
JFP 13 (5): 867–904, September 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004379 Printed in the United Kingdom

867

Syntactic accidents in program analysis:
on the impact of the CPS transformation

DANIEL DAMIAN∗
LION Bioscience Ltd., Compass House, 80-82 Newmarket Road, Cambridge CB5 8DZ, UK

(e-mail: Daniel.Damian@uk.lionbioscience.com)

OLIVIER DANVY

BRICS†, Department of Computer Science, University of Aarhus, Ny Munkegade,

Building 540, DK-8000 Aarhus C, Denmark

(e-mail: danvy@brics.dk)

Abstract

We show that a non-duplicating transformation into Continuation-Passing Style (CPS) has no

effect on control-flow analysis, a positive effect on binding-time analysis for traditional partial

evaluation, and no effect on binding-time analysis for continuation-based partial evaluation:

a monovariant control-flow analysis yields equivalent results on a direct-style program and

on its CPS counterpart, a monovariant binding-time analysis yields less precise results on a

direct-style program than on its CPS counterpart, and an enhanced monovariant binding-

time analysis yields equivalent results on a direct-style program and on its CPS counterpart.

Our proof technique amounts to constructing the CPS counterpart of flow information and

of binding times. Our results formalize and confirm a folklore theorem about traditional

binding-time analysis, namely that CPS has a positive effect on binding times. What may be

more surprising is that the benefit does not arise from a standard refinement of program

analysis, as, for instance, duplicating continuations. The present study is symptomatic of an

unsettling property of program analyses: their quality is unpredictably vulnerable to syntactic

accidents in source programs, i.e., to the way these programs are written. More reliable

program analyses require a better understanding of the effect of syntactic change.

1 Introduction

1.1 Motivation

Program analyses are vulnerable to syntactic accidents in source programs in that

innocent-looking, meaning-preserving transformations may substantially alter the

precision of an analysis.

For a simple example, Binding-Time Analysis (BTA) is vulnerable to re-association:

given two static expressions s1 and s2 and one dynamic expression d, it makes a

difference whether the source program is expressed as (s1 + s2)+ d or as s1 + (s2 + d).

∗ This work was carried out while the first author was at BRICS.
†Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research

Foundation.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

868 D. Damian and O. Danvy

In the former case, the inner addition is classified as static and the outer one is

classified as dynamic. In the latter case, both additions are classified as dynamic.

With the exception of BTA (and of region inference – see section 8.1.1), little

is known about the effect of programming style on program analyses. BTA is

an exception because its output critically determines the amount of specialization

carried out by an offline partial evaluator (Consel & Danvy, 1993; Jones et al.,

1993). Therefore, the output of binding-time analyses has been intensively studied,

especially in connection with syntactic changes in their input. As a result, “binding-

time improvements” have been developed to milk out extra precision from binding-

time analyses (Jones et al., 1993, Chapter 12), to the point that partial-evaluation

users are encouraged to write programs in a particular style (Jones, 1996). That said,

improvements are not specific to offline partial evaluation – they are also routine in

staging transformations (Jørring & Scherlis, 1986) and in the formal specification of

programming languages for semantics-directed compiling (Nielson & Nielson, 1992,

section 8.2).

Since one of the most effective binding-time improvements is the transformation

of source programs into Continuation-Passing Style (CPS) (Consel & Danvy, 1991a;

Steele, 1978), people have wondered whether CPS may help program analysis in

general. Nielson’s early work on data-flow analysis (Nielson, 1982) suggests so, since

it shows that for a non-distributive analysis, a continuation semantics yields more

precise results than a direct semantics. The CPS transformation is therefore a Good

Thing, since for a direct semantics, it gives the effect of a continuation semantics.

In the early 1990s, Muylaert-Filho and Burn’s work (Muylaert-Filho & Burn, 1993)

was starting to provide further indication of the value of the CPS transformation

for abstract interpretation when Sabry and Felleisen entered the scene.

In their stunning article “Is continuation-passing useful for data-flow analysis?”

(Sabry & Felleisen, 1994), Sabry and Felleisen showed that for constant propagation,

analyzing a direct-style program and analyzing its CPS counterpart yields incom-

parable results. They showed that CPS might increase precision by duplicating

continuations, and also that CPS might decrease precision by confusing return

points. These results are essentially confirmed by Palsberg and Wand’s recent CPS

transformation of flow information (Palsberg & Wand, 2002). At any rate, except

for continuation-based partial evaluation (Hatcliff & Danvy, 1997), there seems to

have been no further work about the effect of CPS on the precision of program

analysis in general.

The situation is therefore that the CPS transformation is known to have an

unpredictable effect on constant propagation and is also believed to have a positive

effect on binding-time analysis. Still, we do not know for sure whether this positive

effect is truly positive, or whether it worsens binding times elsewhere in the source

program. One may also wonder whether, besides distributive monotone frameworks,

there exist other program analyses on which CPS has no effect.

In this paper, we answer these two questions by studying the effect of a non-

duplicating CPS transformation on two off-the-shelf constraint-based program

analyses – control-flow analysis (CFA) and BTA. Using a uniform proof technique,

we formally show that:

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 869

• CPS has no effect on CFA, i.e. analyzing a direct-style program and analyzing

its CPS counterpart yields equivalent results.

• CPS does not make BTA yield less precise results, and for the class of examples

for which continuation-based partial evaluation was developed, it makes BTA

yield results that are strictly more precise.

• CPS has no effect on an enhanced BTA which takes into account continuation-

based partial evaluation.

This increased precision entailed by CPS also concerns analyses that have been

noticed to be structurally similar to BTA, such as security analysis, program slicing,

and call tracking (Abadi et al., 1999). These analyses display a similar symptom:

for example, we are told that, in practice, users tend to find security analyses too

conservative, without quite knowing what to do to obtain more precise results.

(Here, “more precise results” means that more parts of the source program can be

classified as low security.)

In the next section, we point out how the dependency induced by let-expressions

leads to a loss of precision.

1.2 A loophole: the let rule

Offline partial evaluation (Jones et al., 1993) is a staged technique for specializing

programs. In a first phase, the binding times of a source program, i.e. which parts

are static (and should be evaluated at partial-evaluation time) and which parts are

dynamic (and should be part of the specialized program) are analyzed. In a second

phase, specialization proper takes place (i.e. the static parts are evaluated and the

dynamic parts are residualized). Binding-time analysis is thus a data-flow analysis

and when source programs are higher-order, it is driven by control-flow information.

Such information is in turn obtained by a control-flow analysis.

A partial evaluator is correct when the meaning of the residual program is the

same as the meaning of the source program applied to the static input. In particular,

if the source language includes computational effects (for instance non-termination),

the specializer must ensure that all the dynamic side effects of the source program

are identically exhibited by the residual program.

To ensure this contextual coherence, a binding-time analysis classifies a let

expression to be dynamic if its header is dynamic, because of possible side effects in

the header and regardless of the binding time of the body. (Similarly, if a let header

is classified to be of high security, the whole let expression is also classified to be of

high security, regardless of the security level of its body.) Therefore, the body of the

following λ-abstraction is classified as dynamic if e is dynamic:

λx.let v = e in b

The CPS counterpart of this λ-abstraction reads as follows:

λx.λk.e′ (λv.b′ k)

where e′ and b′ are the CPS counterparts of e and b, respectively. Now, assume that

b naturally yields a static result independently of x, but is coerced to be dynamic

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

870 D. Damian and O. Danvy

because of the let rule. In the CPS term, e′ also yields a dynamic result, i.e. intuitively,

v is classified to be dynamic. (This intuition is formalized in the rest of this article.)

Intuitively, b′ also yields a static result and sends it to its continuation k. Therefore,

in direct style, b yields a dynamic result whereas in CPS, it yields a static result.

Two observations need to be made at this point:

(1) The paragraph above is the standard motivation for improving binding times

by CPS transformation (Consel & Danvy, 1991a) (see section 8.2 for further

detail). Nevertheless, what this paragraph leaves unsaid – and what actually

has always been left unsaid – is whether this local binding-time improvement

corresponds to a global improvement as well, or whether it may make things

worse elsewhere in the source program. (In section 7, we prove that this local

improvement actually is a global improvement as well.)

(2) In their core calculus of dependency (Abadi et al., 1999), Abadi et al. make a

point that any function classified as d → s (resp. h → l, etc.) is necessarily a

constant function. Nevertheless, as argued above, given a direct-style function

classified to be d → d because of the let rule, its CPS counterpart may

very well be classified as d → (s → o) → o and not be a constant function

in continuation-passing style (i.e. a function applying its continuation to a

constant).

Together, these two observations tell us that the let rule is overly conservative in

BTA, security analysis, etc. CPS makes it possible to exploit the untapped precision

of this rule non-trivially by providing a local improvement which – and this is a

point of this article – is also a global improvement.

This global improvement is distinct from the common method of improving

precision of program analysis by duplicating the analysis over the same program

points. Sabry and Felleisen, for example, said that any improvement in precision

provided by CPS is solely due to continuation duplication (Sabry & Felleisen, 1994).

This assessment is true for their analysis, but it does not hold in general, as we have

just shown for binding-time analysis.

Other approaches to improving analysis results amount to refining the definition

of the analysis by including more information, such as, for instance, context

information (Jagannathan & Weeks, 1995; Nielson & Nielson, 1997; Nielson et al.,

1999; Shivers, 1991). In contrast, CPS-transforming the source program naturally

provides a representation of the context as a syntactic support for refinement to the

(unchanged) analysis.

In his work on data-flow analysis, Nielson (1982) shows that duplicating the

analysis over conditional branches improves the analysis results. Let us point out

that the CPS transformation also leads to binding-time improvements for conditional

expressions. Indeed, to ensure contextual coherence for conditionals, the binding-

time analysis makes conditional branches dynamic if the test is dynamic. This

approximation can be circumvented with a CPS transformation. Therefore, the

improvement is not produced by duplicating the analysis, but merely by the context

relocation induced by the CPS transformation. This point is developed further in

section 7.4.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 871

Λ Λml Λmnf Λcps

call-by-value

encoding
�� normalization

let .assoc + let .β
�� introduction of

continuations
��

Fig. 1. Staged CPS transformation.

1.3 Overview

In this work we use a staged CPS transformation. Several equivalent methods exist

for performing a global CPS transformation of a program. For example, one can use

a Plotkin-style CPS transformation with administrative reductions (Plotkin, 1975),

or one can stage the CPS transformation as normalization to a monadic normal

form followed by introduction of continuations (Hatcliff & Danvy, 1994). Palsberg

& Wand (2002) use the former method, which can be extended to account for

administrative reductions (Damian, 2001; Damian & Danvy, 2001a). We use the

latter method here.

Elsewhere (Damian, 2001; Damian & Danvy, 2001b), we have connected Danvy

and Nielsen’s CPS transformation (Danvy & Nielsen, 2002) with program analy-

sis. We have constructed the corresponding CPS transformation of control-flow

information and confirmed the results reported in the present paper.

Therefore, we use a CPS transformation obtained as follows:

1. call-by-value embedding of the input program into Moggi’s computational

metalanguage (Hatcliff & Danvy, 1994; Moggi, 1991);

2. normalization under let .assoc and let .β (as defined in Hatcliff and Danvy’s

account of CPS (Hatcliff & Danvy, 1994)); and

3. introduction of continuations.

The staged transformation is visualized in figure 1.

The rest of this paper is organized as follows: in section 2 we define the input

language, the transformation steps leading to CPS, and the program analyses. More

specifically, in section 2.1 we present the labeled language of input programs. In

section 2.2 we review the computational metalanguage and the corresponding call-

by-value encoding of the input language. In section 2.3 we recall the monadic

let-reductions.

We continue by introducing the constraint-based analyses for the computational

metalanguage. In section 2.5 we specify the control-flow analysis. In section 2.6 we

specify the binding-time analysis corresponding to traditional partial evaluation. In

section 2.7 we specify the binding-time analysis corresponding to continuation-based

partial evaluation.

In section 3 we outline how to compare the results of a constraint-based program

analysis across a program transformation.

In section 4 we evaluate the effect on constraint-based analyses incurred by the

normalization of the source program with respect to let-reductions: we investigate

the effect of let .β (section 4.1) and let .assoc (section 4.2) reductions over each of the

analyses. We conclude (section 4.3) that linear let-reductions and let flattening do

not change the result of the control-flow analysis, while they do improve the results

of the traditional binding-time analysis.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

872 D. Damian and O. Danvy

e ∈ Exp ::= x | n | λx.e | rec f(x).e | e0 e1 | op(e) | if0 e e0 e1

x, f ∈ Ide (identifiers)

n ∈ Int (integers)

op ∈ (an unspecified set of base-type operators)

Fig. 2. The language Λ.

In the remainder of the article, we evaluate the effect of introducing continuations

(section 5) over the result of control-flow analysis (section 6), binding-time analysis

for traditional partial evaluation (sections 7.1 to 7.3) and binding-time analysis for

continuation-based partial evaluation (section 7.4). In section 8 we review related

work. In section 9 we conclude and discuss further issues.

2 Constraint-based analyses for a computational metalanguage

We introduce the language of input programs and the individual transformations

performed by the CPS transformation. We then present the three program analyses:

CFA, BTA and BTA�.

2.1 The language Λ

We consider that programs are given in an untyped λ-language Λ. The terms of the

language are expressions given by the grammar of figure 2. The language includes

literals, λ-abstractions, recursive function definitions, conditionals and base-type

operators (for simplicity, we only consider unary operators here). We focus on call

by value. Since the evaluation of terms in the language may not terminate, programs

in Λ may exhibit non-termination as a computational effect.

