https://doi.org/10.1017/jfm.2023.1083 Published online by Cambridge University Press

J. Fluid Mech. (2024), vol. 980, A13, doi:10.1017/jfm.2023.1083

Tl

fs !
7

R P S
4 1 Ly - L‘*‘: tﬂa‘z
4 K ‘:"p v

Extended Darcy-Forchheimer law including
inertial flow deflection effects

Mostafa Aghaei-Jouybari1 , Jung-Hee Seo!, Sasindu Pinto?, Louis Cattafesta?,
Charles Meneveau'! and Rajat Mittal'>f

! Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

ZDepartment of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology,
Chicago, IL 60616, USA

(Received 13 June 2023; revised 8 December 2023; accepted 10 December 2023)

Recent advances in manufacturing techniques are providing porous media with both high
permeability, necessary for effective passive flow control, and high structural strength,
essential for engineering applications. We therefore examine the predictive accuracy of
the standard Darcy—Forchheimer (DF) law, which is often used to model porous media
flows, for inclusion Reynolds numbers (Re) ranging from the low linear regime to the
high nonlinear regime where unsteady effects such as vortex shedding become evident.
We consider two different inclusion shapes, square and circular, and three different
arrangements of the inclusions — inline, staggered and random. The numerical simulations
show that the DF law performs well for low-Re flows, irrespective of the inclusion
configuration. For intermediate/high-Re flows, the DF law is adequate only when the
arrangement is highly random. However, for the regularly arranged topologies or less
random geometries at intermediate/high-Re flows, the DF-law performance diminishes
significantly due to flow sheltering and redirection (‘inertial flow deflection’) effects that
arise from flow inertia, separation and vortex shedding in the wake of the inclusions. It is
shown that the standard DF law, in which the nonlinear permeability tensor is independent
of orientation, does not capture such effects. We modified the DF law to capture flow
redirection effects by allowing the Forchheimer permeability tensor to depend on the flow
orientation with respect to the principal geometrical directions of the porous geometry,
and examined this extended DF law for these flows.
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1. Introduction

Flow in porous media can be found in many natural and industrial applications, spanning
different fields of science and engineering. Multiphase flows (Higdon 2013), gas transport
(Ho & Webb 2006), heat and mass transfer (Defraeye er al. 2012), processes in batteries
and energy harvesting devices (Pillai & Deenadayalan 2014), rivers flowing over sediment
beds (Shen, Yuan & Phanikumar 2020), petroleum reservoirs (Jansen 2011), aquifers
(Medici et al. 2021) and geological carbon sequestration (Abidoye, Khudaida & Das 2015),
to name a few, all depend on properties of porous media flow. Porous media with relatively
low permeabilities in which the flow occurs at low Reynolds numbers (Re) are prevalent in
most applications. Porous media are also being explored as a means for passive control of
external flows. In this regard, recent advances in manufacturing techniques are providing
media with both high permeability, necessary for effective control, and high structural
strength, essential for practical engineering applications (Guest & Szyniszewski 2021). In
such applications, the interstitial flow Reynolds numbers can reach values much higher
than what has been explored so far, and certainly for values where the validity of the DF
law may be in question.

The Darcy law relates the bulk pressure drop within a porous medium linearly to the bulk
velocity and fluid viscosity and its validity is limited to low-Re flows since it captures only
viscous effects. More generally, however, it requires corrections to accommodate for flows
in media with a relatively high pore-scale Reynolds number, where the inertial effects
can dominate over the viscous ones. Two famous extensions to the Darcy law are the
Brinkman (1949) and the Forchheimer (Forchheimer 1901; Whitaker 1996) corrections.
The former attempts to include a viscous diffusive term in the momentum equation to
capture large-scale diffusive effects (larger than the pore-scale motions), while the latter,
of main interest in the present paper, aims to capture inertial effects by adding a nonlinear
term to the Darcy law.

Prior work dealing with the use of porous media to control turbulent flow over
surfaces include Rosti, Brandt & Pinelli (2018), who simulated turbulent channel flow
over anisotropic porous substrates. The porous medium was represented using Darcy’s
law. They found a range of drag increase and reduction — influenced by the surface
permeabilities in the wall parallel and normal directions. Samanta et al. (2015) performed
direct numerical simulation of a duct flow over a high porosity (¢ = 0.95) medium, (the
results of which were then experimentally examined by Suga, Okazaki & Kuwata 2020),
and observed a strong enhancement of secondary motions above the medium, and the
appearance of spanwise rollers occurring in the simulations with the porous wall that
were not observed in the smooth-wall simulations. These authors used a one-dimensional
(1-D) Darcy—Forchheimer (DF) model for their porous-wall simulation. Gémez-de Segura
& Garcia-Mayoral (2019) used the two-dimensional (2-D) Darcy-Brinkman law to
model anisotropic porous substrates for drag reduction applications. They found up
to 25 % drag reduction, proportional to the difference between the streamwise and
spanwise permeabilities, for small permeability substrates and low pore Reynolds number
applications. They, however, reported drag increase for high permeability cases due
to emergence of spanwise roller structures. This work was then complemented by the
resolvent analysis of Chavarin ef al. (2021), leading almost to the same conclusions.

In general, passive control using porous materials is more effective with materials with
high permeability, but this requirement often conflicts in engineering applications, with
the need for high structural strength. However, in recent years, advances in materials,
as well as fabrication/assembly of meta materials, is driving the emergence of porous
materials that have high permeability as well as high structural strength, and this is opening
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new opportunities for passive flow control. For instance, Guest & Szyniszewski (2021,
explained above) and Pelacci, Robins & Szyniszewski (2021) proposed three-dimensional
(3-D) woven-lattice periodic structures with high permeability and high specific stiffness
for turbulence control and drag reduction of flow over bluff bodies. The hydrodynamic
drag was reduced by up to 45 % depending on the angular position of the porous insert on
the cylinder substrate. Such high permeability materials allow interstitial flows with high
Reynolds numbers, which are often far outside the range envisioned for the DF law.

