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ON AN INEQUALITY OF S. BERNSTEIN

C. FRAPPIER AND Q. I. RAHMAN

1. Introduction and statement of results. Let R > 1 and de-
note by & the ellipse

2 2

1) z=x+iy:(R_£cR_1)2+ (R _yR_1)2= 1

2 2

&

If P, is a polynomial of degree at most n such that

(2)  max_ic=< [P,(x)] £ 1,

then ([2]; also see [13, p. 337] and [9, p. 158, Prob. No. 270])
(3)  max.es, [Pu(2)] = R

The standard proof of this well known result runs as follows. The function

W s - or(FEE)

is entire and in view of (2) we have
max; = [f(z)] = 1.

Hence by the maximum modulus principle

(5)  max—ir< [f(2)| = 1,

which is clearly equivalent to (3).

Here we wish to discuss how sharp the estimate (3) happens to be and
to prove some results about polynomials satisfying z"p(1/2z) = p(2) which
are relevant in this connection. In fact, the above function f is a poly-
nomial satisfying

©6)  =f(1/z) = f(2).

On the other hand, if » (=2m) is even, then to every polynomial f
satisfying z"f(1/2) = f(z) there corresponds a polynomial p of degree at
most m such that

f(z) = Zmp<§ +2z"1> '
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A polynomial f # 0 satisfying (6) cannot be a constant and so in (5) it is
not possible that max,i—1/z<: [f(z)| be equal to 1. The sign of equality
in (3) is therefore ruled out. But then, what is the best that we can say?
This and some related questions have been considered in the past but
apparently all the known results concern polynomials which are, in addi-
tion, real for real values of z.

It was shown by Duffin and Schaeffer [6] that if P, is a polynomial of
degree at most #n satisfying (2) and P,(z) is real for real z, then

(7) maxzéé’;z \Pn(z)l é %(Rn + R_n)'

This inequality is sharp in the sense that the nth Chebyshev poly-
nomial of the first kind

1) = 27 [T s = cos (60 = §)n/m)]

which assumes real values for real z, satisfies (2) whereas
|7, = 3(R* + &™)

at precisely 2z points { € & namely
¢r= 3HoR + (0R)™!}

where w is any of the 2zn-th roots of unity.
Erdos [7, Theorem 7] proved the remarkable fact that if P, is a poly-
nomial of degree at most » satisfying (2), then

(7)  |Pue)| £ |Tu(@)| for|o| 2 1

provided P,(z) is real for real z.

If P, is a polynomial of degree at most = satisfying (2) then Voronov-
skaja and Zinger [15] determined max |Re P,(z)| and max |Im P,(z)| for
a given complex z under the assumption that P,(z) is real for real z, and
Zinger [16], determined the corresponding maxima for the derivatives
of P,.

None of the above results seems to have a trivial extension to the case
when P,(z) is not necessarily real for real z. Inequality (7) does remain
true if n = 1 (see (12, pp. 229-230]) but may not hold for n = 2. In fact,
we shall show:

THEOREM 1. There exists a polynomial P, of degree n such that
max_izz1 |[Pn(x)] = 1

whereas

(8)  max.s, [Pa(2)| 2 3R +}_/_-2::_1 R
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There is no reason to believe that the coefficient (/2 — 1)/2 of R**is
the best possible. In fact, in the case » = 1 it can be replaced by 3.
In the other direction we prove

THEOREM 2. If P, is a polynomial of degree at most n such that
max_iz.<1 |Pa(x)| = 1,

then

9)  maxee, |Pa(s)] < 3R + "’—Jﬁfﬁ R

Here again, it appears to be possible to improve upon the coefficient
(5 +~/17) /4 of R*2. Since in the case # = 1 the precise answer is ¥ one
might wonder if (5 + /17)/4 can, in general, be replaced by . We are
not able to decide this but we can prove the following

THEOREM 3. Under the conditions of Theorem 2

1 n n— 11 n—
(10)  max.cs, |Pu(z)] < 5 (R" 4+ R + ZR +

Theorem 2 is a simple consequence of the following
THEOREM 4. If p is a polynomial satisfying
1) p(1/3) = p(z) forallz € C,

and max| - |p(z)| = 1, then

(12) maxppa (@) S 5+ 2T a2

Instead of proving Theorem 4 we shall prove the following equivalent
result.