A program p is a closed expression.

2.2 The computational metalanguage

The computational metalanguage Λml (Hatcliff & Danvy, 1994) enforces the order

of evaluation by introducing a let construct for naming intermediate computations

and a unit construct for lifting a value into a computation.

e ::= . . . | let x = e1 in e2 | unit e

The computational metalanguage comes with a set of sound reasoning principles

about programs which may have computational effects, such as non-termination.

Such principles can be used to validate program transformations performed, for

instance, inside a compiler. They can also be used to validate, for instance, a partial

evaluator (Hatcliff & Danvy, 1997).

To make use of such principles, an input program in the language Λ is encoded

into the computational metalanguage, enforcing its order of evaluation. For call by

value, the encoding into the monadic metalanguage is defined in figure 3.

Notice that, in addition to other known call-by-value encodings (Benton & Wadler,

1996; Hatcliff & Danvy, 1994; Sabry & Wadler, 1997), we name the result of

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 873

V[[x]] = unit x

V[[n]] = unit n

V[[λx.e]] = unit λx.V[[e]]

V[[rec f(x).e]] = unit rec f(x).e

V[[e0 e1]] = let x0 =V[[e0]]

in let x1 =V[[e1]]

in let x2 = x0 x1

in unit x2

V[[op(e)]] = let x0 =V[[e]] in let x1 = op(x0) in unit x1

V[[if0 e e0 e1]] = let x0 =V[[e]]

in let x1 = if0 x0 V[[e0]] V[[e1]]

in unit x1

(where the xi are fresh)

Fig. 3. Call-by-value encoding into the computational metalanguage.

let x = unit t in e →let .β e[t/x]

let x = e in unit x →let .η e

let x2 = let x1 = e1 in e2 in e →let .assoc let x1 = e1 in let x2 = e2 in e

Fig. 4. The monadic let reductions.

the application of two values (x1 and x2 in the translation of an application).

This cosmetic change (indeed, it is only a let .η expansion in the computational

metalanguage) is part of our development of the CPS transformation of flow

information.

2.3 The monadic let reductions

The call-by-value encoding leads to a separation of terms into two categories:

trivial terms (noted with t) and serious terms (noted with s). Trivial terms represent

values: constants, variables, λ-abstractions and recursive function definitions. Serious

terms represent computations: applications, basic operations, conditionals, nesting

of computations by naming intermediate results.

We recall the monadic let-reductions. Normalization under the let-reductions is

the first step in a staged CPS transformation (Hatcliff & Danvy, 1994). The let-β

reduction, let-η reduction and the let-flattening reduction are presented in figure 4.

2.4 Λv : a call-by-value subset of the computational metalanguage

In this paper, we focus on the call-by-value embedding. Therefore, we restrict

ourselves to the subset of Λml that forms the image of the call-by-value embedding

of Λ. The language Λv of labeled terms is defined in figure 5. Indeed, the call-

by-value embedding produces either trivial terms (t ∈ Triv) or let-expressions. All

serious terms (s ∈ Step) are named. Since for the call-by-value embedding the

occurrences of the unit construct can be deduced from the context, we omit them in

Λv terms.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

874 D. Damian and O. Danvy

p ∈ Pgm ::= e�

e ∈ Exp ::= t | let x = s in e�

s ∈ Step ::= t� | t�0
0 t

�1
1 | op(t�) | if0 t� e

�0
0 e

�1
1 | (let x = s in e�1)�2

t ∈ Triv ::= n | x | λπx.e� | recπf(x).e�

x ∈ Ide (identifiers)

n ∈ Int (integers)

� ∈ Lab (term labels)

π ∈ Lam (λ-abstraction labels)

op ∈ an unspecified set of base-type operators

Fig. 5. Λv : the call-by-value subset of the computational metalanguage.

Note that the language is such that the final result of a computation is also

named, since we no longer perform let .η reductions in Λv before introducing

continuations. This aspect is part of our development of the CPS transformation of

flow information, and will be illustrated further in section 6.

For the purpose of program analysis, terms are labeled with labels � taken from a

countable set Lab. In addition, λ-abstractions and recursive functions are identified

by labels π from another set Lam , so that, for example, in (λπx.e�1)�0 , �0 and �1

belong to Lab and π belongs to Lam .

Definition 1

A properly labeled expression is a labeled expression in which all labels are distinct

and all variables are distinct.

We should note that, for the purpose of control-flow analysis or binding-time

analysis, it is not essential that the input program is properly labeled. However, the

precision of the analysis is increased if distinct program points have distinct labels,

and distinct variables have distinct names. Since we want to compare the absolute

precision of an analysis before and after program transformation, we consider the

best results that the analysis can give over the program. For this reason, we consider

only properly labeled programs and only transformations that lead to properly

labeled programs.

2.5 Control-flow analysis for Λv

We consider a constraint-based, monovariant Control-Flow Analysis (CFA) over

programs in Λv . The constraint-based version (Gasser et al., 1997; Jagannathan &

Weeks, 1995; Nielson & Nielson, 1997; Palsberg, 1995) is known to be equivalent to

other versions, based on different methods such as set-based analysis (Heintze, 1994)

and type inference (Palsberg & O’Keefe, 1995); it is also known to be an instance

of abstract interpretation (Cousot & Cousot, 1995). For uniformity, we adopt the

same definition and notation as in Nielson, Nielson and Hankin’s recent textbook

on program analysis (Nielson et al., 1999).1

1 Nielson, Nielson and Hankin’s CFA is developed for a call-by-value language with recursion and
let-constructs. It is thus compatible with the language subset considered here.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 875

Lamp The set of λ-abstraction labels in p

Varp The set of identifiers in p

Labp The set of term labels in p

Val pcf = P(Lamp) Abstract values

Ĉcf ∈ Cachepcf = Labp → Val pcf Abstract cache

ρ̂cf ∈ Env p
cf = Varp → Val pcf Abstract environment

�p
cf ⊆ (Cachepcf × Env p

cf)× Labp

Fig. 6. CFA relation for a program p.

The flow information computed by the analysis is a pair consisting of an abstract

cache Ĉcf mapping terms to abstract values and an abstract environment ρ̂cf mapping

variables to abstract values. Abstract values are sets of labels of λ-abstractions to

which a term can be reduced and a variable can be bound. The constraint-based

control-flow analysis is specified as a relation �cf on caches, environments and terms.

Given a term e, (Ĉcf , ρ̂cf) �cf e means that (Ĉcf , ρ̂cf) is a result of the control-flow

analysis of e.2

In this work we use the syntax-directed variant of the analysis (Nielson et al.,

1999, Chapter 3), and we restrict its analysis relation to a relation �p
cf associated

to each program p being analyzed. Given a properly labeled program p ∈ Λml , the

functionality of the associated relation �p
cf is defined in figure 6. The analysis relation

is defined in figure 7 by induction over the syntax of the program.

Any solution (Ĉcf , ρ̂cf) accepted by the relation �p
cf (i.e. such that the statement

(Ĉcf , ρ̂cf) �p
cf p holds) is a conservative approximation of the exact flow informa-

tion (Nielson et al., 1999, Chapter 3). Furthermore, the analysis relation �p
cf has

a model-intersection property, i.e. the set of solutions accepted by �p
cf is closed

under intersection. The model-intersection property ensures the existence of a least

solution of the analysis, i.e. a most precise one. (Here, the order relation is given by

the pointwise ordering of functions induced by set inclusion.) In practice, a work-list

based algorithm computes the least solution.

2.6 Binding-time analysis for Λv and traditional partial evaluation

We consider a constraint-based Binding-Time Analysis (BTA) for the call-by-value

subset Λv of the computational metalanguage. The analysis is an adaptation of

Hatcliff and Danvy’s BTA for the computational metalanguage (Hatcliff & Danvy,

1997), presented in constraint form (Palsberg, 1993, 1995; Palsberg & Schwartzbach,

1994). The analysis determines binding times of program points and program

variables. The binding-time information is used in offline partial evaluation (Consel

& Danvy, 1993; Jones et al., 1993; Palsberg, 1993): the result of the analysis

determines the static computations performed at specialization time.

2 In the notation of Nielson et al. (1999), �cf is simply �.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

876 D. Damian and O. Danvy

(Ĉcf , ρ̂cf) �p
cf n

� ⇐⇒ true

(Ĉcf , ρ̂cf) �p
cf x

� ⇐⇒ ρ̂cf (x) ⊆ Ĉcf (�)

(Ĉcf , ρ̂cf) �p
cf (λπx.e�1)� ⇐⇒ {π} ⊆ Ĉcf (�) ∧ (Ĉcf , ρ̂cf) �p

cf e
�1

(Ĉcf , ρ̂cf) �p
cf (recπf(x).e�1)� ⇐⇒ {π} ⊆ Ĉcf (�) ∧ {π} ⊆ ρ̂cf (f) ∧

(Ĉcf , ρ̂cf) �p
cf e

�1

(Ĉcf , ρ̂cf) �p
cf (let x = t� in e�1)�2 ⇐⇒ (Ĉcf , ρ̂cf) �p

cf t
� ∧ (Ĉcf , ρ̂cf) �p

cf e
�1 ∧

Ĉcf (�) ⊆ ρ̂cf (x) ∧ Ĉcf (�1) ⊆ Ĉcf (�2)

(Ĉcf , ρ̂cf) �p
cf (let x = t

�0
0 t

�1
1

in e�2)�3

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t

�0
0 ∧ (Ĉcf , ρ̂cf) �p

cf t
�1
1 ∧

(Ĉcf , ρ̂cf) �p
cf e

�2 ∧ Ĉcf (�2) ⊆ Ĉcf (�3) ∧
∀(λπy.e�1) ∈ Ĉcf (�0).

(Ĉcf (�1) ⊆ ρ̂cf (y) ∧ Ĉcf (�) ⊆ ρ̂cf (x))

(Ĉcf , ρ̂cf) �p
cf (let x = op(t�)

in e�1)�2

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t

� ∧ (Ĉcf , ρ̂cf) �p
cf e

�1 ∧
Ĉcf (�1) ⊆ Ĉcf (�2)

(Ĉcf , ρ̂cf) �p
cf (let x =

if0 t� e
�0
0 e

�1
1

in e�2)�3

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t

� ∧ (Ĉcf , ρ̂cf) �p
cf e

�0
0 ∧

(Ĉcf , ρ̂cf) �p
cf e

�1
1 ∧ (Ĉcf , ρ̂cf) �p

cf e
�2 ∧

Ĉcf (�0) ⊆ ρ̂cf (x) ∧ Ĉcf (�1) ⊆ ρ̂cf (x) ∧
Ĉcf (�2) ⊆ Ĉcf (�3)

(Ĉcf , ρ̂cf) �p
cf (let x = (let x1 = s

in e
�1
1)�2

in e�3)�4

⇐⇒ (Ĉcf , ρ̂cf) �p
cf (let x1 = s in e

�1
1)�2 ∧

(Ĉcf , ρ̂cf) �p
cf e

�3 ∧ Ĉcf (�2) ⊆ ρ̂cf (x) ∧
Ĉcf (�3) ⊆ Ĉcf (�4)

Fig. 7. Control-Flow Analysis (CFA).

Valbt = {S,D} Abstract values

Ĉbt ∈ Cachepbt = Labp → Valbt Abstract cache

ρ̂bt ∈ Env p
bt = Varp → Valbt Abstract environment

�p
bt ⊆ (Cachepbt × Env p

bt)× Labp

Fig. 8. BTA relation for a program p.

The constraint-based BTA uses flow information to determine the binding times

of the operators and operands of applications. Alternatively, we could have con-

sidered an analysis computing both flow and binding-time information at the same

time, which is known to give equivalent results (Palsberg, 1995). We have chosen

to separate the control-flow analysis from the binding-time analysis in order to

investigate separately the effect of CPS on flow information and on binding times.

The formal definition of the analysis is similar to the definition of the CFA

of section 2.5. The analysis is a relation defined on essentially the same domains

(figure 8); the difference is that the domain of abstract values is now the standard

lattice {S � D} of static and dynamic annotations. The analysis relation is defined

inductively over the syntax (figure 9). At application points, the definition of the

BTA refers to the flow information (Ĉcf , ρ̂cf), which is considered to be the least

solution of the control-flow analysis of section 2.5.