The primary objectives of the current study are to examine the DF law for porous
media flows with inclusion Reynolds numbers that range from O(1) to O(1000) and to
quantify the impact of phenomena such as vortex shedding and flow channelling on the
flow characteristics and pressure loss through the material. Another objective is to modify
the DF law to capture the effects of such nonlinear phenomena for different geometries at
intermediate/high-Re regimes.

1.1. Darcy and Forchheimer laws

The dimensional DF law for stationary and spatially homogeneous flow, using the form
employed by Joseph, Nield & Papanicolaou (1982) and Wang, Thauvin & Mohanty (1999),
reads

—VPg =K' - Ug+ pF,' - (UpUp), (L.1)

where K; is the dimensional Darcy permeability tensor, F; is the dimensional
Forchheimer correction tensor, Ug = (1/Vy) /Vf udV is the bulk velocity (V; being the

fluid-occupied domain, indicative of the medium’s pore space, and u is the local velocity
vector), Pg = (1/Vy) fvf p dV is the fluid bulk pressure (p being the local pressure field),

V,; = 9/dx; is the gradient operator and p and p are the fluid density and dynamic
viscosity (we consider cases without buoyancy). For unsteady situations, additional time
averaging is included in the definitions of the bulk quantities. Note that K; and F; in
(1.1) are defined in a manner that incorporates intrinsic averages for the velocity field.
Throughout our study, the porosity of the porous media, denoted as € and calculated as
the ratio of fluid-occupied volume (Vy) to the total domain volume (V;), is maintained
as a constant value. However, it is worth noting that one could adjust the definitions of
these tensors to include superficial averages (similar to the approach practiced by Whitaker
1996) if necessary. By properly normalizing (1.1) with the magnitude of the bulk velocity,
Ug=Ug-U 3)1/ Za length scale a defined more precisely in § 2, p and w, one obtains

1
-vP=—K'.U+F'.U, (12)
Re

where U = Up/Up, P = PB/(pUI%), K = Ky/a?>, F=F,/a are, respectively, the
normalized velocity vector, the normalized pressure and the normalized Darcy and
Forchheimer tensors. The length scale a characterizes the size of inclusions in the porous
medium. Also, the inclusion Reynolds number is Re = pUpga/u and V; = ad/dx; is the
normalized gradient operator. There have been some attempts to relate F to K in past
works (such as F oc /K in Ward 1964; Knupp & Lage 1995), however, here, we consider
a generic tensor for F, not necessarily dependent on K. We also recall that these tensors
must be positive definite (in the sense that they have real positive eigen-values) as shown
by Chen, Lyons & Qin (2001), and that K must be symmetric (Whitaker 1996).

Many numerical investigations focusing on capturing the micro-structures of porous
media, while uncovering intriguing flow characteristics in such media, have typically
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been conducted at relatively low Reynolds numbers (such as Kuwata & Suga 2016;
Kutscher, Geier & Krafczyk 2019; Kuwata, Tsuda & Suga 2020). Computational costs
of pore-resolving simulations increase rather rapidly with increasing Reynolds numbers.
Hence there is strong interest in modelling the porous substrate via the DF law ((1.1) or
its variants). The validity of the DF law for flows with inertial effects, porous medium
anisotropy and dependence on the Reynolds number is still an ongoing subject of research
even in light of the substantial prior work in this field (Edwards et al. 1990; Agnaou,
Lasseux & Ahmadi 2016, 2017; Rao, Kuznetsov & Jin 2020; Wood, He & Apte 2020).
Given the growing interest of using high porosity (possibly high pore Reynolds numbers)
anisotropic media for flow control, it is important to explore the validity of the DF law for
such applications. Especially for intermediate and high pore-Re regimes, one expects the
emergence of nonlinear phenomena such as vortex shedding, flow redirection effects and
wake asymmetries, for which the validity of the DF law remains to be examined.

In this study, we examine the performance of the DF law for different random (typically
isotropic) and arranged (typically more anisotropic) porous lattices, for a wide range
of Reynolds numbers (from essentially Stokes flow to high pore-Re flows). To enable
numerical simulations over a large range of parameters, we chose to restrict the cases
studied to 2-D porous media geometries. We quantify the DF-law accuracy for different
lattices and pore Reynolds number. Our aim is to use time-accurate pore-resolving
simulation data to measure the permeability tensors and then to test whether application of
the DF law with constant Forchheimer tensors in these same cases can reproduce the flow
observed in the simulations. For cases in which results cannot be properly reproduced by a
constant Forchheimer tensor, we illustrate some empirically motivated minimal extensions
of the model, specifically taking into account flow orientation with respect to the geometric
features of the porous media.

Section 2 describes the simulation set-ups and how the permeability tensors for the
DF law are evaluated based on the simulated data. Results are provided in § 3, where we
also compare the flow predicted by the DF law using the measured permeability tensors
with the actual flow velocity. Some of the results show that the standard DF law requires
modifications to account empirically for observed inertial effects. Section 4 provides
experimental evidence for such effects. In § 5 a more general version of the DF law is
proposed based on phenomenological observations. The model parameters are fitted to
data and predictions are compared with data. Conclusions are presented in § 6.

2. Methodology
2.1. Simulation set-up

Figure 1 shows the five porous media used in this study. The computational
domains cover 32a x 32a, where a is the inclusion length scale (i.e. square height
for cases Cl-4, and circle diameter for C5). Medium C1 consists of aligned
square inclusions; medium C2, staggered square inclusions; medium C3, square
inclusions with a low degree of randomness (only the inclusions’ position is chosen
randomly); medium C4, square inclusions with high degree of randomness (where
both position and orientation are chosen randomly); and medium C5, with randomly
placed circular inclusions. All five media are designed to have a porosity of € =
V¢/V: = 0.75 (since, in two dimensions, strictly speaking e is the ratio of areas
€ =Ar/A; = 0.75). For all cases, the simulations sweep over 14 values of Re =
{1, 5, 10, 20, 40, 60, 80, 100, 140, 180, 250, 400, 750, 1000}, capturing the fluid dynamics
from Stokes-like behaviour at low Re, to highly nonlinear dynamics at high Re. The flow is
driven by a pressure gradient with a prescribed angle o but whose magnitude is adjusted in
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Figure 1. Porous media geometries. The parameter a describes the inclusion length scale, i.e. square height
for cases C1—4, and circle diameter for C5. For case C1, the spacings between elements are a in both x and y
directions. Case C2 is similar to case C1 but the inclusions being staggered every other column with height a
in the y direction.
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Figure 2. Schematics describing « and B, the respective angles of —VP and U, in a 2-D configuration.

each time step such that it yields a constant bulk velocity magnitude Up = 1 (irrespective
of flow direction). The schematics describing o and 8, the respective direction angles of
—VP and U with respect to the x-axis, are shown in figure 2.