THEOREM 4'. Under the conditions of Theorem 4

‘l—t_\/__lj R¥?
4
Remark 1. For n = 2, the coefficient (5 + \/17)/4 of R*2in (12’) can

be replaced [12, pp. 229-230] by 3. The same remark applies to the
coefhcient (5 +4/17)/4 of p?in (12).

(1) max;sims [p()] < 5 R + ifnze.

il
—

The sharp version of inequality (10) is already known in the case n
whereas for n = 2 it (inequality (10)) follows from the following

THEOREM 5. Under the conditions of 1T heorem 4

(13) maxp, g1 |p(2)] < % (R" 4+ R + %R"_J‘ ifn = 4.
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From our proofs of (12’) and (13) it will be clear that we are not able
to use the full force of the hypothesis z"p(1/z) = p(z). An essentially
similar conclusion holds under a much weaker hypothesis.

THEOREM 6. If the geometric mean of the moduli of the zeros of « poly-
nomial p of degree at most nis = 1, and max,, =1 |p(2)| £ 1, then

g R+3 ifn=1
(14) max|;_g>1 |p(2)] =
19 R+ 2E 2‘[1%"‘ ifn 22

Theorem 6 may be compared with the following result of Ankeny and
Rivlin [1].

THEOREM A. If the moduls of the zeros of a polynomial p of degree at most
nareall 2 1, and max, -1 |p(z)| £ 1, then

(15) max|,j—g>1 IP(Z)Q < IR+

Polynomials p satisfying (11) were studied by Govil, Jain and Labelle
[8] who proved that, if in addition, p has all its zeros either in the left
half plane or in the right half plane, then

(16) max .- [p'(2)| = %maxma b)),

(17) max|,—p>1 [p(2)| = ‘"'\755’:— maxj,i—1 [p(2)],

and

(18) max = [p'(2)| 2 %maxlzl=l lp(2)].

Inequalities (12"), (13) and (14) may be compared with (17).

Dewan and Govil [5] have shown that inequality (18) which is sharp
holds for all polynomials p satisfying (11). It is not known if the same can
be said about (16). However, the following theorem and its corollary
seem to be of interest in this connection.

THEOREM 7. If p is ¢ polynomial satisfying (11), then for R = 1 and
056 <2r

(19) [p'(Re®)| + [p'(Re=")| £ nR'' max,-1 [p(2)].

For all R = 1, equality holds in (19) for polynomaials of the form c(z" + 1).
If n s even, then polynomials of the form cz*/* are also extremal for R = 1.
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CoRrOLLARY 1. If p is a polynomial satisfying (11), then for R = 1
anda >0

(19) |p'(£R)| = 5 R maxi - [p()],
(19" %‘ f_a |p'(Re**)|do < -gR"_lmaxm:l [p(2)],

’"e 1 e ’ i n—
(19 )Q—af_ £ (Re'")|d0 < 5 R* max .- [p(&)]-

In (19)=(19""") equality holds for all R = 1 for polynomials of the form
c(z" + 1). In the case of even n, polynomials of the form cz"'* are also extremal
for (19') if R = 1.

The following result bears the same relationship to (17) or to (12'), (13)
and (14) as (19) does to (16).

THEOREM 8. If p is a polynomial satisfying (11), then for all p =2 0
and0 =60 <27

(20) [p(pe®)| + [p(pe= ™) = (p* + 1) maxzi—1 [p(2)].

The example p(2) : = c(z" + 1) shows that in (20) equality is possible
for all p = 0 and some values of 6.

COROLLARY 2. If p s a polynomial satisfying (11), then for all p = 0
(20) [p(£p)| = (0" + 1) max;. =1 [p(2)].

For even #, equality holds in (20') for p(z) : = ¢(z" + 1). The same
example shows that the estimate for |{p(p)| is sharp also for odd »n. Un-
fortunately, the estimate for |p(—p)| is not sharp in that case and we can
easily replace it by

(20%) [p(=p)| = 3lp" — 1 max. -1 [p(z)].
We also prove

THEOREM 9. Let

142 ir”""‘

m=1

Y() i = ————— fort> 1.
2 Z t—(2m+1)2/2

m=0

If p is a polynomial satisfying (11) and

max.-1 [p(2)] = 1,
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then
R if nis even
2
(21) max,—ps1 [p(2)| 2 {Rn/Z‘p(R) if n is odd,
or equivalently
n/2 N .
° ) if nis even
(22) max|,—.<1 lp(z)| = {p"ﬂ\b(l/p) if nis odd.