In contrast to the CFA of section 2.5, the BTA accepts non-closed terms. Following

the tradition, we consider the program to be dynamic and its free variables to be

dynamic as well. The flow information for the free variables is considered to

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 877

(Ĉbt, ρ̂bt) �p
bt n

� ⇐⇒ true

(Ĉbt, ρ̂bt) �p
bt x

� ⇐⇒ ρ̂bt(x) = Ĉbt(�)

(Ĉbt, ρ̂bt) �p
bt (λπx.e�1)� ⇐⇒ (Ĉbt, ρ̂bt) �p

bt e
�1 ∧

(Ĉbt(�) = D⇒ Ĉbt(�1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt (recπf(x).e�1)� ⇐⇒ (Ĉbt, ρ̂bt) �p

bt e
�1 ∧ Ĉbt(�) = ρ̂bt(f) ∧

(Ĉbt(�) = D⇒ Ĉbt(�1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt (let x = t�

in e�1)�2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t

� ∧ (Ĉbt, ρ̂bt) �p
bt e

�1 ∧
Ĉbt(�) = ρ̂bt(x) ∧ Ĉbt(�1) = Ĉbt(�2) ∧
ρ̂bt(x) = D⇒ Ĉbt(�1) = D

(Ĉbt, ρ̂bt) �p
bt (let x = t

�0
0 t

�1
1

in e�2)�3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t

�0
0 ∧ (Ĉbt, ρ̂bt) �p

bt t
�1
1 ∧

(Ĉbt, ρ̂bt) �p
bt e

�2 ∧ Ĉbt(�2) = Ĉbt(�3) ∧
(Ĉbt(�0) = D⇒ Ĉbt(�1) = ρ̂bt(x) = D) ∧
(ρ̂bt(x) = D⇒ Ĉbt(�2) = D) ∧
∀(λπy.e�1) ∈ Ĉcf (�0).(Ĉbt(�1) = ρ̂bt(y) ∧

Ĉbt(�) = ρ̂bt(x))

(Ĉbt, ρ̂bt) �p
bt (let x = op(t�)

in e�1)�2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t

� ∧ (Ĉbt, ρ̂bt) �p
bt e

�1 ∧
Ĉbt(�) � ρ̂bt(x) ∧ Ĉbt(�1) = Ĉbt(�2) ∧
(ρ̂bt(x) = D⇒ Ĉbt(�1) = D)

(Ĉbt, ρ̂bt) �p
bt (let x =

if0 t� e
�0
0 e

�1
1

in e�2)�3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t

� ∧ (Ĉbt, ρ̂bt) �p
bt e

�0
0 ∧

(Ĉbt, ρ̂bt) �p
bt e

�1
1 ∧ (Ĉbt, ρ̂bt) �p

bt e
�2 ∧

Ĉbt(�0) = Ĉbt(�1) = ρ̂bt(x) ∧
(Ĉbt(�) = D⇒ Ĉbt(�0) = Ĉbt(�1) = D) ∧
(ρ̂bt(x) = D⇒ Ĉbt(�2) = D) ∧
Ĉbt(�2) = Ĉbt(�3)

(Ĉbt, ρ̂bt) �p
bt (let x =

(let x1 = s

in e
�1
1)�2

in e�3)�4

⇐⇒ (Ĉbt, ρ̂bt) �p
bt (let x1 = s in e

�1
1)�2 ∧

(Ĉbt, ρ̂bt) �p
bt e

�3 ∧ Ĉbt(�2) = ρ̂bt(x) ∧
(ρ̂bt(x) = D⇒ Ĉbt(�1) = D) ∧
Ĉbt(�3) = Ĉbt(�4)

(Ĉbt, ρ̂bt) �p
bt p ⇐⇒ (∀x.x free in p⇒ ρ̂bt(x) = D) ∧

(p = e� ⇒ Ĉbt(�) = D)

Fig. 9. Binding-time analysis for traditional partial evaluation (BTA).

be empty, which is the result of applying the CFA to the program closed by

abstraction over the free variables. Another difference with the CFA of section 2.5

is that the constraints generated by the BTA are equality constraints.

Finally, additional constraints are generated for λ-abstractions, conditionals and

let-expressions. For example, the argument and body of an abstraction are dynamic

if the abstraction itself is dynamic. As mentioned in section 1.2, the following

binding-time constraints ensure contextual coherence. In each let expression, the

body is constrained to be dynamic if the header is dynamic. In each conditional

expression, both branches are constrained to be dynamic if the test is dynamic. Note

that we allow static operations in dynamic contexts so that static computations

can take place at partial-evaluation time. A proof of correctness of a specializer

using the annotations obtained by this traditional BTA can be found in Hatcliff and

Danvy’s work (Hatcliff & Danvy, 1997).

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

878 D. Damian and O. Danvy

Valbt = {S,D} Abstract values

Ĉbt ∈ Cachepbt = Labp → Valbt Abstract cache

ρ̂bt ∈ Env p
bt = Varp → Valbt Abstract environment

�p

bt�
⊆ (Cachepbt × Env p

bt)× Labp

Fig. 10. BTA� relation for a program p.

2.7 Binding-time analysis for Λv and continuation-based partial evaluation

As mentioned in section 1.2, the traditional binding-time analysis from section 2.6

is overly conservative because of the context coherence constraint imposed in the

let rule. The constraint reflects the concern about which reductions can be safely

performed by the specializer. Indeed, in the computational metalanguage (Hatcliff

& Danvy, 1997), a named dynamic computation cannot be discarded due to

possible computational effects. Similarly, the contextual coherence constraint over

the conditional branches is introduced because one cannot decide statically which

conditional branch should be selected. We will show in sections 4 and 7 that these

context coherence constraints are the source of binding-time improvements by CPS

transformation.

The context coherence constraint on the body of a let-expression can be relaxed if

one uses a continuation-based program specializer (Bondorf, 1992; Hatcliff & Danvy,

1997; Lawall & Danvy, 1994). The context coherence constraint connecting the

conditional branches with the test can be relaxed as well if one allows the same

continuation-based specializer to lift the test above the context, either by duplicating

the context or by naming the continuation with a let-expression.

We consider a binding-time analysis which takes into account a continuation-based

specializer. More formally, we consider the BTA of figure 9, without the context

coherence constraints mentioned above. The functionality of the new relation �p

bt�
is

defined in figure 10, and it is identical to the functionality of the traditional BTA

relation �p
bt (figure 8). To define the new BTA relation, we replace the rules for

let-expressions and conditional expressions as specified in figure 11. The result is

BTA�.

3 Comparing analysis results across program transformations

How do we compare the results of a program analysis before and after a program

transformation? The result of an analysis is a function mapping labels and program

variables to analysis information. For simplicity, we expect that the transformation

preserves some of the labels and variables of the initial program. Under this as-

sumption, we relate the results of the analysis by comparing the analysis information

associated with the labels and variables preserved by the transformation.

Let us say that the program p is transformed into the program p′. Let us assume

that the points (labels and variables) common to p and p′ are identified as a set L.

Let S be an arbitrary solution of the analysis of p and S ′ be an arbitrary solution

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 879

(Ĉbt, ρ̂bt) �p

bt�
n� ⇐⇒ true

(Ĉbt, ρ̂bt) �p

bt�
x� ⇐⇒ ρ̂bt(x) = Ĉbt(�)

(Ĉbt, ρ̂bt) �p

bt�
(λπx.e�1)� ⇐⇒ (Ĉbt, ρ̂bt) �p

bt�
e�1 ∧

(Ĉbt(�) = D⇒ Ĉbt(�1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p

bt�
(recπf(x).e�1)� ⇐⇒ (Ĉbt, ρ̂bt) �p

bt�
e�1 ∧ Ĉbt(�) = ρ̂bt(f) ∧

(Ĉbt(�) = D⇒ Ĉbt(�1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p

bt�
(let x = t�

in e�1)�2

⇐⇒ (Ĉbt, ρ̂bt) �p

bt�
t� ∧ (Ĉbt, ρ̂bt) �p

bt�
e�1 ∧

Ĉbt(�) = ρ̂bt(x) ∧ Ĉbt(�1) = Ĉbt(�2)

(Ĉbt, ρ̂bt) �p

bt�
(let x = t

�0
0 t

�1
1

in e�2)�3

⇐⇒ (Ĉbt, ρ̂bt) �p

bt�
t
�0
0 ∧ (Ĉbt, ρ̂bt) �p

bt�
t
�1
1 ∧

(Ĉbt, ρ̂bt) �p

bt�
e�2 ∧ Ĉbt(�2) = Ĉbt(�3) ∧

(Ĉbt(�0) = D⇒ Ĉbt(�1) = ρ̂bt(x) = D) ∧
∀(λπy.e�1) ∈ Ĉcf (�0).(Ĉbt(�1) = ρ̂bt(y) ∧

Ĉbt(�) = ρ̂bt(x))

(Ĉbt, ρ̂bt) �p

bt�
(let x = op(t�)

in e�1)�2

⇐⇒ (Ĉbt, ρ̂bt) �p

bt�
t� ∧ (Ĉbt, ρ̂bt) �p

bt�
e�1 ∧

Ĉbt(�) � ρ̂bt(x) ∧ Ĉbt(�1) = Ĉbt(�2)

(Ĉbt, ρ̂bt) �p

bt�
(let x =

if0 t� e
�0
0 e

�1
1

in e�2)�3

⇐⇒ (Ĉbt, ρ̂bt) �p

bt�
t� ∧ (Ĉbt, ρ̂bt) �p

bt�
e
�0
0 ∧

(Ĉbt, ρ̂bt) �p

bt�
e
�1
1 ∧ (Ĉbt, ρ̂bt) �p

bt�
e�2 ∧

Ĉbt(�0) = Ĉbt(�1) = ρ̂bt(x) ∧
Ĉbt(�2) = Ĉbt(�3)

(Ĉbt, ρ̂bt) �p

bt�
(let x =

(let x1 = s

in e
�1
1)�2

in e�3)�4

⇐⇒ (Ĉbt, ρ̂bt) �p

bt�
(let x1 = s in e

�1
1)�2 ∧

(Ĉbt, ρ̂bt) �p

bt�
e�3 ∧ Ĉbt(�2) = ρ̂bt(x) ∧

Ĉbt(�3) = Ĉbt(�4)

(Ĉbt, ρ̂bt) �p

bt�
p ⇐⇒ (∀x.x free in p⇒ ρ̂bt(x) = D) ∧

(p = e� ⇒ Ĉbt(�) = D)

Fig. 11. Binding-time analysis for continuation-based partial evaluation (BTA�). Compared

to figure 9, we disabled the context coherence constraints in the 5th, 6th, 7th, 8th and 9th

cases.

of the analysis of p′. We consider that the solutions S and S ′ are equivalent if

S ′|L = S |L, where S |L is the restriction of the mapping S to the set L of common

program points.

To establish a relationship between the two best analysis results we use a

constructive technique. Given an arbitrary solution S of a constraint-based analysis

of a program p, we show how to construct an equivalent solution S ′ of the analysis

of the transformed program p′. We then show that the construction is valid, i.e. that

S ′ is a valid solution of the analysis. Our construction induces a monotone mapping

Φ between the two spaces of solutions. From the model-intersection property of

the constraint-based analyses we conclude that the best result of the analysis of p′

is at least as good as the results of the analysis of p. This situation is pictured in

figure 12.

In some cases, given a solution of the analysis of p′, we are also able to construct

an equivalent solution of the analysis of p, inducing an inverse mapping Ψ. When Φ

and Ψ are both monotone and their composition in both ways leads to contractions

(similarly to a Galois connection), we are able to show that the best result of the

analysis of p is equivalent to the best result of the analysis of p′. In such cases we

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

880 D. Damian and O. Danvy

S
•

S ′
•

p p′

solutions solutions

• •

analysis

��

transformation ��

Φ
��

analysis

��

Φ ��

Fig. 12. Comparing results of constraint-based analyses.

conclude that the specific program transformation has no impact on the result of

the analysis.

4 Control-flow analysis, binding-time analysis and monadic let reductions

To avoid generating administrative redexes when introducing continuations, Λml -

programs need to be normalized with respect to the monadic let-reductions (Hatcliff

& Danvy, 1994). The Λv language is closed under the let .β and let .assoc reductions.

In this section, we investigate the effect of each of the two reductions over the

constraint-based analyses defined in section 2.

According to the subject-reduction property of the control-flow or binding-

time analyses (Nielson et al., 1999; Palsberg, 1993), a valid result of an analysis

will also be a valid result of the analysis after a let-reduction (though not necessarily

the least one). What is not clear, however, is whether the least (i.e. the best) result

of the analysis is also the least result of the analysis after such reductions. We rely on

the linearity of the transformations to show that flow information is not improved.

We also show that let reductions may lead to strict binding-time improvements; we

also show that the context coherence constraints are the cause of such improvements:

disabling them leads to no improvements after a let reduction.

The let-expressions introduced by the call-by-value embedding of figure 3 are

linear: they do not duplicate or throw away code. Moreover, their linearity is

preserved by the let .β and let .assoc reductions. In the following sections, we formalize

the notion of linearity (section 4.1), and use it to characterize the effect of the let .β

and let .assoc reductions over CFA, BTA and BTA� (sections 4.1.1 through 4.2.3).

4.1 Linear let-reduction

We formalize the notion of linear let-reduction as a let .β reduction such that the let

body contains a unique occurrence of the variable named in the let header. The key

observation, which we will prove in section 4.1.1, is that linear reductions have no

effect on the control-flow analysis. Linearity is essential: it is simple to show that

non-linear (code-duplicating) reductions may improve the result of the control-flow

analysis.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 881

Definition 2

A linear context is an expression with a unique hole [·]. Linear contexts are defined

by the following grammar:

E ::= T | (let x = S in e�1)� | (let x = s in E)�

S ::= T | T t�1

1 | t
�0

0 T | op(T) | if0 T e�0

0 e�1

1 | if0 t� E e�1

1 | if0 t� e�0

0 E |
(let x = S in e�1)� | (let x = s in E)�

T ::= [·] | (λπx.E)� | (recπf(x).E)�

We use linear contexts to identify contexts which are filled as the result of

a let .β reduction. Note that linear contexts as defined in Definition 2 are more

expressive than contexts that may result from the call-by-value embedding: the

CPS transformation does not extract terms from inside lambda-expressions and

conditional branches. Nevertheless, the results we are presenting hold in this enlarged

setting.

We also formalize the notion of a let-context as a context where a let-reduction

might take place.