For each medium and at each Re, the flow is simulated for 7 values of imposed
pressure gradient angles o = {0, 15, 30, 45, 60, 75, 90} degrees. In total, 5 x 14 x 7 =
490 simulations are performed, and to accommodate the computational costs of this
large parameter sweep, we limit ourselves to 2-D time-accurate pore-resolving simulations
using a sharp-interface Navier—Stokes immersed boundary solver (Mittal et al. 2008). The
solver uses a second-order finite difference for spatial discretization and a second-order
Adams—Bashforth for time advancement, and has been widely employed and validated in
previous studies (Seo & Mittal 2011; Aghaei-Jouybari et al. 2022). The coordinates in
the horizontal, vertical and normal (to the plane) directions are denoted by x, y and z,
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Figure 3. The normalized vorticity fields at low Re = 1, intermediate Re = 100 and high Re = 1000 for two
a values of 30 and 60 degrees.

respectively. The pressure is denoted by p and the respective velocity components in x and
y are denoted by u and v. Periodic boundary conditions are applied in both the x and y
directions for all the simulations, consistent with a spatially homogeneous medium and a
domain that includes a large number of inclusions, as shown. The number of grid points
in both x and y directions equals to n, = n, = 1280, resulting in 40 grid points in each
direction per inclusion length scale a.

Figure 3 shows sample vorticity contours w, for different media at low Re =1,
intermediate Re = 100 and high Re = 1000, for two imposed pressure gradient angles
(o) of 30 and 60 degrees. Note that the regions shown represent only a subset of the
computational domains in each case (recall that the computational domain is 32a on each
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side). We observed that the Re = 1 flow is steady with no unsteady vortical motions,
characteristic of Stokes flow. The onset of vortex shedding happens at intermediate
Reynolds number, between 40 and 250 depending on the medium’s geometry, which is
manifested as meandering wakes in some of the cases at Re = 100 in figure 3. For high
Re = 1000, strong vortex shedding occurs for all cases and the flows become spatially and
temporally complex. The onset of this complexity for the intermediate and high Reynolds
number flows is anticipated to impact the performance of the DF law. Therefore, the
main objective of the present study is to test the DF-law performance, and to modify it
in situations where its performance diminishes.

2.2. Measuring the Darcy and Forchheimer permeability tensors

In order to estimate the permeability tensors from our simulation results, we compute the
mean velocity direction from the data in each case, and note the magnitude of the pressure
gradient vector. We further enforce the condition of symmetry. As mentioned before, the
Darcy tensor K has to be symmetric (Whitaker 1996). While arguments have been made
that F could contain an antisymmetric part (Whitaker 1996; Lasseux, Abbasian Arani &
Ahmadi 2011), it still has to remain positive definite (Chen et al. 2001). We here assume
that F is also symmetric to automatically ensure positive definiteness of F and to minimize
the number of elements to fit. This condition is enforced in the empirical determination of
K and F as follows: we first predict the symmetric tensor K in the low Re Darcy regime.
Equation (1.2) reduces to

U=—-ReK-VP
Un| _ _ge| K Kiz| [0iP
U, Kio K || 0P

Red|P ReorP 0
Ki2

K1
__|: 0 Red| P ReazPi| ’
K22

(2.1)

which holds for each data point. In the above equation, 9;P = dP/0dx; is the mean pressure
gradient in each simulation. One can stack the right- and left-hand sides of the above
equation for all data points as

_[U1:|_ _[RealP Red, P 0 ]'

U 0 Red|P RedrP
point 1 point 1

U RedP RedP 0

U 0 Red P RedrP K11
— =— K1 , (2.2)
point 2 point 2 K

22 3x1
: : X

U Red1P  RedrP 0

U 0 Red|P RedrP
———

| point n_| nxl B point n donx3
Vv R

where 7 is the number of data points and K| is the vertically stacked (3 x 1) version of
K. Equation (2.2) is an over-determined system of linear equations and the best estimate
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(in the least-square error sense) for K| can be obtained via the pseudo-inverse R (note the
definition of R includes the minus sign in (2.2)), i.e.

K| bess = (RTR)"'RTV. (2.3)

One can easily reconstruct the best estimate of tensor K from vector K pest. The best
estimate of tensor F can be calculated similarly by substituting the best estimate of K in
(1.2) and reformulating the problem. It follows:

UU=-F-G
UU|_ _|Fun Fn2||Gi
uv, Fio Fan||G2 [

. [Gl Gy O:| Fin

0 G G II::Z ’

(2.4)

where G = VP + (1/Re)K ~1 . U. Note on the left-hand side U = 1 for all simulations

best
here. Again, stacking data of all points in (2.4) as follows:

[ Ul ] [ G G O ]
Ul, 0 G G
——— —— ——
point 1 point 1
Ul G G O
UuU, 0 G Gy Fn
—_— =— | —— Fis , (2.5)
point 2 point 2 F»

. . 3x1
U, Gy G O F
UuU, 0 G Gy

—— —— ——
| pointn |5, B point n donx3
VF Rp

the best estimate of tensor F can then be obtained as F|pest = (RFYRF) " 'Rr™V . The
fitting to determine the tensor K is done using the data at the lowest Reynolds number
Re =1, since the nonlinear term contribution is minimal in that case. Conversely, the
fitting to determine the tensor F is done using the data of the highest Reynolds number
Re = 1000 for which the contribution of the linear Darcy term is expected to be negligible.
We also tried fitting F using data from all Reynolds number datasets (since the Darcy linear
contribution is being subtracted) and, as expected, very similar results were obtained.
Note that we rely on a least-square methodology to fit the permeability tensors directly
from the data obtained from simulations. This approach would appear different from
those developed from the theory of homogenization (Mei & Auriault 1991; Chen et al.
2001) and volume averaging techniques (Whitaker 1996). These methods involve solving
additional ancillary closure problems to obtain the desired K and F tensors (examples
include those by Lasseux et al. 2011; Wang, Ahmadi & Lasseux 2019; Bruneau, Lasseux &
Valdés-Parada 2020). However, the approach used in our work enables us to use some data
redundancy via least-square error minimization and to maintain a more direct connection
to the flow field variables (velocity, pressure, etc.) rather than relying on the need to
introduce new ancillary variables whose physical interpretation may be less clear.
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Figure 4. Applied pressure gradient magnitude |V P| for different cases as a function of the direction of the
applied pressure gradient, for different Reynolds numbers Re = 1, 100 and 1000. The top row shows the porous
medium geometry (only a small subset of the computational domain).