Inequalities (21) and (22) are sharp in case of even # as is shown by the
example z"/2,

It will be clear from the proof of Theorem 9 and that of Lemma 4 that
Y(R) > 1for R > 1. Besides, from Lemma 1 we can easily deduce that

Y(R) = 3(R'Y2 4 R%?) for R > 1.
Hence for odd % inequalities (21) and (22) may be replaced by
(21') max.i—g>1 |p(2)| Z max {R"2, F(ROTD/2 4 RO-D/2)
and
(22) max;i=p<1 [p(2)| 2 max {p"/2, F(p""D/2 4 p+3)/2)}

respectively. The example (z"~D/2 4 z(*+1/2) shows that the right-hand
side of (21’) cannot be replaced by anything larger than 3(R®™+D/2 4
R™=1/2) The same example shows that the best we can possibly do as
regards the right-hand side of (22') is 3(p™D/2 4 p*+D/2),

Remark 2. We observe that the result of Dewan and Govil mentioned
above can be deduced from Theorem 9 as well. To see this, let us suppose
that (18) is false, i.e., there exists a polynomial p satisfying (11) such that
for some o < 1

max| -1 [p'(8)| = aMn/2

where M : = max), - |p(z)|. Then by a well known property of poly-
nomials, mentioned below as Lemma 2, we have

maxj,|=¢>1 |PI(Z)| é aM ‘1;‘ tn_l
and sofor R > 1and 0 £ 6 < 27
[p(Re™)| < |pe™)] + ‘f p’(te”)ewdti < M4 aMi(R — 1)
1
which is less than MR"/2if R < ((2 — a)/a)?/*. This contradicts Theorem

9 and so (18) must hold.
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2. Lemmas. We have either already used above or will need later the
following auxiliary results.

LEMMA 1. For 0 < x < 1, we have

1 + 9 ixm?

m=1
= =14+ x.

Z xm*-}rm

m=0

Proof. 1t is easily seen that inequality (23) holds if and only if

[ee] (e}
1 g Zl (xm2+m—1 + xm2+rn) + 9 me‘l—l
m=

m=2

m

Z x7n‘3+m+k— 1) ,

k=1

— (1 o x) Z (xm2+m—l + 9
m=1

x1n2+m+k—1> .

This latter inequality will be proved if we show that for N = 1, 2, 3,

=) =) m
";) xm ; Z:l <xmz+m—1 _|_ 2 Z
= m=

k=1

and 0 < x <1

N242N—1
&
X
k=N?2—-1

But clearly

NI4+2N—-1
2 x”,
k=NZ+N

Y

24N
xN+N1__|_

N24+2N—1 N2HN—2 ) N242N—1
k K NZ4+N—1 k
X" = x4 AN -+ X
k=N2—1 k=N2—1 k=N2+N
N2+2N—1 , N24oN—1
—N—1 4 NZ4+N—1 k
=x x" 4+ x + + X
k=NZ2+N k=NZ2+4N
N N24+2N—1
N24N-—1 k ‘
>Vt 42 > K o< <L
k=N24+N
LEMmA 2

<

[9, Part III, Chapter 6, Problem No. 269]. If p is a poly-
nomial of degree at most n, then

max| j—g>1 [P (2)| £ R* max, =1 [p(2)].

The following result of van der Corput and Visser (4, § 8] is crucial for
our proof of Theorems 4’ and 5.

LEMMA 3. If p(2) : = D io ax 2 is a polynomial of degree at most n
such that max,, =1 [p(z)| = 1, then
24) 2laol |an| + 2 laxl* S 1.

k=0

For the proof of Theorem 9 in the case of odd # we shall need
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LEMMA 4. Let f be holomorphic in a domain containing & (R > 1) and
its interior. If f(0) = 0 and |f(z)| £ M for all z inside & g, then

2 i R—(21+1>2

=0

25) 1fOl =M —————
1423 ROV
=1

for =1 =t = 1.