Definition 3

A let context is an expression which contains a unique hole [·] in the place of a

let-expression. Let-contexts are defined by the following grammar:

E ::= [·] | T | (let x = S in e�1)� | (let x = s in E)�

S ::= [·] | T | T t�1

1 | t
�0

0 T | op(T) | if0 T e�0

0 e�1

1 | if0 t� E e�1

1 |
if0 t� e�0

0 E | (let x = S in e�1)� | (let x = s in E)�

T ::= (λπx.E)� | (recπf(x).E)�

Given a linear context E and a trivial term t� , we use E[t�] to denote the context

E with the hole [·] replaced with t� . It is trivial to see that E[t�] is a well-formed

expression. We use the same notation for plugging a labeled let-expression into a let

context. Again, the operation is well defined.

We use FV (e) to denote the set of free variables of the expression e. This notation

naturally extends to contexts, by considering the hole [·] to contain no free variables.

We also use L as the function extracting the label of an expression. By definition,

for any labeled expression e� , L(e�) = �.

Definition 4

A linear let is an expression of the form let x = s in e� such that e� contains a

unique free occurrence of x.

It is immediate to see that if a let-expression let x = s in e� is linear, then there

exists a linear context E and a label �1 such that e� = E[x�1].

Definition 5

A linear let .β reduction is a let .β reduction of a linear let.

It is relevant to notice that all the let .β redexes introduced by the call-by-value

embedding are linear and that reducing any of these redexes does not change this

property.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

882 D. Damian and O. Danvy

4.1.1 Linear let .β reduction and CFA

Let us show that a linear let .β reduction does not alter the results of the CFA. Let

p be a properly labeled program such that there exist a let context E and a linear

context E1 such that

p = E
[(

let x = t� in E1

[
x�1

])�2
]

Let p′ be the program p after performing the linear let .β reduction:

p′ = E[E1[t
�]]

It is immediate to see that p′ is a properly labeled program.

We show that the least solution of the flow analysis of p is equivalent to the

least solution of the analysis of p′. In fact, the least solution for p′ is obtained from

the least solution for p by projection on the labels and variables preserved by the

transformation.

We define the following functions:

• Φlet .β
cf : (Cachepcf × Env p

cf)→ (Cachep
′

cf × Env p′

cf) such that

Φlet .β
cf (Ĉcf , ρ̂cf) = (Ĉcf |Labp′ , ρ̂

′
cf |Varp

′)

• Ψlet .β
cf : (Cachep

′

cf × Env p′

cf) → (Cachepcf × Env p
cf) such that, if Ψlet .β

cf (Ĉ ′cf , ρ̂
′
cf) =

(Ĉcf , ρ̂cf), then

— Ĉcf = Ĉ ′cf � [�1
→ Ĉ ′cf (�), �2
→ Ĉ ′cf (L(E1[t
�]))]

— ρ̂cf = ρ̂′cf � [x
→ Ĉ ′cf (�)].

The two functions mediate between solutions for p and p′.

Lemma 4.1

If (Ĉcf , ρ̂cf) �p
cf p then Φlet .β

cf (Ĉcf , ρ̂cf) �p′

cf p′, and if (Ĉ ′cf , ρ̂
′
cf) �p′

cf p′ then

Ψlet .β
cf (Ĉ ′cf , ρ̂

′
cf) �p

cf p.

It is immediate to show that Φlet .β
cf and Ψlet .β

cf form an embedding/projection pair.

The following lemma is a direct consequence.

Lemma 4.2

If (Ĉcf , ρ̂cf) is the least solution of the CFA of p and (Ĉ ′cf , ρ̂
′
cf) is the least solution of

the CFA of p′, then Φlet .β
cf (Ĉcf , ρ̂cf) = (Ĉ ′cf , ρ̂

′
cf) and Ψlet .β

cf (Ĉ ′cf , ρ̂
′
cf) = (Ĉcf , ρ̂cf).

Lemma 4.2 says that the result of the CFA is preserved by a linear let .β reduction.

4.1.2 Linear let .β reduction and BTA

We show that a linear let .β reduction may improve the results of the BTA. Let p

and p′ be as defined in the previous section. We show that the least binding times

of p′ are as good and possibly better than the binding times of p.

We define the function Φlet .β
bt : (Cachepbt × Env p

bt)→ (Cachep
′

bt × Env p′

bt) as

Φlet .β
bt (Ĉbt, ρ̂bt) =

(
Ĉbt|Labp′ , ρ̂

′
bt|Varp

′
)

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 883

Lemma 4.3

If (Ĉbt, ρ̂bt) �p
cf p then Φlet .β

bt (Ĉbt, ρ̂bt) �p′

cf p
′.

Lemma 4.3 says that the binding times are not worsened by a linear let .β reduction.

Yet the analysis can yield strictly better results after a linear let .β reduction. In some

cases, the binding times of the reduced program are strictly better than the binding

times of the initial program.

For example, the call-by-value embedding of the term (λx.2) z followed by one

linear let .β reduction yields the term:

let x1 = z in

let x2 = (λx.2) x1 in x2

Considering z to be dynamic, the let-rule forces the variable x2 to be dynamic.

Therefore, the constant 2 has to be dynamic as well, and, consequently, it will be

residualized at specialization time. In contrast, after one more (linear) let .β reduction

we obtain the term

let x2 = (λx.2) z in x2

and we can see that, in a global static context, the value 2 is no longer coerced to

be dynamic.

The context coherence constraint seems unjustified in the above case since

evaluating the variable z has no side effects. But it is the call-by-value embedding

which forces the variable z into a computation. The BTA has to impose the

constraint in such cases as well (Hatcliff & Danvy, 1997). At any rate, this initial

loss of precision is avoided by performing the second let .β reduction.

In the next section we show that disabling the context coherence constraints leads

to no loss or gain in the precision of the binding times.

4.1.3 Linear let .β reduction and BTA�

Let us show that the context coherence constraints from the standard BTA are

the source of the benefit obtained by a linear let .β reduction. To do so, we show

that a linear let .β reduction does not alter the results of the binding-time analysis

for continuation-based partial evaluation, BTA�. We use the constructive technique

outlined in section 3. The function Φlet .β

bt�
: (Cachepbt × Env p

bt) → (Cachep
′

bt × Env p′

bt)

is identical to the one from section 4.1.2. The function Ψlet .β

bt�
: (Cachep

′

bt × Env p′

bt) →
(Cachepbt × Env p

bt) is defined similarly to Ψlet .β
cf in section 4.1.1. It is immediate to

show that Ψlet .β

bt�
◦ Φlet .β

bt�
= id and Φlet .β

bt�
◦Ψlet .β

bt�
= id. The following lemma is a direct

consequence:

Lemma 4.4

If (Ĉbt, ρ̂bt) is the least solution of the BTA� of p and (Ĉ ′bt, ρ̂
′
bt) is the least solution

of the BTA� of p′, then Φlet .β

bt�
(Ĉbt, ρ̂bt) = (Ĉ ′bt, ρ̂

′
bt) and Ψlet .β

bt�
(Ĉ ′bt, ρ̂

′
bt) = (Ĉbt, ρ̂bt).

Lemma 4.4 says that the binding times obtained with BTA� are preserved by a

linear let .β reduction.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

884 D. Damian and O. Danvy

4.2 Let flattening

We show that a let .assoc reduction has no effect on the CFA and on BTA�, and

that it can improve and will not degrade the results of the standard BTA.

4.2.1 Let flattening and CFA

Let us show that a let .assoc reduction does not alter the results of the CFA. Let p

be a properly labeled program as a let context E such that

p = E
[(

let x1 =
(
let x = s in e�1

1

)�
in e�2

2

)�3
]

Let p′ be the program p after reassociating the let constructs:

p′ = E
[(

let x = s in
(
let x1 = e�1

1 in e�2

2

)�4
)�3

]
It is immediate to see that p′ is a properly labeled program.

Again, we show that the least solution of the flow analysis of p is equivalent to

the least solution of the analysis of p′. The least solution for p′ is obtained from

the least solution for p by projection on the labels and variables preserved by the

transformation.

As in section 4.1.1, we define the following functions:

• Φlet .assoc
cf : (Cachepcf × Env p

cf)→ (Cachep
′

cf × Env p′

cf) such that

Φlet .assoc
cf (Ĉcf , ρ̂cf) = (Ĉcf |Labp\{�} � [�4
→ Ĉcf (�2)], ρ̂cf).

• Ψlet .assoc
cf : (Cachep

′

cf × Env p′

cf)→ (Cachepcf × Env p′

cf) such that

Ψlet .assoc
cf (Ĉ ′cf , ρ̂

′
cf) = (Ĉ ′cf |Labp′ \{�4} � [�
→ Ĉ ′cf (�1)], ρ̂

′
cf).

The two functions mediate between solutions of the analysis of p and p′.

Lemma 4.5

If (Ĉcf , ρ̂cf) �p
cf p then Φlet .assoc

cf (Ĉcf , ρ̂cf) �p′

cf p′, and if (Ĉ ′cf , ρ̂
′
cf) �p′

cf p′ then

Ψlet .assoc
cf (Ĉ ′cf , ρ̂

′
cf) �p

cf p.

Following the constructive technique from section 3, we can easily prove the

following lemma.

Lemma 4.6

If (Ĉcf , ρ̂cf) is the least solution of the CFA of p and (Ĉ ′cf , ρ̂
′
cf) is the least solution of

the CFA of p′, then Φlet .assoc
cf (Ĉcf , ρ̂cf) = (Ĉ ′cf , ρ̂

′
cf) and Ψlet .assoc

cf (Ĉ ′cf , ρ̂
′
cf) = (Ĉcf , ρ̂cf).

Lemma 4.6 says that the result of the CFA is preserved by let flattening.

4.2.2 Let flattening and BTA

Let us show that an isolated let flattening may improve the results of the BTA. Let

p and p′ be as defined in section 4.2.1.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 885

Again, we show that for any binding times of p there exist equivalent binding

times of p′. We define the function Φlet .assoc
bt : (Cachepbt × Env p

bt)→ (Cachepbt × Env p
bt)

such that

Φlet .assoc
bt (Ĉbt, ρ̂bt) =

(
Ĉbt|Labp\{�} � [�4
→ Ĉbt(�2)], ρ̂bt

)
.

Obviously Φlet .assoc
bt (Ĉbt, ρ̂bt) is the equivalent of (Ĉbt, ρ̂bt). The following lemma shows

that Φlet .assoc
bt constructs valid solutions.

Lemma 4.7

If (Ĉbt, ρ̂bt) �p
bt p then Φlet .assoc

bt (Ĉbt, ρ̂bt) �p′

bt p
′.

Since Φlet .assoc
bt constructs valid equivalent solutions, by the considerations of

section 3, it follows that the binding times are not worsened by a let-flattening. The

analysis, however, can yield strictly better results. In some cases, the binding times

after a let-flattening are strictly better than the binding times of the initial program.

For example, the call-by-value embedding of the program succ((λx.2) (pred (z))),

after a few let .β and one let .assoc reductions, leads to:

let x1 = let x2 = pred (z)

in let x3 = (λx.2) x2 in x3

in let x4 = succ(x1) in x4

The program above reassociates to:

let x2 = pred (z)

in let x1 = let x3 = (λx.2) x2 in x3

in let x4 = succ(x1) in x4

In the first program, the let rule forces x1 to be dynamic and the succ(x1) computation

is dynamic. In the second program x1 can be static, and the succ(x1) computation

may be performed statically, and only its result (3) will be residualized.

4.2.3 Let flattening and BTA�

Let us show that for the let .assoc reduction (similarly to the let .β reduction in

section 4.1.3), all binding-time improvements come from the context coherence

constraints. To do so, we show that a let .assoc reduction has no effect on the

binding-time analysis for continuation-based partial evaluation BTA�.

Taking p and p′ as defined in section 4.2.1, we define two functions Φlet .assoc
bt�

:

(Cachepbt×Env p
bt)→ (Cachep

′

bt×Env p′

bt) and Ψlet .assoc
bt�

: (Cachep
′

bt×Env p′

bt)→ (Cachepbt×
Env p

bt) which map solutions of BTA� for p into solutions of BTA� for p′, and vice

versa. The functions are essentially defined as in section 4.2.1. One can show that

Φlet .assoc
bt�

◦ Ψlet .assoc
bt�

= id and Φlet .assoc
bt�

◦ Ψlet .assoc
bt�

= id. The following lemma is an

immediate consequence:

Lemma 4.8

If (Ĉbt, ρ̂bt) is the least solution of the BTA� of p and (Ĉ ′bt, ρ̂
′
bt) is the least solution of

the BTA� of p′, then Φlet .assoc
bt�

(Ĉbt, ρ̂bt) = (Ĉ ′bt, ρ̂
′
bt) and Ψlet .assoc

bt�
(Ĉ ′bt, ρ̂

′
bt) = (Ĉbt, ρ̂bt).

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

886 D. Damian and O. Danvy

p ∈ Pgm ::= e�

e ∈ Exp ::= t | let x = s in e�

s ∈ Step ::= t
�0
0 t

�1
1 | op(t�) | if0 t� e

�0
0 e

�1
1

t ∈ Triv ::= n | x | λπx.e� | recπf(x).e�

Fig. 13. Λmnf : The subset of Λv normalized with respect to let .β and let .assoc.