3. Results

For each simulation and each applied pressure gradient angle «, the pressure gradient
magnitude is adjusted such that it yields a constant bulk velocity magnitude Up = 1
(irrespective of flow direction). Hence, a first quantitative result to examine is the resulting
pressure gradient magnitude as a function of applied angle and Reynolds number. Plots of
|V P| as a function of angle « and Re are shown in figure 4.

At Re = 1, viscous effects are dominant, and therefore properties of Stokes flow are
expected. The flow is linear, vortex shedding does not occur and nonlinear effects are not
important. It is also expected that a linear model such as Darcy’s law (2.1) is accurate.
For cases C1, C3, C4 and C5 (but with C2 excluded) even the 1-D Darcy law (3.6) can
model the pressure drops at Re = 1 accurately. Using this relation, it can be inferred that
|VP| = (Rekip)~", irrespective of the imposed o, which is also evident in figure 4. For
case C2, |VP| behaves consistently with the 2-D Darcy law at low Re flows (albeit with
an anisotropic K tensor with different diagonal elements), for which one expects a higher
pressure drop in the x-direction than in the y-direction.

At the intermediate or high Re = 100 and Re = 1000 cases, and depending on the porous
geometry, values of |V P| show different trends, as can be seen in figure 4. Also, vortex
shedding (evident in figure 3), flow channelling or redirection and their nonlinear effects
become important at these Reynolds numbers. For the highly random geometries of C4 and
CS, there is essentially no preferred flow direction (as there is no preferred geometrical
direction in these media), therefore |V P| is almost similar for all o values. For C1 and
C3, |VP| is maximum at o = 45 degrees and minimum at « = 0 and o = 90 degrees.
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For C2, |[VP| is maximum at @ = 45° and minimum at ¢ = 90° only. These trends can be
understood by considering flow sheltering effects. For C1 and C3 at « = 0 and o = 90°
and C2 at @ = 90°, the downstream inclusions are significantly sheltered by the upstream
elements and therefore the inclusions impart less overall flow resistance (drag) at these
angles. For C1, C2 and C3 at o = 45°, however, the average distance of the downstream
elements from the upstream ones increases. This weakens the flow sheltering effects and
causes higher drag (and larger resistance) to the flow. Such sheltering effects explain the
|V P| trends mentioned above.

Next, the corresponding permeability tensors are obtained using the methodology
described in § 2.2 for each geometry case:

(1) Case C1
_| 670 —0.01 ) [739 —532
K= |:—0.01 6.70 :| x107%, F= |:_5.32 7.82 :| . (3.1a,b)
(i) Case C2
_| 552 -0.01 2 _[165 —003
k= [—0.01 7.06 :| x 1075, F= |:_().()3 1.01 :| . (3.2a,b)
(ii1) Case C3
_| 679 -002 -2 [312 -122
K= [—0.02 6.80 } x 1075, F= [_1,22 3_36] (3.3a,b)
(iv) Case C4
_|538 0.17 ) _[156 —0.02
K= [0.17 5.56:| x 1077, F= [_0_02 | 51 } (3.4a,b)
(v) Case C5
_ [543 022 ) ~[2.58 0.04
K= [0.22 5.85:| x 1075, F= [0,04 2,98] (3.5a,b)

For low Re flows, where the Darcy law ((2.1), without Forchheimer correction) holds, we
expect that, in all cases, i and j are the principal axes of the porous geometries, therefore
the off-diagonal components of the K tensors must be small compared with the diagonal
components. This is indeed borne out given that |K12|/max (K11, K22) < 0.05 for all cases.
Also, for cases Cl1, C3, C4 and C5 (note C2 excluded) the geometries are statistically
symmetric with respect to the i and j axes, therefore, one expects to have K11 &~ K2;. This
is also true for these cases, with the maximum error less than 8 % (that occurs for C5 due
to some associated randomness). With these two notes, the 2-D K tensors can be simplified
(approximated) to kipl, where kip is the 1-D Darcy coefficient and / is the 2-D identity
matrix. Therefore the 1-D Darcy model can be written as

U= —ReK VP =~ —Rekipl - VP = —Rek|pVP. (3.6)

Here, k1p =~ (K11 + K22)/2 is assumed for each of the porous media cases, and this

lies in the range of [5.4,6.8] x 1072 for all cases. Interestingly, this is of the same
order as predicted using the normalized Kozeny—Carman empirical relation of kip ¢mp =

(dy/a)*€3/180(1 — €)* = 8.44 x 1072, widely used in the literature (Kozeny 1927,
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Carman 1937; Whitaker 1996, note particle diameter d, = 6(V/A) = 3a/2 here for all
cases).

The domain contains large numbers of inclusions so that for the random cases (C3,
C4, C5) the precise location of each element does not affect the measured permeability
tensors to within the fitting accuracy, i.e. our computational domain is much larger than
the ‘representative elementary volume’ (the smallest possible volume that is sufficiently
large for the material statistics to be deemed representative and unaffected by their position
within the macroscale domain Wood et al. 2020). We have verified this by evaluating K
for cases C3, C4 and C5 by dividing the domain into 4 similar quadrants and determining
K separately for each quadrant. The values of the Frobenius norms of the respective K
tensors differed by less than 2% for C3, 4% for C4 and 5.4 % for CS5, showing that
the precise location of each element in a large sample does not significantly affect the
resulting permeability tensors and that the differences are mostly due to shape (C4 vs C5)
or orientation (C3 vs C4).