Proof. The function

z2=y@w) =\VEksn (gfarc sin w> ,
where

! dt
K =fo VA=) - B

is the complete elliptic integral of the first kind with modulus k£ and the
value of Jacobi's parameter ¢ is R—*, maps [3, see Example 5 on p. 414]
the interior of the ellipse &’ conformally onto the open disk |z| < 1 such
that ¢(0) = 0. Let ¢(z) be the inverse mapping. Then G(3) : = f(¢(2)) is
holomorphic in |z| < 1 with |G(z)] £ M and G(0) = 0. Hence, by
Schwarz’s lemma

IG(z)| = Mlz| for |z < 1.
In particular (see § 14.7 of [3))

fee)

— 2

2 Z R (21+1)
0

FO = MpW)| = MVE= M ——————,
1+23 R®V

which proves (25) for t = 1. In order to see that (25) holds for an arbi-
trary ¢t in [—1, 1] we may apply the above reasoning to the function f(¢z).

3. Proofs of the theorems.
Proof of Theorem 1. Let
pn*(2) 1 = (Re" + 2" ' + iz + R)/(2/R* + 1).
Then for all real 6
|pn*(e2®)| = |Rcosmf + icos (m — 2)0|/A/R2+1 =1 = |p,*(1)],
and so

(26) maxj; =1 Ipm*(z)l = L
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Besides

1 .-
(27) max|,—g>1 [Pn* (@) | = |p*(R)| = §Rm 1\/R2 +1

o R"+ /2 - DR
> 5 :

4

Since ¥ + z7* can be written as a polynomial of degree &k in (z + z71)/2
we see that

F(z) : = 272, *(2) = (Rg" + 12"' 4+ 127"t + Rz™) /(2/ R*+ 1)

is a polynomial P,*((z + z7')/2) of degree » in (z 4+ z7')/2. In view of
(26) and (27)

maxX_i<z<1 |Pn*(x)| =1 and

R 4 /2= DR
2 |

max.cs, |Pr*(2)| =

Remark 3. It is clear that for values of R close to 1 the coefficient
(5 +/17) /4 of R*%in (12’) cannot be replaced by any number smaller
than % but while proving Theorem 1 we have shown that for no value of
R > 1 it can be replaced by a number smaller than (/2 — 1)/2. The
same remark applies to the coefficient of p? in (12).

Proof of Theorem 4. As remarked earlier the stronger inequality
maxjj-g>1 [p(2)| £ 3(R" + R"7?)

is known to be true if » = 2. So let n = 3.
If p(z) : = X ko a2 is a polynomial satisfying (11), then

(28) ay = dy_y for0 =k £ n.

In particular, |ao] = |a,| = a (say) and |ai| = |a,—1| = B8 (say). If
max, -1 [p(z)| =1

then according to a result of Visser [14]
|ao] + faa| =1

and so

(29) « =3

Further, in view of (24), we have

’ 1 — 40
B0) B=4/ —5 -

Now let us write

p(2) = 2" 4+ a,13" + r(3).
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It is easily checked that

6D o + a5 alef + 4/ L o

Since 7(z) is a polynomial of degree » — 2 such that

max -1 r@)| =1 +a+ /‘/l—j—zli

we may apply Lemma 2 to obtain

— 4 I
(32) max,—p>1 |7(2)] = (1 +a+ -5 = )R
Inequalities (31) and (32) imply that for |zl = R > 1
5 30[ 1 n—2
lp(2)] ég "+ <Z+TZ‘+ B — )R

from which inequality (12’) follows immediately.
Proof of Theorem 5. Firstlet # = 7 and write
p(2) 1 = a,8" + 12" F @02 4 432" + 5(2)

where s(z) is a polynomial of degree at most n — 4. If |a,| = a, |a,—1| = 8,
|@n—2] = 7, |an—s3] = 6, then in view of (24) and (28) we have

2 3 02 2
(33) a§1/1_4"‘ "226 -2

Using Lemma 2 to estimate |s(z)| we obtain

(34) max),—g>1 [P ()| £ aR" + BR* 4+ YR + 6R*
+A+a+B8+7y+HR 'S (R + R Ha
_I_ (Rn—l + Rn—4)ﬁ + (Rn—2 + Rn_4)’y