[[e]]Pgm = λk.[[e]]Expk where k is fresh

[[n]]Triv = n

[[x]]Triv = x

[[λx.e]]Triv = λx.λk.[[e]]Expk where k is fresh

[[rec f(x).e]]Triv = rec f(x).λk.[[e]]Expk where k is fresh

[[t]]Expk = k [[t]]Triv

[[let x = t0 t1 in e]]Expk = [[t0]]
Triv [[t1]]

Triv λx.[[e]]Expk

[[let x = op(t) in e]]Expk = õp [[t]]Triv λx.[[e]]Expk

[[let x = if0 t e0 e1 in e]]Expk = let k1 = λx.[[e]]Expk

in if0 [[t]]Triv ([[e0]]
Expk1) ([[e1]]

Expk1)

where k1 is fresh

Fig. 14. Introducing continuations.

4.3 Summary and conclusions

We have shown that, once the input program is embedded into the computational

metalanguage, let .β and let .assoc-normalization can yield binding-time improve-

ments. At the same time linear let .β and let .assoc preserve the quality of flow

information. This property confirms that monadic normal forms are a valuable

intermediate representation in a program transformer and in an optimizing compiler.

5 Introducing continuations

The language resulting from normalizing terms in Λv under the let .β and let .assoc

reductions is the language Λmnf defined in figure 13. The effect of the normalization

is to eliminate naming of trivial values and to flatten all nested computations.

Therefore, in Λmnf a computational step can no longer be a trivial value or a nested

computation.

The language Λmnf is the support for introducing continuations by the trans-

formation shown in figure 14. Introducing continuations leads to terms in a

CPS language.3 CPS is a restriction of direct style. To use the same program

analysis, we therefore embed the CPS language into the Λv language. For example,

applications are transformed into let-expressions that name partially applied CPS

λ-abstractions and intermediate computations. Figure 15 displays the corresponding

3 In figure 14, õp is the CPS counterpart of op, to ensure evaluation-order independence (Plotkin, 1975).

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 887

[[e]]Pgm = λk.[[e]]Expk where k is fresh

[[n]]Triv = n

[[x]]Triv = x

[[λx.e]]Triv = λx.λk.[[e]]Expk where k is fresh

[[rec f(x).e]]Triv = rec f(x).λk.[[e]]Expk where k is fresh

[[t]]Expk = let x = k [[t]]Triv in x where x is fresh

[[let x = t0 t1 in e]]Expk = let x0 = [[t0]]
Triv [[t1]]

Triv

in let x1 = x0 λx.[[e]]Expk in x1

where x0 and x1 are fresh

[[let x = op(t) in e]]Expk = let x = op([[t]]Triv) in [[e]]Expk

[[let x = if0 t e0 e1 in e]]Expk = let k1 = λx.[[e]]Expk in

let x1 = if0 [[t]]Triv ([[e0]]
Expk1) ([[e1]]

Expk1)

in x1

where k1 and x1 are fresh

Fig. 15. Introducing continuations and embedding into the Λv language.

CPS transformation and embedding.4 (We have omitted the labels, because they

only matter in the following sections. Suffice it to say that we label each CPS trivial

term with the same label as its direct-style counterpart.)

We can apply now the constraint-based analyses of section 2 on both the

(let .β + let .assoc)-normalized program and on its CPS counterpart given by the

transformation of figure 15.

6 Control-flow analysis and the introduction of continuations

To compare the results of the CFA before and after introducing continuations, we

follow the constructive technique outlined in section 3. Therefore, the rest of this

section is organized as follows. First, we show how to CPS-transform control-flow

information (section 6.1). Given a direct-style program p and an arbitrary solution

of its associated analysis (Ĉcf , ρ̂cf), we construct a solution (Ĉ ′cf , ρ̂
′
cf) of the analysis

associated to p′, the CPS counterpart of p. We ensure that the construction ΦCPS
cf

builds a valid solution (section 6.2). We present a converse transformation, ΨCPS
cf

(section 6.3), which we also prove to be correct (section 6.4). We then show that the

two constructions preserve leastness (section 6.5).

6.1 CPS transformation of control flow

Given a solution (Ĉcf , ρ̂cf) of the analysis of a program p (i.e. a cache-environment

pair such that (Ĉcf , ρ̂cf) �p
cf p holds), we now construct in linear time a solution

(Ĉ ′cf , ρ̂
′
cf) of the analysis of p′ = [[p]]Pgm , the CPS counterpart of p (i.e. such that

4 In figure 15, we use op instead of õp since the direct-style language is call-by-value.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

888 D. Damian and O. Danvy

(Ĉ ′cf , ρ̂
′
cf) �p′

cf p′ holds). By analogy, we refer to the construction of (Ĉ ′cf , ρ̂
′
cf) out of

(Ĉcf , ρ̂cf) as the CPS transformation of (Ĉcf , ρ̂cf) into (Ĉ ′cf , ρ̂
′
cf).

As mentioned in section 2.1, we have designed the CPS transformation on labeled

terms so that it preserves the labels of each trivial term. In addition, each direct-

style λ-abstraction is annotated with the same label as its CPS counterpart. As a

consequence, the abstract values in direct style are included into the abstract values

in CPS, i.e. Lamp ⊆ Lamp′ and Valpcf ⊆ Valp
′

cf . When introducing continuations, all

the variables defined in the original direct-style program are preserved. Therefore

Varp ⊆ Varp
′
. In essence, we construct a solution for the CPS program such that

the flow information assigned to the variables and to the trivial terms preserved

by the transformation is identical to the information found in the direct-style

solution.

We also assign flow information to the newly introduced terms and variables, in

particular to continuation abstractions and continuation identifiers. To this end, we

use two auxiliary functions γ and ξ.

• γ extracts the labels of partially applied CPS λ-abstractions. Formally, given

A a set of λ-abstractions from the program p′, γ(A) is defined as the set of λ-

abstractions λπ1k.e� such that λπx.λπ1k.e� ∈ A or such that recπf(x).λπ1k.e� ∈ A.

• ξ assigns flow information to each continuation identifier k introduced by the

CPS transformation of p (at λ-abstractions and recursive function definitions).

This information can be obtained from the direct-style flow information, since

we can syntactically identify the continuation of the CPS counterpart of any

direct-style application.

Given p, Ĉcf , ρ̂cf , and a continuation identifier k introduced by the transform-

ation of a λ-abstraction from p:

[[λπ1x.e]]Triv = λπ1x.λk.[[e]]Expk

we gather in ξ(k) all the continuations that are passed at the program points

where λπ1x.e can be applied. Formally, ξ(k) is defined as the set of all labels π

such that in the CPS transformation of p into p′ there exists a transformation

step

[[let x = t�0

0 t1 in e]]Expk1 = let x0 = [[t�0

0]]Triv [[t1]]
Triv

in let x1 = x0 λπx.[[e]]Expk1 in x1

such that π1 ∈ Ĉcf (�0). We make a similar definition for the continuation

identifiers introduced at recursive function definitions.

Using γ and ξ, we define (Ĉ ′cf , ρ̂
′
cf) inductively, following figure 16. In the right

part, for each CPS-transformation step, we assign flow values into Ĉ ′cf and ρ̂′cf using

previously defined values.

The construction of flow information defines a function

ΦCPS
cf :

(
Cachepcf × Env p

cf

)
→

(
Cachepcf × Env p

cf

)
.

It is easy to show that ΦCPS
cf is monotone.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 889

[[e�]]Pgm = (λπk.[[e�]]Expk)�0 Ĉ ′cf (�0) = {π} ρ̂′cf (k) = ∅
[[n�]]Triv = n� Ĉ ′cf (�) = Ĉcf (�)

[[x�]]Triv = x� Ĉ ′cf (�) = Ĉcf (�)

[[(λπx.e�0)�]]Triv = (λπx.(λπ1k.[[e�0]]Expk)�2)�

Ĉ ′cf (�) = Ĉcf (�) Ĉ ′cf (�2) = {π1}
ρ̂′cf (x) = ρ̂cf (x) ρ̂′cf (k) = ξ(k)

[[(recπf(x).e�0)�]]Triv = (recπf(x).(λπ1k.[[e�0]]Expk)�2)�

Ĉ ′cf (�) = Ĉcf (�) Ĉ ′cf (�2) = {π1}
ρ̂′cf (x) = ρ̂cf (x) ρ̂′cf (f) = ρ̂cf (f) ρ̂′cf (k) = ξ(k)

[[t�]]Expk = (let x = k�0 [[t�]]Triv in x�1)�2

Ĉ ′cf (�0) = ρ̂′cf (k)

Ĉ ′cf (�2) = Ĉ ′cf (�1) = ρ̂′cf (x) = ∅

[[(let x = t
�0
0 t

�1
1 in e�)�2]]Expk =

(let x0 = [[t
�0
0]]Triv [[t

�1
1]]Triv in

(let x1 = x
�3
0 (λπx.[[e�]]Expk)�4 in x

�5
1)�6)�7

Ĉ ′cf (�3) = ρ̂′cf (x0) = γ(Ĉcf (�0))

Ĉ ′cf (�4) = {π} ρ̂′cf (x) = ρ̂cf (x)

Ĉ ′cf (�7) = Ĉ ′cf (�6) = Ĉ ′cf (�5) = ρ̂′cf (x1) = ∅

[[(let x = op(t�) in e�0)�1]]Expk = (let x = op([[t�]]Triv) in [[e�0]]Expk)�2

ρ̂′cf (x) = ρ̂cf (x) Ĉ ′cf (�2) = ∅

[[
(let x = if0 t� e

�0
0 e

�1
1

in e�2)�3

]]Exp

k =

(let k1 = (λπx.[[e�2]]Expk)�4 in

(let x1 = if0 [[t�]]Triv ([[e
�0
0]]Expk1) ([[e

�1
1]]Expk1)

in x
�5
1)�6)�7

ρ̂′cf (k1) = Ĉ ′cf (�4) = {π} ρ̂′cf (x) = ρ̂cf (x)

Ĉ ′cf (�7) = Ĉ ′cf (�6) = Ĉ ′cf (�5) = ρ̂′cf (x1) = ∅

Fig. 16. Transformation of control flow from direct style to CPS.

6.2 Correctness of the transformation

Let us show that the cache-environment pair constructed by ΦCPS
cf is indeed a valid

solution of the analysis of the CPS counterpart of p.

Theorem 6.1

Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm , let (Ĉcf , ρ̂cf) be

a solution of the CFA of p (i.e. such that (Ĉcf , ρ̂cf) �p
cf p holds) and let (Ĉ ′cf , ρ̂

′
cf) =

ΦCPS
cf (Ĉcf , ρ̂cf). Then (Ĉ ′cf , ρ̂

′
cf) �p′

cf p
′ holds.

Under the assumptions of the theorem, we start by observing three immediate

properties of the flow transformation.

Lemma 6.2

For all variables x in p, ρ̂′cf (x) = ρ̂cf (x); for all trivial terms t� in p, Ĉ ′cf (�) = Ĉcf (�);

and for all expressions e� in p′, Ĉ ′cf (�) = ∅.
For an arbitrary expression, we define the notion of return label to capture the

return point from which CFA collects flow information, as shown just below in

Lemma 6.3.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

890 D. Damian and O. Danvy

Definition 6

Given a labeled expression e� ∈ Exp, we define the return label R[[e�]] of e� by

structural induction as follows:

R[[t�]] = �

R[[(let x = s in e�1)�]] =R[[e�1]]

Lemma 6.3

Let e� be an arbitrary subexpression of p. Then Ĉcf (R[[e�]]) ⊆ Ĉcf (�).

A return label identifies the point where a continuation is called in the CPS-

transformed program. Return labels thus provide a syntactic connection between

the points where flow information is collected in direct style and the points where

flow information is sent to continuations in CPS.

Lemma 6.4

Let k be a continuation identifier introduced by the CPS transformation of a

λ-abstraction from p:

[[λπ1x1.e
�0]]Triv = λπ1x1.λk.[[e

�0]]Expk

Then, for each λπx.e�1 ∈ ρ̂′cf (k), Ĉcf (R[[e�0]]) ⊆ ρ̂′cf (x). Let k be a continuation

identifier introduced by the CPS transformation of a recursive function definition

from p:

[[recπ1f(x1).e
�0]]Triv = recπ1f(x1).λk.[[e

�0]]Expk

Then, for each λπx.e�1 ∈ ρ̂′cf (k), Ĉcf (R[[e�0]]) ⊆ ρ̂′cf (x).

Let us consider the first case. By the definition of ξ, the only possibility such

that λπx.e�1 ∈ ρ̂′cf (k) is that the function is the continuation of an application

point where λπ1x1.e
�0 is applied. Focusing on the application point, we show that

Ĉcf (�0) ⊆ ρ̂cf (x) = ρ̂′cf (x). From Lemma 6.3, Ĉcf (R[[e�0]]) ⊆ Ĉcf (�0).

The proof of Theorem 6.1 is sketched in Appendix A.

6.3 Reversing the transformation

In the previous section we have shown that direct-style flow information can be

transformed into CPS flow information. We can also show that any result of

the analysis of a CPS-transformed program can be matched by a result of the

analysis of its direct-style counterpart. Using again the structure given by the CPS

transformation, we exhibit a direct-style flow transformation. Given a direct-style

program p and its CPS counterpart p′, and given (Ĉ ′cf , ρ̂
′
cf) a valid solution of the

analysis of p′, we recover in linear time a valid solution (Ĉcf , ρ̂cf) of the analysis of p.