Given the true pressure gradient vector and the fitted tensors K and F, the DF-law
prediction of velocity vector U can be obtained using (3.7) as

-1
U=- [iK—l + F_11| -VP. 3.7)
Re
Note that, since the true magnitude of velocity U = 1 and the angle of pressure gradient
« are both imposed in our simulations, the DF-law performance with the fitted parameters
can be assessed by comparing the angle g of the resulting velocity U from the simulations
with the angle predicted by the DF law. Also, the measured pressure gradient magnitude
|V P| from the simulations can be compared with the DF model when using (1.2) with the
fitted tensors for the measured velocity.

Figures 5 and 6, respectively, show plots of the angle of velocity and the pressure
gradient magnitude, 8 and |V P|, respectively, comparing the true values with the predicted
ones for different applied pressure gradient directions, ¢, and Reynolds numbers, Re. True
values are shown by red crosses, and the predicted ones using the DF law with the fitted
permeability tensors are shown with blue circles. At the low Reynolds number of Re = 1,
the predicted 8 and |V P| match very well with the true vectors for all geometries, with
the maximum error of less than 3 %. At the intermediate and high Reynolds numbers of
Re = 100 and 1000, however, the predicted values of 8 and |VP| match with the true
vectors only for highly random geometries, cases C4 and C5, while for less random or
arranged geometries C1, C2 and C3, the predicted values deviate significantly from the
true ones. In some cases |V P| is not predicted accurately (such as case C2 at « = 60° in
figure 6) and in some others 8 points in an entirely different direction (such as case C1
at o = 90° in figure 5). The DF predictions are slightly better for Re = 100 (the onset
of vortex shedding regime) compared with Re = 1000 (fully vortex shedding regime),
although at both Re values, the DF law can be considered to perform poorly for C1, C2
and C3, i.e. for cases in which both inertia and medium anisotropy play a role.

The sheltering effects have another major impact on the bulk flow that is noticeable in
the profiles of true 8 (red cross symbols) in figure 5. There, 8 ~ « at Re = 1, irrespective
of the values of «. At the intermediate and high Re = 100 and 1000, however, the direction
of the bulk velocity vector points in the direction of the applied pressure gradient (8 ~ «)
only for the highly random geometries C4 and C5 for all values of «, and the more
regular geometry C2 only as long as o < 45°. For the more regular (and thus anisotropic)
geometries C1, C2 and C3, on the other hand, there exist apparently preferred (stable)
directions for the flow cases with inertia. Specifically, for C1 and C3 and Re = 100 and
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Figure 5. Velocity direction B predicted by the DF law and comparison with data for Re = 1, 100 and 1000
and for various applied pressure gradient directions «. The true velocity angles are shown in red crosses, while
the predictions using the permeability tensors measured from the overall data in the least-square error sense are
shown in blue dots. For case C1 at Re = 1000 and o = 45, from simulation 8 ~ 45 — 30 = 15, even though,
due to symmetry with respect to the x and y directions, one would expect 8 ~ 45. In practice, for this case,
the simulation displays bi-stable behaviour, and the expected B for the other quasi-stable direction would be
B ~ 45 4+ 30 = 75, shown by the hollow red dot. The dashed lines represent lines of § = «.

1000, if the imposed « is less than 45°, the fluid tends to flow in the x-direction (8 =~ 0
for any o < 45°), and if the imposed « is greater than 45°, the flow is in the y-direction
(B =~ 90° for any o > 45°). Also, the flow direction is observed (not shown) to oscillate
around 45 degrees if @ = 45 is imposed for these cases (C1, C2 and C3). All these trends
are consistent with the effects of sheltering: for highly random geometries C4 and C5
there is no preferred geometrical direction for the medium, imparting the same averaged
flow sheltering from upstream elements on the downstream elements, in all directions.
Therefore B ~ « and the medium acts as an isotropic one. For cases C1 and C3 in both
the x and y directions and case C2 in the y direction, as explained before, the downstream
elements are strongly sheltered by the upstream elements, imparting less drag to the flow.
Therefore, the fluid tends to flow in these directions at high Re, even though the normal
component of —V P might be considerable. For these cases and « values, the direction
of the bulk velocity vector is not the same as the direction of the pressure gradient. We
call this phenomenon ‘inertial flow deflection’, or flow channelling. To the best of our
knowledge, this phenomenon has not been comprehensively explored in previous studies.
The most extensive exploration we are aware of, as outlined in Lasseux et al. (2011,
pp- 9-11 of that work), was confined to flow within a single porous geometry of aligned
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Figure 6. Pressure gradient magnitude |V P| predicted by the DF law (blue) and comparison with data for
Re =1, 100 and 1000 and for various angles «. The true values are shown in red, while the predictions (in
blue) use the permeability tensors measured from the overall data in the least-square error sense.

square inclusions. They considered Reynolds numbers up to Re = 30 (thus including some
inertial effects) and they also observed misalignment between the orientation of pressure
drop and the direction of bulk velocity, consistent with inertial flow deflection.

Figure 7 shows |8 — «| (in degrees), the deviation of the velocity angle 8 from the
applied pressure gradient angle «, at @ = 75 as a function of Re. The measured simulation
results are shown by red lines while predictions of the DF law are shown by blue lines.
Also shown (green lines) are predictions of an improved DF law to be discussed in § 5.
The increases in | — «| for cases C1-3 serve as a quantification of the flow deflection
phenomenon. It occurs over the range of Re ~ 20 — 140 a similar range over which the
vortex shedding and flow sheltering effects begin to occur. As shown in the figure, the
original DF law (blue lines) generates significant errors, for cases C1 and C3 severely
overestimating the angle difference compared with data. As will be discussed in the next
section, the assumed constant F tensor element values are inconsistent with the measured
trends and thus the fitting produces meaningless results. It is worth mentioning that we
also attempted to fit the results without enforcing that the tensor F should be symmetric
(recall that Whitaker (1996) states that F can have an antisymmetric part). Results show
that, even with an antisymmetric part, a constant flow-independent tensor F does not
generate accurate results. Results underscore the fact that, as soon as inertia effects become
significant, F must be made sensitive to additional information.