_ 2 2__;) 2
+ (Rn—3 + In~»4) /‘/1 4& 22[3 <Y + In—4

é %{(Rn _|__ Rn—4)2+ Q(Rn—l_l_ Rn—4)2 + 2(Rn—2 +Rn—4)2
+ 2(Rn—3 _|_ Rn—4)2}1/2 + ‘Rn—c}

by Schwarz's inequality. Now it is a matter of simple verification that the
right hand side of (34) is less than

1, . 2 11 .4
5 R+ R+ R

for R > 1.
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Similar reasoning shows that in the case of » = 5 we have

max s PG| S 5 (B + RY) + 5 R
Now let » = 6 and write
p(2): = ae(z® + 1) 4+ a5(2° + 2) + as(z® + 32) + asz®.

If we set |as| = a, |as| = B, |as] = v and |as] = §, then because of (24)
we must have

(33) 6 =T — da® — 267 — 297

and so again using Schwarz's inequality, we obtain
maxi—ps>1 [p(@)| £ (R" + Da + (R’ + R)B + (R' + Ry
+RV1 —4d" — 28 — 2 S YR + 1) + 2R’ + R)’

9
4

+ 2R + R} + 4R%}V? < % (R® 4+ R + 5 R%.

In the case of # = 4 we can similarly show that

max;_pn [p(2)] < 5 (R + R+

Proof of Theorem 6. For n = 1 the result is trivial, whereas for n = 2
it can be proved in the same way as (12’); all we need to note is that if
p(z) 1 = D r_o a2, then |a,| £ |ao| and so

la,] < %3 and e, £ V1 — 4]a,|2

Proof of Theorem 7. 1t is known (see for example [10, p. 8]) that if
g(z): =2z"p(1/z), thenfor R 2 1and 0 < 6 < 27

(35)  [p'(Re*)| + |¢'(Re™)| = nR*™" maxiz1 [p(2)].

But
i in6 <l i0>}‘
a8 {e P\R*®

/ —in 1 i ’ —
- & | (o) - e
since z"p (1/2) = p(z). Hence (35) can be written as (19).

@R = R

Proof of Theorem 8. First assume p to be > 1. Then by inequality (5.3)
(where there is an obvious misprint) of [11] for the special operator
Blpa(2)] = p.(2), we have

(36) [p(pe™)| + lg(pe)| = (p" + 1) max;j—1 [p(2)].
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But

P(% ew)l = |plpe™™)| sincez"p(1/z) = p(2).

Hence (36) can be written as (20).
That (20) holds also for p < 1 is easily seen by using the relationship
2'p(1/z) = p(2).

Proof of (20*). Note that if # is odd then a polynomial p(z) satisfying
(11) must vanish at —1. Therefore

lg(oe®)| = p*

p(—p) = _ P (t)di

and for p > 1, the desired result is a simple consequence of (19’). That
(20*) holds for p < 1 as well follows from the fact that 2"p(1/z) = p(2).

Proof of Theorem 9. Let p(z) : = D i—o ax 2* and consider the function

¢(2) 1 = z7"p(22). lf up(2) : = z¥ + 27" then in view of (28) we can write
¢(2) as a linear combination of u,(z), #,_2(z), . . . , uo(z) if n is even and of
U, (8), ty—2(2), ..., u1(2z) if n is odd. Since u,(z) can be expressed as a

polynomial ¢, ((z 4+ z71)/2) of degree k in (z 4+ z71)/2 where £,(0) = 0 for
odd k we conclude that g(z) is indeed a polynomial P,((z + z71)/2) of
degree n in (z + z71)/2 and that P,(0) = 0 if n is odd. The hypothesis
max, -1 [p(z)| = 1 implies that

(87) max_i<p<i1 |[Po(w)| = 1.

Hence, if Ez is the ellipse in the w-plane with foci at —1, +1 and
semi-axes 3(R!'? + R-12), 3(R'* — R-'/?), then by the maximum
modulus principle

(38) maxyer gz [Pa(w)] = 1.
But

maXuee, g [Pn(w)] = R max sk [p(2*)| = R max,, -z [ (2)|
and so
(89) maxy;—g>1[p(2)| = R
For odd n we can do better since in that case P,(0) = 0 and we may use
(37) in conjunction with Lemma 4 to obtain the estimate given in (21).
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