Recovering a direct-style solution is straightforward. For variables and trivial

terms in p, we are only “filtering out” the labels of continuations from the results

of the analysis of p′. We define the direct-style solution by induction on the CPS

transformation, following figure 17. In the right part, for each CPS-transformation

step, we assign flow values into Ĉcf and ρ̂cf . The left parts of figures 16 and 17 are

identical.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 891

[[e�]]Pgm = (λπk.[[e�]]Expk)�0

[[n�]]Triv = n� Ĉcf (�) = Ĉ ′cf (�) ∩ Lamp

[[x�]]Triv = x� Ĉcf (�) = Ĉ ′cf (�) ∩ Lamp

[[(λπx.e�0)�]]Triv = (λπx.(λπ1k.[[e�0]]Expk)�2)�

Ĉcf (�) = Ĉ ′cf (�) ∩ Lamp ρ̂cf (x) = ρ̂′cf (x) ∩ Lamp

[[(recπf(x).e�0)�]]Triv = (recπf(x).(λπ1k.[[e�0]]Expk)�2)�

Ĉcf (�) = Ĉ ′cf (�) ∩ Lamp ρ̂cf (x) = ρ̂′cf (x) ∩ Lamp

ρ̂cf (f) = ρ̂′cf (f) ∩ Lamp

[[t�]]Expk = (let x = k�0 [[t�]]Triv in x�1)�2

[[(let x = t
�0
0 t

�1
1 in e�)�2]]Expk =

(let x0 = [[t
�0
0]]Triv [[t

�1
1]]Triv in

(let x1 = x
�3
0 (λπx.[[e�]]Expk)�4 in x

�5
1)�6)�7

Ĉcf (�2) = Ĉcf (�) ρ̂cf (x) = ρ̂′cf (x) ∩ Lamp

[[(let x = op(t�) in e�0)�1]]Expk = (let x = op([[t�]]Triv) in [[e�0]]Expk)�2

Ĉcf (�1) = Ĉcf (�0) ρ̂cf (x) = ρ̂′cf (x) ∩ Lamp

[[
(let x = if0 t� e

�0
0 e

�1
1

in e�2)�3

]]Exp

k =

(let k1 = (λπx.[[e�2]]Expk)�4 in

(let x1 = if0 [[t�]]Triv ([[e
�0
0]]Expk1) ([[e

�1
1]]Expk1)

in x
�5
1)�6)�7

Ĉcf (�3) = Ĉcf (�2) ρ̂cf (x) = ρ̂′cf (x) ∩ Lamp

Fig. 17. Transformation of control flow from CPS to direct style.

We can show that figure 17 defines another function

ΨCPS
cf :

(
Cachepcf × Env p

cf

)
→

(
Cachepcf × Env p

cf

)
.

It is also easy to show that, like ΦCPS
cf in section 6.2, ΨCPS

cf is monotone.

6.4 Correctness of the reverse transformation

Let us show that the reverse transformation indeed yields a valid solution of the

analysis of the original program.

Theorem 6.5

Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm , let (Ĉ ′cf , ρ̂
′
cf)

be a solution of the CFA of p′ (i.e. such that (Ĉ ′cf , ρ̂
′
cf) �p′

cf p′ holds) and let

(Ĉcf , ρ̂cf) = ΨCPS
cf (Ĉ ′cf , ρ̂

′
cf). Then (Ĉcf , ρ̂cf) �p

cf p holds.

As in section 6.2, we use intermediate results to prove Theorem 6.5. Working

under the assumptions of the theorem, we observe two immediate properties of the

reverse transformation:

Lemma 6.6

For all x ∈ Varp, ρ̂cf (x) = ρ̂′cf (x) ∩ Lamp; and for all trivial terms t� in p, Ĉcf (�) =

Ĉ ′cf (�) ∩ Lamp.

For an arbitrary expression, the new solution collects all the flow information

from the return point of the expression.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

892 D. Damian and O. Danvy

Lemma 6.7

Let e� be an expression in p. Then Ĉcf (�) = Ĉcf (R[[e�]]).

As a parallel of Lemma 6.4, the following lemma connects the flow at the return

points of functions with the flow collected for the variables declared by continuations.

Lemma 6.8

Let k be a continuation identifier introduced by the transformation of a λ-abstraction

from p:

[[λπ1x1.e
�0]]Triv = λπ1x1.λk.[[e

�0]]Expk

Then, for each λπx.e�1 ∈ ρ̂′cf (k), Ĉcf (R[[e�0]]) ⊆ ρ̂′cf (x). Let k be a continuation

identifier introduced by the transformation of a recursive function definition from p:

[[recπ1f(x1).e
�0]]Triv = recπ1f(x1).λk.[[e

�0]]Expk

Then, for each λπx.e�1 ∈ ρ̂′cf (k), Ĉcf (R[[e�0]]) ⊆ ρ̂′cf (x).

The proof of Theorem 6.5 is sketched in Appendix A.

6.5 Equivalence of flow

Let p be an arbitrary direct-style program and p′ = [[p]]Pgm its CPS counterpart. By

simple unfoldings of definitions, we prove the following lemma.

Lemma 6.9

Given (Ĉcf , ρ̂cf) a solution of the CFA of p (i.e. such that (Ĉcf , ρ̂cf) �p
cf p holds),

ΨCPS
cf (ΦCPS

cf (Ĉcf , ρ̂cf)) ⊆ (Ĉcf , ρ̂cf). Given (Ĉ ′cf , ρ̂
′
cf) a solution of the CFA of p′, (i.e.

such that (Ĉ ′cf , ρ̂
′
cf) �p′

cf p
′ holds), then it holds that ΦCPS

cf (ΨCPS
cf (Ĉ ′cf , ρ̂

′
cf)) ⊆ (Ĉ ′cf , ρ̂

′
cf).

From these two properties the following main theorem follows directly.

Theorem 6.10 (Equivalence of flow)

Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm , let (Ĉcf , ρ̂cf) be

the least solution of the CFA of p and let (Ĉ ′cf , ρ̂
′
cf) be the least solution of the CFA

of p′. Then ΦCPS
cf (Ĉcf , ρ̂cf) = (Ĉ ′cf , ρ̂

′
cf) and ΨCPS

cf (Ĉ ′cf , ρ̂
′
cf) = (Ĉcf , ρ̂cf).

6.6 Summary and conclusions

Theorem 6.10 shows that the best flow information obtainable by a constraint-

based control-flow analysis on a direct-style program is equivalent to the best flow

information obtainable by the same analysis on the CPS counterpart of this program,

and vice versa. Lemma 6.2 and Lemma 6.6 show that the two solutions are equal

on the variables and program points common to the two programs. We conclude

that, for CFA as defined in figure 7, no information is lost or gained by the CPS

transformation.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 893

7 Binding-time analysis and the introduction of continuations

We describe the effect of the introduction of continuations on the result of the

BTA of a program in Λmnf . First, we define a CPS transformation of binding times

(section 7.1), which we show to be correct and to preserve the quality of the binding

times (section 7.2). Unlike for CFA, however, we show examples where BTA on CPS

terms gives more precise results than on the corresponding direct-style terms, thus

showing that introducing continuations may lead to more specialization oppor-

tunities (section 7.3). Finally (section 7.4) we show that if we relax the constraints

of the BTA to take into account continuation-based partial evaluation, then, just

like CFA, no loss and no gain of information can be observed after the introduction

of continuations.

7.1 CPS transformation of binding times

We show that the binding times obtained by analyzing the CPS counterpart of a

program are at least as good as the ones obtained by analyzing the original program.

We construct in linear time a solution of the BTA over the CPS-transformed program

from a solution of the BTA over the original program, such that the quality of the

binding times is preserved.

Given the program p and (Ĉbt, ρ̂bt) a solution of the BTA over p, we define

(Ĉ ′bt, ρ̂
′
bt) as a solution of the BTA over p′, the CPS counterpart of p. The definition

is by induction on the introduction of continuations and is given in figure 18, where

the left parts are identical to the left parts of figures 16 and 17. In the right part,

we assign binding times into Ĉ ′bt and ρ̂′bt. As in section 6, we use ΦCPS
bt to denote the

function induced by the transformation:

ΦCPS
bt :

(
Cachepbt × Env p

bt

)
→

(
Cachep

′

bt × Env p′

bt

)
.

7.2 Correctness of the transformation

Let us show that the solution defined in figure 18 is indeed a valid solution of

the BTA. We follow the same technique as in section 6.2. The correctness of the

transformation is established by the following theorem.

Theorem 7.1

Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm , let (Ĉbt, ρ̂bt)

be an arbitrary solution of the BTA of p (i.e. such that (Ĉbt, ρ̂bt) �p
bt p holds). If

(Ĉ ′bt, ρ̂
′
bt) = ΦCPS

bt (Ĉbt, ρ̂bt) then (Ĉ ′bt, ρ̂
′
bt) �p′

bt p
′ holds.

Under the assumption of the theorem, we first observe immediate properties of

the CPS transformation of binding times, similar to the ones stated in Lemma 6.2.

For instance, the binding time for expressions in CPS is equal to the binding time

of the result of the program, which, as mentioned in section 2.6, is dynamic.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

894 D. Damian and O. Danvy

[[e�]]Pgm = (λπk.[[e�]]Expk)�0 Ĉ ′bt(�0) = ρ̂′bt(k) = D

[[n�]]Triv = n� Ĉ ′bt(�) = Ĉbt(�)

[[x�]]Triv = x� Ĉ ′bt(�) = Ĉbt(�)

[[(λπx.e�0)�]]Triv = (λπx.(λπ1k.[[e�0]]Expk)�2)�

Ĉ ′bt(�2) = Ĉbt(�) Ĉ ′bt(�) = Ĉbt(�)

ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(k) = Ĉbt(�)

[[(recπf(x).e�0)�]]Triv = (λπx.(recπ1f(k).[[e�0]]Expk)�2)�

Ĉ ′bt(�2) = Ĉbt(�) Ĉ ′bt(�) = Ĉbt(�)

ρ̂′bt(f) = ρ̂bt(f) ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(k) = Ĉbt(�)

[[t�]]Expk = (let x = k�0 [[t�]]Triv in x�1)�2

Ĉ ′bt(�0) = ρ̂′bt(k)

Ĉ ′bt(�2) = Ĉ ′bt(�1) = ρ̂bt(x) = D

[[(let x = t
�0
0 t

�1
1 in e�)�2]]Expk =

(let x0 = [[t
�0
0]]Triv [[t

�1
1]]Triv in

(let x1 = x
�3
0 (λπx.[[e�]]Expk)�4 in x

�5
1)�6)�7

Ĉ ′bt(�4) = Ĉ ′bt(�3) = ρ̂′bt(x0) = Ĉbt(�0)

ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(x1) = D

Ĉ ′bt(�7) = Ĉ ′bt(�6) = Ĉ ′bt(�5) = D

[[(let x = op(t�) in e�0)�1]]Expk = (let x = op([[t�]]Triv) in [[e�0]]Expk)�2

ρ̂′bt(x) = ρ̂bt(x) Ĉ ′bt(�2) = D

[[
(let x = if0 t� e

�0
0 e

�1
1

in e�2)�3

]]Exp

k =

(let k1 = (λπx.[[e�2]]Expk)�4 in

(let x1 = if0 [[t�]]Triv ([[e
�0
0]]Expk1) ([[e

�1
1]]Expk1)

in x
�5
1)�6)�7

ρ̂′bt(k1) = Ĉ ′bt(�4) = ρ̂′bt(x) = ρ̂bt(x)

Ĉ ′bt(�7) = Ĉ ′bt(�6) = Ĉ ′bt(�5) = ρ̂′bt(x1) = D

Fig. 18. Transformation of binding times from direct style to CPS.

Lemma 7.2

For all variables x in p, ρ̂′bt(x) = ρ̂bt(x); for all trivial terms t� in p, Ĉ ′bt(�) = Ĉbt(�);

and for all expressions e in p′, Ĉ ′bt(e) = D.

The binding time of an expression in p is equal to the binding time of its return

point.

Lemma 7.3

Let e� be an arbitrary subexpression of p. Then Ĉbt(R[[e�]]) = Ĉbt(�).

The flow of the continuation abstractions connects the binding times of the return

point of expressions and continuation variables. The binding time of the value

abstracted by a continuation is equal to the binding time of any expression that the

continuation can be passed to.

Lemma 7.4

Let k be a continuation identifier introduced by the transformation of a λ-abstraction

from p:

[[λπ1x1.e
�0]]Triv = λπ1x1.λk.[[e

�0]]Expk

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 895

Then, for each λπx.e�1 ∈ ρ̂′cf (k), Ĉbt(R[[e�0]]) = ρ̂′bt(x). Let k be a continuation

identifier introduced by the transformation of a recursive function definition from p:

[[recπ1f(x1).e
�0]]Triv = recπ1f(x1).λk.[[e

�0]]Expk

Then, for each λπx.e�1 ∈ ρ̂′cf (k), Ĉbt(R[[e�0]]) = ρ̂′bt(x).

The proof of Theorem 7.1 is sketched in Appendix A.

Theorem 7.1 and Lemma 7.2 show that we can transform any binding-time

solution of a direct-style program into a solution of its CPS counterpart in such

a way that the binding times of variables and trivial terms are preserved. This

preservation implies that no values are forced to be dynamic just by introducing

continuations. It also implies that the static computations (applications, tests or

base-type operations) in a direct-style program remain static as well in its CPS

counterpart. We thus conclude that the same amount of specialization of the input

program can be achieved after introducing continuations.