According to the results in figures 5 and 6, we conclude that the DF law as proposed,
with a fixed F tensor, is accurate as long as either the Reynolds number is very low, in
which case the Stokes flow prediction implies an isotropic permeability tensor (exactly for
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Figure 7. Plots of |8 — «/| (in degrees), the magnitude of the angular deviation between the velocity angle
and the applied pressure gradient angle « as a function of Reynolds number Re. Here, the results for « = 75
degrees are shown. Measured simulation results are shown in red, predictions of the original DF law in blue
and predictions of the modified DF law in green (to be discussed in § 5). The rapid rise in |8 — «| in cases
C1-3 shows that the flow deflection phenomenon occurs over a range Re ~ 20 — 140, which ties with observed
vortex shedding and inertia effects.

(b)

Figure 8. Two 3-D simulations for C1, at « = 15 and @ = 30 with Re = 1000, are performed by extruding the
square elements in the spanwise direction (with the spanwise length of L, = 3a). The 3-D geometry and the
respective contour plot of w, (for @ = 30) are shown in (a), and the iso-surface of Q = 20 (normalized by the
reference units) is shown in (b).

C1 in which the x and y axis are exactly the same, or approximately for C2 where there
is a difference but it is small), or at the intermediate and high-Re flows, when the porous
medium geometry is sufficiently random (e.g. cases C4—CS5) such that, regardless of the
Reynolds number, the medium is, to a good approximation, entirely isotropic.

To verify that the observed flow deflection is a fundamental characteristic of highly
permeable high-Re flows for topologically regular porous geometries, and indeed not an
artefact of our 2-D simulation, we performed two 3-D simulations for C1 at Re = 1000:
one at ¢ = 15 and the other at « = 30. In these simulations, the square inclusions in 2-D
simulations are extruded in the spanwise direction (with the spanwise length of L, = 3a),
yielding square bars for the 3-D simulations; these are shown in figure 8 along with a
contour plot of w, for « = 30. Figure 9 compares 8 and |V P| vectors between the 2-D
and 3-D cases. Same as for the 2-D simulations, o and U are prescribed for the 3-D
simulations.

In the figure, we note that |VP| is larger for the 2-D case compared with the
corresponding 3-D case. This is expected considering that, due to the absence of the vortex
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Figure 9. Flow angle § (a) and pressure gradient magnitude |V P| (b) as functions of applied pressure gradient
angle « for the 3-D simulations of Cl1, at « = 15 and o = 30 with Re = 1000. One notices that in both
simulations 8 « «, indicative of flow deflection also in the 3-D simulations.

tilting/stretching in the 2-D simulations, the vortices induce a larger in-plane shear stress
in the wake of the inclusions, which is balanced by a larger mean suction pressure on the
lee side of the inclusion (see Mittal & Balachandar 1995). The key observation in figure 9
(B profile) is that flow deflection similar to that for the 2-D models is evident for the 3-D
simulations as well. We therefore conclude that the key observations made on the validity
of the DF law from 2-D simulations are borne out in 3-D simulations as well, although
the exact quantitative values of K and F in two dimensions may differ from those in three
dimensions, due to slight mismatch between their respective |V P| values.

4. Experimental verification of the inertial flow deflection

Tuft flow visualization is carried out for C1 design to investigate inertial flow deflection
under uniform inflow conditions. While the direction of the pressure gradient is prescribed
in the simulations, it is more straightforward to impose the bulk incident flow direction in
the experiments and examine possible flow deflection by changing the direction of the
porous medium’s principal axes. Uniform flow is delivered at a controlled volume flow
rate into the porous specimen through a 25.4 mm square test section, as shown in figure 10.
The specimen is rotated counter-clockwise (CCW) in discrete steps using a stepper motor.
A ~16 mm long micro-tuft (CA00011 Corespun polyester with 25.4 pm diameter) is glued
to the end of a 0.76 mm diameter hypodermic tube mounted in a low-friction bearing. The
tuft is nominally located in the middle of the deflected stream identified via smoke flow
visualization and aligns itself with the local outflow direction via its rotational degree of
freedom.

The C1 specimen, manufactured using stereolithography apparatus printing, is printed
in a cylindrical shape with diameter d = 38.1 mm and inclusion length @ = 1.175 mm,
as illustrated in figures 1 and 10. Experiments are conducted at Re ~ 240. The tuft
position and angle are determined from calibrated images acquired for each specimen
orientation, with a mean value and corresponding uncertainty of the local angle extracted
with consideration of potential hysteresis by perturbing the tuft position and initial angular
orientation and measuring its steady-state angle. Figure 11 depicts the output flow angle
B vs the relative flow entrance angle o at a Re &~ 250 for numerical and Re =~ 240 for
the experimental data for the C1 specimen. Despite a slight variation in the Reynolds
number, which is assumed to have a negligible effect, these set-ups exhibit a good level of
agreement.
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Figure 10. Properties of the set-up. (a) Isometric view (1) 25.4 mm square entrance flow, (2) CCW rotational
axis of porous cylinder, (3) ~16 mm long tuft aligned with the flow leaving the specimen, (4) degrees of
freedom of the tuft. (b) Top view showing entrance « and exit S flow angles.
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Figure 11. Comparison between computation and experiments of B(«) profiles for C1.

