sample and, using these values, to make a maximum likelihood
estimate of A. It is assumed that the only information available is
the number of pairs of each type and so estimates of g and F must
first be made from these counts.

Denoting the random number of pairs of genotypes i and j by
n;;, the likelihood of the sample is proportional to

H (GZG](I + heiej/V))n’j. (3)

ij

Heuristic estimates of g and F are formed:
using the notation given above the estimates from each
sample are

q = (4nyy + 2nyy + 3n3 + 2ny; + ny3 + 3n3; + 13,
+ 2n33)/(4N),

and

F =1~ (3 + nys + n3; + n3, + 2n33) / (4Ng(1 — q)),

where N is the number of couples in the sample. Using these
estimates of q and F, taking the logarithm of expression (3), for
each sample the maximum likelihood estimate of k is obtained.
This is done by taking a fine grid of potential values of h and
choosing the one of greatest likelihood.

Figure 1 illustrates a typical outcome, in this case by generating
couples taking h = 1/200. The mean of the data displayed in the
histogram is 0.005442 and the standard error is 0.0201. In this case
2500 couples were generated in each sample and 1000 estimates of
h were made. Although this is of lesser interest the starting value of
q="Y and of F = 1/3. The important point to note is that there is no
clear distinction between 4 =0 and values near this.

As Figure 1 illustrates, there is no reason why a test of goodness
of fit might not contradict the Hardy-Weinberg expectation but
may be underpinned by non-random mating.

Figure 2 gives an indication of the dependence of the estimate of
h on the size of the sample of pairs of mating couples. The number
of couples is plotted on the horizontal axis and the standard error
of estimate on the vertical.
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Figure 1. Histogram of estimates of h based on samples
generated from a population value h =1/200.
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Wright (1959, p. 107) indicates the place of the Hardy-Weinberg
principle as follows:
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Figure 2. Simulated standard errors of estimates of h as a
function of the size of samples of the number of couples N.

The theoretical genetics of populations may be considered to have begun
with [Karl] Pearson’s demonstration that the 1:2:1 Mendelian ratio tends to
maintain itself indefinitely in a large random-breeding population derived
from F, of a cross. A few years later Hardy and Weinberg independently
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pointed out that any array of gene frequencies at a locus (3 q;,Aj,, where
Ay isa particular allele at locus Ayand g, is its proportional frequency) tends
to remain unchanged in a large self-contained population in the absence of
disturbing factors such as mutation and selection, and thus that the
frequency of the zygotes resulting from random mating becomes stable
immediately after attainment of equality of gene frequencies in the sexes in
the array (3 q; A;,)? for one locus. If mating is not at random, the zygotic
array, in the absence of other disturbing factors, is given by
(1-F)[X a4 )*+ F(q,{All Ap), where F is the inbreeding coefficient,
defined as the correlation between uniting gametes with respect to additive
effects.

This statement, which is typical of the genetics literature, conflates
the essence of Hardy’s original deterministic abstraction with
qualifications about real populations that would make them
consistent with Hardy’s model. This leaves no room to
accommodate Li’s pseudo-random mating or the quasi-random
mating model.

Dobzhansky (1951) introduces the Hardy-Weinberg law by
combining two strains of a sexual and cross-fertilizing organism
that differ in a single gene AA and aa, that they interbreed at
random, and that they are introduced in the proportions q of AA
and (1—q) of aa. He asks the question, what will be the resulting
Mendelizing population in the next and following generations. He
says that the solution is the Hardy-Weinberg, or the binomial
square, law. He adds: ‘If there is some breeding preference, such as
a tendency towards inbreeding or self-fertilization, the relative
frequencies of the homozygotes (AA and aa) and the heterozygotes
(Aa) will be modified, but the gene frequencies, q and (1 - q), will
still remain constant’ (p. 53).

Dobzhansky’s explanation is consistent with the standard
textbook version of the Hardy-Weinberg law. Malécot (1969)
outlines population genetics theory in probabilistic terms, which
permits him to switch between infinite and finite populations.
‘Panmixia’ is listed separately in the index and appears repeatedly
in the book. One of the cases dealt with is described as follows: ‘The
parents mate at random; the probability of finding a mate is the
same for all individuals; and fecundity is the same for all couples.
This is <<random mating>>, panmixia.’

Malécot (1969) has a section dealing with the increase of
coancestry in a finite population and gives the formulae for
genotypic frequencies. He adds the footnote: “The above formulas
are based on the assumption that there is only random inbreeding
(consistent with panmixia)’ (p. 32).

With respect to variations in populations, Philip (1938, p. 198)
writes: ‘It is possible to decide genetically in some cases
whether a population is inbred, or whether there is random
mating.’” Philip’s method is to test against Pearson’s and Hardy’s
law expressed as

u?AA : 2uAa : laa,

u being the ‘ratio of the dominant gene A to the recessive gene a’.

Philip used the beetle Dermestes vulpinus, recording two
characters, wing colour and pigment density. The alleles of the first
character were dark (dominant) and light (recessive). The beetles
were collected either as larvae, pupae, or imagines. An elaborate
procedure was required to test for random mating. The analysis
was based on 237 beetles. A backcross was used to separate the dark
animals into homozygotes and heterozygotes. The almost perfect
agreement between observed and expected frequencies was
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obtained by using the result of the backcross to estimate gene
frequencies. Philip comments: “This fits well with the assumption
of random mating if the relative distribution of the genes in the
population is 18.7% for L and 81.3% for 1)’ (p. 201). Malécot (1969,
p. 14) cites Philip (1938) for finding an example (the beetle above)
of a natural population exhibiting Hardy’s law.

Haldane (1938) cites Philip (1938) as obtaining indirect
evidence concerning the mating system. Haldane’s comment,
which is appropriate to Philip’s methodology is: ... we may find
that the frequencies of the three genotypes are so close to those
which would be expected from random mating that the
divergences may be ascribed to chance’ (p. 213).

There is no single clear definition of ‘random mating’. It is
applied to abstract settings for finite and infinite populations and
real populations. Often it is assumed that no definition is needed
since everybody understands what it means. In setting out his
Fundamental Theorem of Natural Selection Fisher (1930, p. 35)
writes: ‘Since the theorem is exact for idealized populations ...
It will be sufficient ... to consider the special case of a population
mating and reproducing at random.” Fisher does not say what this
means but a definition is implicit when he gives the variance of a
chance fluctuation in the gene frequency as that obtainable from
the binomial distribution.

Uspenky (1937, pp. 9—11) chose Mendelian genetics to
illustrate the application of probability to a branch of science.
He used what he refers to as the classical definition of probability.
In essence, if an event occurs in r out of n equally likely ways, its
probability of occurrence is r/n. In Mendel’s case, if gametes are
joined from two heterozygotes, the four possible outcomes each
have probability %. Uspensky emphasizes the precision of this
theory and contrasts it with the lack of an equally precise model to
predict the sex ratio in humans. Uspensky does not consider the
Hardy-Weinberg law.
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