7.3 Reversing the transformation

We show that it is not always possible to reverse the CPS transformation of binding

times. There are cases when the least analysis of a CPS-transformed program

produces strictly more static annotations than the least analysis of its direct-style

counterpart. Here is a canonical example (Hatcliff & Danvy, 1997), where succ is

the successor function, and the free variable f and z are considered to be dynamic

(f might denote a potentially diverging function):

let r = (λπy.let v = f z in 2) 1 in let r1 = succ(r) in r1

In the least solution of the BTA on this term, even if the application of λπy. . . . to

1 is classified as static, its result is classified as dynamic because of the dynamic

application in the header of its inner let-expression. Thus r is dynamic. Since the

second increment operation depends on r, it is dynamic as well. Simply discarding

the dynamic computation f z is not meaning-preserving since the computation may

diverge.

The CPS counterpart of the canonical example above reads as follows (without

embedding it into direct style, for readability):

λk.(λπy.λk1.f z (λv.k1 2)) 1 (λr.let r1 = succ(r) in k r1)

The continuation denoted by k1 is static, and thus the application k1 2 is performed

statically (even if its result is dynamic). Thus, r is static as well, and further

computation based on r can be performed at specialization time.

Other binding-time improvements can be obtained when a dynamic test disables

further computations based on its result. The canonical example is as follows:

let v = if0 z 0 1 in let v1 = succ(v) in v1

It is true that one benefits from such an improvement only by allowing code

duplication. But the code duplication takes place at specialization time, not at BTA

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

896 D. Damian and O. Danvy

time. Thus, in contrast to Sabry and Felleisen’s analysis (Sabry & Felleisen, 1994),

the improvement in precision is not due to duplicating the analysis on the two

branches.

7.4 Continuation-based partial evaluation

In the two examples above the binding-time improvements come from the context

coherence constraints in the specification of the BTA (figure 9): the body of a

let-expression has to be dynamic if the header is dynamic, and both branches of a

conditional have to be dynamic if the test is dynamic.

In this section, we show that these contextual coherence constraints are the only

ones leading to binding-time improvements. Using the same proof technique as in

section 6, we formally show that introducing continuations has no effect on BTA�,

i.e. it entails no local increase and also no loss of precision elsewhere in the program:

the best binding times in direct style are the best binding times in CPS as well.

More precisely, we can define ΦCPS
bt�

, the CPS transformation of the binding times

obtained by BTA�. The definition is only a slight modification of the definition of

ΦCPS
bt in section 7.1. Given the program p and a solution (Ĉbt� , ρ̂bt�) of BTA� (i.e. such

that (Ĉbt� , ρ̂bt�) �p

bt�
p holds), we can show that ΦCPS

bt�
(Ĉbt� , ρ̂bt�) �p′

bt�
p′ holds. We can

also define the reverse binding-time transformation ΨCPS
bt�

, which is essentially the

same as the reverse flow transformation of section 6.3 and also operates in linear

time: for each term we just extract the binding time of its CPS counterpart. We can

show that given a solution (Ĉ ′
bt�
, ρ̂′

bt�
) of BTA� for p′ (i.e. such that (Ĉ ′

bt�
, ρ̂′

bt�
) �p′

bt�
p′

holds), ΨCPS
bt�

(Ĉ ′
bt�
, ρ̂′

bt�
) �p

bt�
p holds too.

We are now in position to connect the binding times in direct style and in CPS as

obtained by BTA�:

Theorem 7.5
Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm , let (Ĉbt� , ρ̂bt�)

be the least solution of BTA� for p and let (Ĉ ′
bt�
, ρ̂′

bt�
) be the least solution of BTA�

for p′. Then for all variables x in p, ρ̂bt� (x) = ρ̂′
bt�

(x) and for all trivial terms t� in p,

Ĉbt� (�) = Ĉ ′
bt�

(�).

We thus conclude that introducing continuations has no effect on the amount

of specialization that can be performed when using continuation-based partial

evaluation.

7.5 Summary and conclusions

We have shown that, given an input program as a call-by-value encoding of a Λ-

program, introducing continuations does not degrade and may improve the results

of the BTA for traditional partial-evaluation. We have also shown that introducing

continuations does not affect the results of the BTA for continuation-based partial

evaluation.

We therefore conclude that, unless one is willing to use continuation-based partial

evaluation, a complete CPS transformation of the program is beneficial to the quality

of the results of the BTA.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 897

8 Related work

8.1 Program analysis in general

Even though the issue of syntactic accidents is not treated in textbooks and tutorials

on program analysis, it appears to be folklore in the program-analysis community.

An outstanding recent example is region inference (section 8.1.1). To some extent, a

similar situation occurs in programming practice: who has never modified a program

with the sole purpose of improving its performance?

We are only aware of three other studies of the effect of continuations on program

analysis: an early work by Nielson (Nielson, 1982), Sabry and Felleisen’s PLDI’94

paper (Sabry & Felleisen, 1994), and Palsberg and Wand’s recent work (Palsberg &

Wand, 2002).

Nielson’s work compares the precision of two data-flow analyses: one based on

a direct-style semantics and the other on a continuation semantics. In contrast,

we compare the precision of the (same) analysis of a program and of its CPS

counterpart. Sabry and Felleisen’s work shows that a CPS transformation leads to

incomparable results for a constant propagation analysis (section 8.1.2). Palsberg

and Wand’s work is similar to ours since it involves a CPS transformation of flow

information (section 8.1.3).

8.1.1 Region inference and the CPS transformation

Region inference (Tofte et al., 1997) aims at detecting program points where run-

time storage can be deallocated – typically at exit points for blocks and at return

points for functions. To overcome syntactic accidents, a programming discipline has

therefore been developed to make region inference yield better results.

We note that region improvements and binding-time improvements may come at

cross purpose. For example, consider let reassociation:

let x2 = let x1 = e�1
let flattening

−−−−−−−−−−−−−→ let x1 = e�1

in e�1 in let x2 = e�2

in e�3 ←−−−−−−−−−−−−−−−
let “deepening”

in e�3

Let flattening allows the region for x1 to be released after the region for x2. Let

deepening allows the region for x1 to be released earlier and requires the region for

x2 to be allocated earlier. Therefore, let deepening provides a region improvement,

especially if e�3 contains a recursive call. But on the other hand, and as pointed out

by an anonymous reviewer, if e�1 contains a recursive call, it is let flattening that

provides a region improvement. Similarly, for functions, the CPS transformation

yields a binding-time improvement whereas the direct-style transformation yields a

region improvement (since in CPS, functions “never return”).

8.1.2 Data-flow analysis and the CPS transformation

In their PLDI’94 paper, Sabry & Felleisen (1994) showed that after a CPS trans-

formation, a data-flow analysis may confuse the continuations used at return points,

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

898 D. Damian and O. Danvy

as already noted by Shivers (1991, p. 33). An example of confusion of return points

is given by the term

let x1 = f 1

in let x2 = f 2

in x1

and its CPS counterpart

λk.f 1 (λπ1x1.f 2 (λπ2x2.k x1))

analyzed in contexts where f is bound to λx.x and to its CPS counterpart λx.λk1.k1 x,

respectively. The analysis of the direct-style term starts by examining the first

application and detects that x and afterwards x1 evaluate to the constant 1. Then,

by analyzing the second application, the analysis approximates that the value of x

is not constant (it can evaluate to both 1 and 2). The value of x2 is also considered

unknown. Nevertheless, x1 is still considered constant, and the analysis is able to

deduce that the whole expression evaluates to the constant 1.

In the CPS program, the analysis of the first application determines that the

continuation k1 evaluates to π1, and, afterwards, that x1 evaluates to 1. After the

analysis of the second application, the continuation k1 evaluates to both π1 and π2.

The variable x evaluates to both 1 and 2 and is approximated as unknown. The

approximation is passed by the application k1 x, into both x1 and x2. Therefore, a

loss of precision occurs: the result of the whole expression is no longer detected as

being a constant.

One can observe, however, that in a constant-propagation analysis the chro-

nological order of the two applications may affect the result. In direct style, the

first application of the function f is analyzed in a different context than the

second application. Interchanging the two let bindings leads to a different result

of the analysis, for an essentially equivalent program. Therefore a limited form

of context dependency is built in the constant-propagation analysis considered by

Sabry and Felleisen. In contrast, the constraint-based analyses (in the monovariant

case) propagate the result of a function at once to all the application sites of this

function. These analyses do not exhibit the sequentiality dependency of the constant

propagation, and therefore, no precision is lost after a source CPS transformation.

Sabry and Felleisen also present examples where the analysis of a program

is improved after the CPS transformation, reflecting that the constant-propagation

analysis is not distributive (Kam & Ullman, 1977; Nielson, 1982). The improvements

are attributed to the fact that the constant-propagation analysis is duplicated

over conditional branches (and their corresponding continuations). In contrast,

the constraint-based analyses propagate results from one branch of a conditional to

another, and therefore, no precision is gained by the CPS transformation.

To summarize, Sabry and Felleisen’s analysis depends on the order in which the

source program is traversed and it is duplicated over conditional branches. These

two properties led Sabry and Felleisen to conclude that the CPS transformation

does not preserve the result of constant propagation. In contrast, our monovariant

constraint-based analyses do not depend on the order in which constraints are solved

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 899

and the analyses are not duplicated over conditional branches. These two properties

led us to conclude that the CPS transformation does preserve the results of CFA

and of BTA�.

8.1.3 CPS transformation of flow information

Recently, Palsberg & Wand (2002) conducted a study of CFA, supporting Sabry and

Felleisen’s conclusion that the extra precision enabled by the CPS transformation is

due to the duplication of the analysis. They developed a CPS transformation of flow

information comparable to the one of figure 16, but independently and prior to us.

Palsberg and Wand also mention that least solutions may or may not be preserved

by administrative reductions of CPS-transformed programs. In that, they implicitly

share our concern about syntactic accidents, even though their primary goal was

to transfer Wand’s pioneer results on the CPS transformation of types (Meyer &

Wand, 1985; Wand, 1985) to the CPS transformation of flow types. Since then,

we have shown that least solutions are preserved by administrative reductions of

CPS-transformed programs (Damian, 2001; Damian & Danvy, 2001a).

8.2 Binding-time analysis and the CPS transformation

Binding-time improvements have always been customary for users of binding-time

analysis (Jones et al., 1993; Nielson & Nielson, 1992). One of them amounts to

considering source programs in CPS (Consel & Danvy, 1991b; Danvy, 1991), which

suggests that source programs should be systematically CPS-transformed (Consel &

Danvy, 1991a). (Muylaert-Filho and Burn take the same stand for strictness analysis

and the call-by-name CPS transformation (Muylaert-Filho & Burn, 1993).)

Essentially, the CPS transformation relocates potentially static contexts inside

definitely dynamic contexts (let expressions and conditionals), thereby providing a

binding-time improvement. To this end, the CPS transformation itself is continu-

ation-based (Danvy & Filinski, 1990), which paved the way to continuation-based

partial evaluation (Bondorf, 1992; Lawall & Danvy, 1994).

Hatcliff and Danvy have characterized the full effect of continuation-based partial

evaluation as online let flattening in Moggi’s computational metalanguage (Hatcliff

& Danvy, 1997). This characterization justifies why offline let flattening is also,

partially, a binding-time improvement (Holst & Gomard, 1991). In any case, offline

let flattening is known to be part of the CPS transformation (Hatcliff & Danvy,

1994).

What had not been shown before, however, and what we have addressed here, is

whether such “improvements” worsen binding times elsewhere in a source program.

9 Conclusion and issues

Observing that program analyses are vulnerable to syntactic accidents, we have

considered a radical syntactic change: a transformation into CPS. We have studied

the interaction between a non-duplicating CPS transformation and two program

analyses: control-flow analysis (CFA) and binding-time analysis. Through a sys-

tematic construction of the CPS counterpart of flow information, we have found

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

900 D. Damian and O. Danvy

that constraint-based CFA is insensitive to continuation-passing, and that the

CPS transformation does improve binding times for traditional partial evaluation.

Using the same technique, we have also found that the binding-time analysis for

continuation-based partial evaluation is insensitive to the CPS transformation.

These results suggest two further avenues of study:

• In BTA, the beneficial effect of the CPS transformation can be accounted for

by disabling the context coherence constraints for let expressions (and for con-

ditionals as well, if one is willing to duplicate static contexts at specialization

time). The price of this change, however, is that the corresponding program

specializer has to be made continuation-based (Hatcliff & Danvy, 1997). We

conjecture that the situation is similar, e.g. for security analysis, which has

similar let and case rules. Just like BTA, a security analysis thus ought to

yield more precise results over CPS-transformed programs. We therefore also

conjecture that the beneficial effect of the CPS transformation can be accounted

for by disabling the context coherence constraints in the let and case rules,

if one is willing to develop a corresponding continuation-based processor of

security information.

• More generally, as a step towards more robust program analyses that are less

vulnerable to syntactic accidents, we need to understand better the program-

analysis perspective over syntactic landscapes. Two key questions arise which

may be general to program analysis or specific to individual program analyses:

which program transformations affect precision? And among those that do,

which ones affect precision monotonically? Answering these questions would

enable one to develop more reliable program analyses, i.e. program analyses

endowed with invariants under program change (be such change a particular

type of reduction or other kind of meaning-preserving transformations).

Henglein’s invariance properties of polymorphic typing judgments with respect

to let unfolding and folding and η-reduction (Henglein, 1996) is a step in

this direction. Alternatively, one could develop an intermediate language for

reasoning about program analysis and program transformation.