5. Forchheimer tensor including inertial flow deflection effects

As described in the previous section, once inertial effects become important, subtle
non-isotropic features of the medium come to the fore, affecting the flow and causing
phenomena such as flow deflection which cannot be properly captured by a fixed,
flow-independent, Forchheimer tensor. Using concepts from tensor analysis it is useful
to consider the possible parameters that the Forchheimer tensor can depend upon. For
the square inclusions, we identify two directions e and e®, the orientation of the
square edges (horizontal and vertical directions) and features of their relative alignment,
also the horizontal and vertical directions. For all media considered in our study, in
the frame of our simulations we have e’ =i and e® =, the x and y direction unit
vectors. These are also the system’s eigen-directions because, if the pressure gradient is
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applied in either of these directions, the flow velocity will be in the same direction, i.e.
U=—[(1/R)K™" + F1171. VP = —2;) VP, where A is the respective eigen-value,
for all cases considered here. In the nonlinear regime, when Re||[F~!| > ||[K~!|, in
general we expect F to be a tensor function of the velocity magnitude (via the Reynolds
number), porosity € (1n general even though constant here) and the direction of the bulk
velocity (unit vector U ), as well as the medium’s characteristic direction vectors e‘!) and
e® . Then, the symmetric tensor F has to be of the form

Fij(e(l), e?, U, Re,e) = fodj +fle§1)¢;l) +fze§2)e;2) —|—f3[e§1)e;2) + el@e]gl)]
+f4[l7ie;1) + egl)lA]j] +f5[lAJ,~e](-2) + 652) [A]J] +f60if]‘, 6.1

where f;, (k = 0, 1,...6) are scalar functions of the relative alignments between the vectors
involved, U, eV and ¢® (as well as Re and any other relevant geometric parameters
such as porosity €). Since in our case two of the vectors are orthogonal (e(V) - e = 0)
we conclude that the functions depend only on Re, € and U-eD or U-e?®. Additional
tensors and terms associated with additional directions may be needed, e.g. for extensions
to three dimensions. While including 6 terms in (5.1) may allow for more generality,
we here explore the simplest approach that can reproduce the observations. Specifically,
we simplify the problem by assuming that the eigen-directions of F only depend on
the medium geometric features and not on the direction of the flow U, although the
eigen-values will be assumed to depend on the orientation of U relative to the geometry.
Under this assumption we set f4 = f5 =fg = 0. Also, we set f3 = 0. Doing so, the
eigen-directions of F tensor will remain in the e(!) and e® directions. Moreover, for the
case considered here where e(!) and e® are orthogonal, the isotropic part can be included
into the diagonal elements without loss of generality (i.e fy combined into f; and f>)

F=F(U-eV Re, e)eVe) + (U -e?, Re, e)e®e?. (5.2)

Finally, in the frame where e(!) =i and e® = j, and furthermore neglecting Reynolds
number and porosity dependencies, the proposed simplified form reads

AWM 0

where it is understood that U - e = cos B, while U.e® = sin 8 = (1 — cos? )72, so
both are trivially related although the functions f; and f> could be different — e.g. for
configuration C2 in which the flow in the horizontal direction appears more obstructed
than in the vertical direction due to the sheltering effect.

In order to firstly explore how to model the flow deflection effect, we assume functional
dependencies of the form of power laws as follows:

fi=c|lU-eVPr and fo = cr|U - P2, (5.4a,b)

with ¢y, p1, ¢z and pr parameters obtained via fits for each medium. The model
incorporates the absolute value of each velocity component to meet the positive-definite
condition necessary for the F tensor. We chose to utilize power law relationships for
the scalar functions fi(-), since power laws can conveniently fit nonlinear effects using
a minimal set of empirical parameters. The standard flow-direction-independent case
corresponds to p; = 0 but for p; > 0 flow direction dependence is introduced (for reasons
that become apparent later, we restrict p; < 1). The equation for velocity U (which is
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the same as for the unit vector U since the velocity has already been normalized by its
magnitude in our simulations) reads

Ur|_  [alUi 0 dP/0dx] (5.5)
Uy | — 0 c|UsP2 | |0P/0xs | ’

where U; = U - e and Uy = U - ¢® in the current frame. Solving for the velocity
components, considering that Uy and U, are positive in all simulations, yields

U = d(—3P/ax)?", (5.6a)
Uy = da(—0P/9x2)?, (5.60)

where g; =1/(1 —p;)) > 1(i=1,2),and d; = c?i. By restricting 0 < p1, p2 < 1, we get
g1 > 1 and ¢» > 1, and therefore small differences between the components dP/dx;
and dP/dxy can potentially lead to much larger difference between the two velocity
components. For example, for case Cl1, where p; = p» (and g1 = ¢2) due to symmetry
along the x and y directions, one can explicitly solve for 8 as a function of « from (5.6a,b).
This leads to tan(8) = tan?! («) (please note ¢q; > 1). This expression explicitly shows
that 8 < « if o < 45°, while 8 > « if @ > 45°, hence capturing the observed deflection
effect. As p1 approaches unity, g1 can become very large, and thus the deviation of g from
o can become also very large (tending to either zero or 90 degrees even if o only deviates
slightly from 45 degrees).

Next, the parameters are obtained from data by fitting at the largest Reynolds number to
reproduce results dominated by inertia. We first consider cases C1 and C3. For these cases,
the respective empirical coefficients in (5.5) and (5.6) are assumed to be equal in the x and
y directions due to symmetry, i.e. ¢ = ¢2, p1 = p2 (and therefore d; = d», g1 = ¢2). The
parameters are obtained by a nonlinear least-square error curve fitting over the 7 angles.
Parameters obtained are, respectively, ¢c; = 16.24, p; = 0.61 and ¢; = 3.01, p; = 0.33, for
the C1 and C3 cases. Case C1 appears more anisotropic and displays stronger deflection
effect compared with the more random C3 case, and correspondingly, p; is closer to 1 for
C1 than for C3 (and g1 = 1/(1 — p1) = 2.6 for C1 and ¢; = 1.5 for C3).

To verify the performance of the fitting on the data, for the imposed o and pressure
gradient values (shown in figure 4), we can use the extended DF law to ‘predict’
the resulting velocity direction 8 and pressure gradient magnitude |V P|. Results are
respectively shown in figures 12 and 13, showing much improved agreements compared
with the original DF law results, especially as far as § profiles (figure 12) are concerned.
Also the prediction error for |VP| is lower for the extended DF law compared with
the original one for case CI1, and relatively similar for case C3. These comparisons
demonstrate that the proposed fitting form, which assumes that the Forchheimer tensor
scalar functions are influenced by the relative misalignment of velocity and porous
medium geometry through a power-law relationship with exponent p{, has the potential
to better replicate the observed flow deflection phenomena.