Acknowledgments

We are grateful to Andrzej Filinski and Julia L. Lawall for substantial discussions

and comments in the course of this work, and to Amr Sabry for extensive comments

on the present version of this article. Thanks are also due to Torben Amtoft, Anindya

Banerjee, Bernd Grobauer, Dan Hernest, Niels O. Jensen, Torben Mogensen, Lasse

R. Nielsen, Morten Rhiger, Olin Shivers, Zhe Yang and the anonymous reviewers

for their feedback.

A Proofs

Proof of Theorem 6.1

The proof proceeds by induction on the transformation of p into p′. We sketch the

induction steps.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 901

We show that (Ĉ ′cf , ρ̂
′
cf) �p′

cf (let x = k�0 [[t�]]Triv in x�1)�2 holds. For an arbitrary

continuation λπy.e�3 in the set Ĉ ′cf (�0) = ρ̂′cf (k), we show that two flow constraints

are satisfied.

The first constraint is Ĉ ′cf (�) ⊆ ρ̂′cf (y). By Lemma 6.2, Ĉ ′cf (�) = Ĉcf (�). We make a

case analysis on the introduction of k by the CPS transformation.

If k is the top-level continuation, then the constraints are vacuously satisfied. If

k is introduced by the transformation of a named conditional, then � is the return

point of one of the two branches of the test. Obviously Ĉcf (�) ⊆ ρ̂′cf (y). Otherwise,

k comes from the transformation of a λ-abstraction λπ1x1.e
�4 from p, such that

� = R[[e�4]]. We apply Lemma 6.4.

The second constraint is Ĉ ′cf (�3) ⊆ ρ̂′cf (x). Following Lemma 6.2, it amounts to

∅ ⊆ ∅.
For the rest of the induction steps, the induction hypotheses and the definition of

γ suffice to show that the constraints are satisfied. �

Proof of Theorem 6.5

The proof is by induction on the transformation of p into p′. We sketch the induction

steps.

For the transformation step [[t�]]Triv , the constraints follow from the induction

hypothesis. The same applies for the transformation step [[t�]]Expk.

For the transformation of a named application:

[[let x = t�3

0 t1 in e2]]
Expk =

let x0 = [[t�3

0]]Triv [[t1]]
Triv

in let x1 = x0 λπx.e�2 in x1

let λπ1y.e�4

1 be an arbitrary λ-abstraction from p such that π1 ∈ Ĉcf (�3). Let the

CPS transformation of the λ-abstraction be λπ1y.λk1.e2. Then π ∈ ρ̂′cf (k1). From

Lemma 6.7 and Lemma 6.8 we obtain that Ĉcf (�4) ⊆ ρ̂cf (x). �

Proof of Theorem 7.1

The proof is an adaptation of the proof of Theorem 6.1 to equality constraints. In

addition, we need to prove the satisfaction of the additional constraints introduced

by BTA. We sketch the induction steps.

We show that (Ĉ ′cf , ρ̂
′
cf) �p′

cf (let x = k�0 [[t�]]Triv in x�1)�2 holds. For this purpose,

given an arbitrary λπx.e�3 ∈ Ĉ ′cf (�0) = ρ̂′cf (k) we must show that two equality

constraints are satisfied. Similarly to the proof of Theorem 6.10, we make a case

analysis on the introduction of k, using Lemma 7.3 and Lemma 7.4 to prove the

satisfaction of the constraints.

We also need to show that Ĉ ′bt(�0) = D ⇒ Ĉ ′bt(�) = D. Again, we make a case

analysis on the introduction of k. The top-level case is trivial. The case where k is

introduced by the transformation of a function (λy.e�5

1)�4 implies that Ĉbt(�4) = D.

Thus Ĉbt(�5) = D and then Ĉ ′bt(�) = D, since � = R[[e�5

1]]. The same reasoning

follows for the case where k comes from the transformation of a named conditional

expression.

The remaining cases follow directly from the induction hypotheses and the

definition of Ĉ ′bt, ρ̂
′
bt, Ĉcf and γ. �

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

902 D. Damian and O. Danvy

References

Abadi, M., Banerjee, A., Heintze, N. and Riecke, J. G. (1999) A core calculus of dependency. In:

Aiken, A., editor, Proceedings 26th Annual ACM Symposium on Principles of Programming

Languages, pp. 147–160. ACM Press.

Benton, N. and Wadler, P. (1996) Linear logic, monads and the lambda calculus. In: Clarke,

E. M., editor, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science,

pp. 420–431. IEEE Press.

Bondorf, A. (1992) Improving binding times without explicit cps-conversion. In: Clinger,

W., editor, Proceedings 1992 ACM Conference on Lisp and Functional Programming. ACM

Press. (LISP Pointers, V(1): 1–10.)

Consel, C. and Danvy, O. (1991a) For a better support of static data flow. In: Hughes, J., editor,

Proceedings 5th ACM Conference on Functional Programming and Computer Architecture:

Lecture Notes in Computer Science 523, pp. 496–519. Springer-Verlag.

Consel, C. and Danvy, O. (1991b) Static and dynamic semantics processing. In: Cartwright,

R. C., editor, Proceedings 18th Annual ACM Symposium on Principles of Programming

Languages, pp. 14–24. ACM Press.

Consel, C. and Danvy, O. (1993) Tutorial notes on partial evaluation. In: Graham, S. L.,

editor, Proceedings 20th Annual ACM Symposium on Principles of Programming Languages,

pp. 493–501. ACM Press.

Cousot, P. and Cousot, R. (1995) Formal language, grammar and set-constraint-based program

analysis by abstract interpretation. In: Peyton Jones, S., editor, Proceedings 17th ACM

Conference on Functional Programming and Computer Architecture, pp. 170–181. ACM Press.

Damian, D. (2001) On Static and Dynamic Control-Flow Information in Program Analysis and

Transformation. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark.

Damian, D. and Danvy, O. (2001a) CPS Transformation of Flow Information, Part II:

Administrative Reductions. Technical Report BRICS RS-01-40. DAIMI, Department of

Computer Science, University of Aarhus, Denmark, to appear in J. Functional Programming.

Damian, D. and Danvy, O. (2001b) A simple CPS Transformation of Control-Flow Information.

Technical Report BRICS RS-01-55. DAIMI, Department of Computer Science, University

of Aarhus, Denmark.

Danvy, O. (1991) Semantics-directed compilation of non-linear patterns. Infor. Process. Lett.

37(6): 315–322.

Danvy, O. and Filinski, A. (1990) Abstracting control. In: Wand, M., editor, Proceedings 1990

ACM Conference on Lisp and Functional Programming, pp. 151–160. ACM Press.

Danvy, O. and Nielsen, L. R. (2002) A first-order one-pass CPS transformation. In: Nielsen,

M. and Engberg, V. editors, Foundations of Software Science and Computation Structures,

5th International Conference, FOSSACS 2002. Lecture Notes in Computer Science. Springer-

Verlag. (Extended version available as the technical report BRICS RS-01-49.)

Gasser, K. L. S., Nielson, F. and Nielson, H. R. (1997) Systematic realisation of control flow

analyses for CML. In: Tofte, M., editor, Proceedings 1997 ACM SIGPLAN International

Conference on Functional Programming, pp. 38–51. ACM Press.

Hatcliff, J. and Danvy, O. (1994) A generic account of continuation-passing styles. In: Boehm,

H.-J., editor, Proceedings 21st Annual ACM Symposium on Principles of Programming

Languages, pp. 458–471. ACM Press.

Hatcliff, J. and Danvy, O. (1997) A computational formalization for partial evaluation.

Mathematical Structures in Computer Science, pp. 507–541. (Extended version available as

the technical report BRICS RS-96-34.)

Heintze, N. (1994) Set-based program analysis of ML programs. In: Talcott, C. L., editor,

Proceedings 1994 ACM Conference on Lisp and Functional Programming. ACM Press. (LISP

Pointers, VII(3).)

Henglein, F. (1996) Syntactic Properties of Polymorphic Subtyping. Technical report, Semantics

Report D-293. DIKU, Computer Science Department, University of Copenhagen.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

Syntactic accidents in program analysis 903

Holst, C. K. and Gomard, C. K. (1991) Partial evaluation is fuller laziness. In: Hudak, P. and

Jones, N. D., editors, Proceedings ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-Based Program Manipulation. ACM Press. (SIGPLAN Notices, 26(9): 223–233.)

Jagannathan, S. and Weeks, S. (1995) A unified treatment of flow analysis in higher-order

languages. In: Lee, P., editor, Proceedings 22nd Annual ACM Symposium on Principles of

Programming Languages, pp. 393–407. ACM Press.

Jones, N. D. (1996) What not to do when writing an interpreter for specialisation. In: Danvy,

O., Glück, R. and Thiemann, P., editors, Partial Evaluation: Lecture Notes in Computer

Science 1110, pp. 216–237. Springer-Verlag.

Jones, N. D., Gomard, C. K. and Sestoft, P. (1993) Partial Evaluation and Automatic Program

Generation. Prentice-Hall International. (Available online at http://www.dina.kvl.dk/

~sestoft/pebook/pebook.html.)

Jørring, U. and Scherlis, W. L. (1986) Compilers and staging transformations. In: Johnson,

M. S. and Sethi, R., editors, Proceedings 13th Annual ACM Symposium on Principles of

Programming Languages, pp. 86–96. ACM Press.

Kam, J. B. and Ullman, J. D. (1977) Monotone data flow analysis frameworks. Acta

Informatica, 7: 305–317.

Lawall, J. L. and Danvy, O. (1994) Continuation-based partial evaluation. In: Talcott, C. L.,

editor, Proceedings 1994 ACM Conference on Lisp and Functional Programming. ACM Press.

(LISP Pointers, VII(3).)

Meyer, A. R. and Wand, M. (1985) Continuation semantics in typed lambda-calculi (summary).

In: Parikh, R., editor, Logics of Programs – Proceedings: Lecture Notes in Computer Science

193, pp. 219–224. Springer-Verlag.

Moggi, E. (1991) Notions of computation and monads. Information & Computation, 93: 55–92.

Muylaert-Filho, J. A. and Burn, G. L. (1993) Continuation passing transformation and

abstract interpretation. In: Burn, G. L., Gay, S. J. and Ryan, M. D., editors, Theory and

Formal Methods 1993: Proceedings 1st Imperial College Department of Computing Workshop

on Theory and Formal Methods. Workshops in Computing Series, pp. 247–259. Springer-

Verlag.

Nielson, F. (1982) A denotational framework for data flow analysis. Acta Informatica, 18:

265–287.

Nielson, F. and Nielson, H. R. (1992) Two-Level Functional Languages. Cambridge Tracts in

Theoretical Computer Science, vol. 34. Cambridge University Press.

Nielson, F. and Nielson, H. R. (1997) Infinitary control flow analysis: a collecting semantics

for closure analysis. In: Jones, N. D., editor, Proceedings 24th Annual ACM Symposium on

Principles of Programming Languages, pp. 332–345. ACM Press.

Nielson, F., Nielson, H. R. and Hankin, C. (1999) Principles of Program Analysis. Springer-

Verlag.

Palsberg, J. (1993) Correctness of binding-time analysis. J. Functional Programming, 3(3):

347–363.

Palsberg, J. (1995) Comparing flow-based binding-time analyses. In: Mosses, P., Nielsen,

M. and Schwartzbach, M., editors, Proceedings TAPSOFT ’95: Lecture Notes in Computer

Science 915, pp. 561–574. Springer-Verlag.

Palsberg, J. and O’Keefe, P. (1995) A type system equivalent to flow analysis. ACM Trans.

Programming Lang. & Syst. 17(4): 576–599.

Palsberg, J. and Schwartzbach, M. I. (1994) Binding-time analysis: Abstract interpretation

versus type inference. In: Bal, H., editor, Proceedings 5th IEEE International Conference on

Computer Languages, pp. 289–298. IEEE Press.

Palsberg, J. and Wand, M. (2002) CPS transformation of flow information. J. Functional

Programming. To appear.

Plotkin, G. D. (1975) Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci. 1:

125–159.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

904 D. Damian and O. Danvy

Sabry, A. and Felleisen, M. (1994) Is continuation-passing useful for data flow analysis? In:

Sarkar, V., editor, Proceedings ACM SIGPLAN’94 Conference on Programming Languages

Design and Implementation. ACM Press. (SIGPLAN Notices, 29(6): 1–12.)

Sabry, A. and Wadler, P. (1997) A reflection on call-by-value. ACM Trans. Programming Lang.

& Syst. 19(6): 916–941.

Shivers, O. (1991) Control-Flow Analysis of Higher-Order Languages or Taming Lambda. PhD

thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania.

(Technical Report CMU-CS-91-145.)

Steele, G. L. (1978) RABBIT: A Compiler for SCHEME. Technical report AI-TR-474. AI

Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

Talcott, C. L. (ed). (1994) Proceedings 1994 ACM Conference on Lisp and Functional

Programming. ACM Press. (LISP Pointers, VII(3).)

Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T. H., Sestoft, P. and Bertelsen,

P. (1997) Programming with Regions in the ML Kit. DIKU Rapport 97/12. University of

Copenhagen, Copenhagen, Denmark.

Wand, M. (1985) Embedding type structure in semantics. In: Deusen, M. S. V. and Galil, Z.,

editors, Proceedings 12th Annual ACM Symposium on Principles of Programming Languages,

pp. 1–6. ACM Press.

https://doi.org/10.1017/S0956796802004379 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004379