Next, we consider case C2, which is different from C1 and C3 as in figure 5 one notices
that the flow shows a nearly isotropic trend when o < 45° but a deflective trend when
o > 45°. This is expected since, for case C2, the geometry is such that one expects far
more ‘channelling’ in the y than in the x direction due to the specific arrangement of the
porous medium’s inclusions. The scalar functions f; and f> must be adapted accordingly
to capture such trends, which can still be accomplished as part of the framework proposed
via (5.2) as follows. We aim to combine an anisotropic (but not deflecting) Forchheimer
tensor behaviour when 8 < 45 degrees but a strongly deflecting (channelling) behaviour
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Figure 12. Comparison between the prediction results of 8 from the extended DF law (green dots, (5.5) for
cases C1 and C3, and (5.9) for case C2) with the original DF law (blue dots) and the true simulation results
(red cross symbols). The dashed lines represent lines of g = «.

when g > 45°. If we use ‘switching functions’ gi(fJ ceyand 1 — g,(f] - e®) the two
behaviours can be combined by using

iU - ey =big1(U-eV) +ci[1 — g1 (T - )T - V)1, (5.7)
and

LU - e?) = by[l — g2(U - e)] + c282(U - @)U - @2, (5.8)
with g1 = cosz(,B) = [f/ ceW? = U% and go = sinz(ﬂ) = [IAJ ceD)? = U% (please note

U12 + U% = 1). The 6 parameters b;, c; and p; are to be fitted from data.
Replacing and rewriting in terms of the velocity components, one may write

u| 21b1 O 5 | c1|UL P! 0 dP/dx;

[Uz] =" (Ul [0 bz} T0 0 k] ) apsax ] O
The fitted parameters are obtained as by = 1.33, ¢; = 1.18, p; = 0.20, b, =0.12, ¢ =
9.06 and p; = 0.00. Results of the extended DF law for case C2 are also shown in

figures 12 and 13. One notices the velocity angle § is predicted accurately at both the more
isotropic (8 < 45°) and more deflective (8 > 45°) parts. Comparing the modified DF law

980 A13-19


https://doi.org/10.1017/jfm.2023.1083

https://doi.org/10.1017/jfm.2023.1083 Published online by Cambridge University Press

M. Aghaei-Jouybari and others

(@) cl ) 3
17.0 20.8 16.8
3 — o
o Nﬁ
I &
IS 85 10.4 8.4
Ch
0 30 60 90 0 30 60 90 0 30 60 90
(b)
12 1.4 1.10
b
S
S .
| > 06 0.7 0.55
e
<
0 30 60 90 0 30 60 90 0 30 60 90
(©)
0.50 130 0.8
S >
S
(«) E 4
3025 0.65f—o—e— 0.4
B
54
\ |
0 30 60 90 0 30 60 90 0 30 60 90
o o o

Figure 13. Comparison between the prediction results of |V P| from the extended DF law (green dots, (5.5)
for cases C1 and C3, and (5.9) for case C2) with the original DF law (blue dots) and the true simulation results
(red cross symbols).

at all intermediate Reynolds numbers in figure 7 (green lines) we can see that it improves
the predictions of the angle difference |8 — «| substantially. The pressure gradient
magnitude |V P| is also predicted relatively well, much better overall compared with the
original DF law, as shown in figure 13. While representing an overall improvement, we note
that for cases C1 and C3 at angles near o« = 45°, the model significantly underpredicts the
measured pressure gradient magnitude, which for o = 45° was significantly above those
at other angles. More work is required to capture this effect.

We conclude that a nonlinear expression in terms of relative orientation of the velocity
vector with respect to the medium’s characteristic directions is possible and leads to a
DF model that can more accurately represent observed trends, including deflection and
anisotropy effects.

6. Concluding remarks

The performance of the DF law has been analysed by examining flows within five porous
media differing in inclusions shape, arrangement and randomness. Two-dimensional
time-accurate pore-resolving simulations have been performed at 14 values of Reynolds
number from Re = 1 to Re = 1000 covering from almost Stokes flow to highly nonlinear
regimes. For each medium and at each Re, simulations cover 7 values of the prescribed
direction of the pressure gradient vector «, ranging from o = 0 (x-direction) to a = 90
(y-direction) in steps of 15 degrees. In total, 490 simulations are performed, the statistics
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of bulk flow properties gathered and then employed to characterize the Darcy and
Forchheimer permeability tensors, K and F in the DF law.

Our results indicate that the DF law is relatively accurate as long as the medium is
entirely isotropic, which for intermediate and high Re flows occurs only for geometries
with inclusions arranged in a highly randomly manner, and where there is no preferential
direction within the media. At low Reynolds numbers, even for media that have anisotropic
features (e.g. for case C1 flow would appear different along the diagonals than along the
inclusion edges) the response is still in the same direction as the applied pressure gradient,
and this is consistent with the symmetry of the linear permeability tensor in that case.

For aligned or less random geometries at intermediate or high Reynolds numbers,
the DF-law accuracy deteriorates significantly due to what can be called ‘inertial flow
deflection’. In these cases, the resulting flow is not in the direction of the pressure gradient,
but ‘deflects’ in directions with high degree of flow sheltering, where resistance to flow
is minimized. We also performed two 3-D simulations for the aligned square case C1 at
Re = 1000, with @ = 15 and o = 30 and found that flow deflection also occurs in for these
simulations. This cannot be considered to be an artefact of two-dimensionality in the flow
models. We also examined the inertial flow deflection phenomenon experimentally and
found a very good agreement between the numerical and experimental results.

The observed trends render the form of the Forchheimer tensor necessarily more
complicated than simply a constant. We find that, for improved prediction, the nonlinear
term in the DF law must incorporate at the very least information about the flow direction
relative to characteristic directions of the medium. We explored a possible dependency on
these alignments and proposed nonlinear functional forms (power laws) that can reproduce
the observed trends, and significantly improve the prediction results. Application at
intermediate Reynolds numbers for data that were not used in fitting the parameters
yielded good results as well. Devising more generally applicable functional forms that
also could include possible dependencies on Reynolds number is beyond the scope of the
present study. Finally, we note that the porosity € was kept constant (= 0.75) for all media
considered in this paper. However, we expect flow deflection, and thus the performance of
the DF law, to also depend on porosity €. Inclusion of the effects of porosity on generalized
versions of the DF law in which flow direction is included also remains as a task for future
endeavours.
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